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Abstract: A four-component synthesis of 2-phenyl-9H-pyrimido[4,5-b]indoles was developed using
indole-3-carboxaldehydes, aromatic aldehyde and ammonium iodide as the raw materials under
transition-metal-free conditions. The pyrimidine ring was formed in one pot through [4 + 2] annu-
lation reaction. Four C–N bonds were formed in one pot promoted by iodine and iodide additives.
This work is highlighted by using two ammonium iodides as the sole nitrogen source.

Keywords: 9H-pyrimido[4,5-b]indole; aromatic aldehyde; ammonium salt; cycloaddition; transition
metal free

1. Introduction

As an important part of nitrogen-containing heterocycles, pyrimidines are widespread
in natural products and pharmaceuticals [1–3]. Among them, the 9H-pyrimido[4,5-b]indole
motif has important application in many fields, such as anti-inflammatory, antimicro-
bial, antimalarial agents and cytotoxic inhibitors [4–6]. Furthermore, the core structure
of 9H-pyrimido[4,5-b]indoles was found in many biologically active molecules, such as
HSCex vivo expansion agent, pyruvate dehydrogenase kinases (PDHKs) inhibitors, epider-
mal growth factor receptor (EGFr) tyrosine kinase inhibitors, and endogenous hormones
(Figure 1) [7–11]. Therefore, significant research effort has been focused on the synthesis of
9H-pyrimido[4,5-b]indole derivatives. According to the reported methods, the synthesis of
9H-pyrimido[4,5-b]indoles usually started with highly functionalized materials [12–15]. For
example, 4-azido-5-phenylpyrimidine, 1,3,5-triazines, benzamidine, guanidine nitrate and
o-nitrobiphenyl were successfully used as the starting materials for the synthesis of target
products [16–19]. Furthermore, most reactions often use stoichiometric amount of strong
acids or bases which do not meet the requirement of green chemistry. For example, Shkurko
and co-workers developed a multi-step synthesis of 2-phenyl-9H-pyrimido[4,5-b]indole
from indolin-2-one using sodium ethylate prepared from sodium as the base [20]. Therefore,
efficient and green synthetic methods for constructing 9H-pyrimido[4,5-b]indole derivatives
in one pot are highly desirable.
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[11]). 
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ally start with simple and commercially available materials as the reaction substrates thus 
providing a shortcut for the synthesis of functional molecules. Meanwhile, ammonium 
salts are ideal nitrogen sources for the synthesis of nitrogen-containing heterocycles due 
to their low cost and ease of handling [30–36]. In 2009, Konakahara and coworkers devel-
oped a ZnCl2-catalyzed three-component coupling reaction for the synthesis of 4,5-disub-
stituted pyrimidines from ammonium acetate, enamines and triethyl orthoformate 
(Scheme 1a) [37]. In recent years, our group also developed several MCRs for the synthesis 
of nitrogen-containing heterocycles using ammonium salts as the nitrogen source [38–40]. 
For example, in 2018, we reported a four-component procedure for the synthesis of 
quinazoline using anilines, aromatic aldehydes and ammonium iodide as starting materi-
als (Scheme 1b) [41]. In 2020, we developed a base-promoted aerobic oxidation approach 
for the synthesis of benzimidazo[1,2-a]-1,3,5-triazines involving 2-aminobenzimidazoles, 
aromatic aldehydes and ammonium iodide [42]. However, in most cases, ammonium salts 
only provided a single nitrogen atom source in these multi-component reactions. When 
two nitrogen atom rings were formed, another organic nitrogen source such as amines is 
usually required. In 2019, Chen’s group demonstrated a three-component reaction of am-
monium acetate, chalcone and phenyl-methanol using copper (II) as the catalyst provid-
ing tri-substituted pyrimidines in moderate yields (Scheme 1c) [43]. In this process, both 
nitrogen atoms in the pyrimidine ring come from the ammonium acetate. However, for 
the synthesis of N-heterocycles containing multiple nitrogen atoms which are easy to form 
a stable complex with the transition metals but encounter difficulties in removing the toxic 
transition metals, it is particularly important to perform the reaction without the aid of 
transition-metal catalysts. In the pursuit of research on heterocycle construction using am-
monium salts as the nitrogen source under transition-metal-free conditions, herein we de-
scribe a general four-component reaction for the synthesis of 2-phenyl-9H-pyrimido[4,5-
b]indole from indole-3-carboxaldehydes, aromatic aldehydes and ammonium salt 
(Scheme 1d). In this reaction, both nitrogen atoms in the pyrimidine ring come from am-
monium salt and four C–N bonds were formed in one pot in the absence of a transition 
metal catalyst. 
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In the last decades, the multi-component reactions (MCRs) have played an increasingly
dominant role in the organic synthesis of wide and diverse compounds which provides
atom economy, and featured productivity and easy execution [21–29]. MCRs usually start
with simple and commercially available materials as the reaction substrates thus providing
a shortcut for the synthesis of functional molecules. Meanwhile, ammonium salts are
ideal nitrogen sources for the synthesis of nitrogen-containing heterocycles due to their
low cost and ease of handling [30–36]. In 2009, Konakahara and coworkers developed a
ZnCl2-catalyzed three-component coupling reaction for the synthesis of 4,5-disubstituted
pyrimidines from ammonium acetate, enamines and triethyl orthoformate (Scheme 1a) [37].
In recent years, our group also developed several MCRs for the synthesis of nitrogen-
containing heterocycles using ammonium salts as the nitrogen source [38–40]. For example,
in 2018, we reported a four-component procedure for the synthesis of quinazoline using
anilines, aromatic aldehydes and ammonium iodide as starting materials (Scheme 1b) [41].
In 2020, we developed a base-promoted aerobic oxidation approach for the synthesis of
benzimidazo[1,2-a]-1,3,5-triazines involving 2-aminobenzimidazoles, aromatic aldehydes
and ammonium iodide [42]. However, in most cases, ammonium salts only provided a
single nitrogen atom source in these multi-component reactions. When two nitrogen atom
rings were formed, another organic nitrogen source such as amines is usually required.
In 2019, Chen’s group demonstrated a three-component reaction of ammonium acetate,
chalcone and phenyl-methanol using copper (II) as the catalyst providing tri-substituted
pyrimidines in moderate yields (Scheme 1c) [43]. In this process, both nitrogen atoms
in the pyrimidine ring come from the ammonium acetate. However, for the synthesis of
N-heterocycles containing multiple nitrogen atoms which are easy to form a stable complex
with the transition metals but encounter difficulties in removing the toxic transition metals,
it is particularly important to perform the reaction without the aid of transition-metal
catalysts. In the pursuit of research on heterocycle construction using ammonium salts as
the nitrogen source under transition-metal-free conditions, herein we describe a general
four-component reaction for the synthesis of 2-phenyl-9H-pyrimido[4,5-b]indole from
indole-3-carboxaldehydes, aromatic aldehydes and ammonium salt (Scheme 1d). In this
reaction, both nitrogen atoms in the pyrimidine ring come from ammonium salt and four
C–N bonds were formed in one pot in the absence of a transition metal catalyst.
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2. Results

In order to explore the optimized reaction conditions, our study was initiated by
using indole-3-carboxaldehyde (1a), benzaldehyde (2a) and ammonium iodide as model
substrates and 20 mol% of iodine as the catalyst under oxygen atmosphere (Table 1). To
begin with, potassium iodide was used as an additive to the reaction, affording the target
product 3aa in 45% yield (entry 1). Then, various iodide-containing additives were screened
to find the appropriate promotor, among which NaIO4 is the best candidate reagent to
provide the product 3aa in 76% yield (entries 2–5). Moderate yields were obtained when
reactions were carried out in PhCl, toluene, mesitylene and PhCF3 (entries 6–9). DMF,
CH3CN, NMP and pyridine as the reaction media completely quenched the reaction
(entries 10–13). Furthermore, oxidants screening among others showed that DMSO was
superior to others such as H2O2, tert-butyl hydroperoxide (TBHP), di-tert-butyl peroxide
(DTBP), K2S2O8, and Na2S2O8 (entries 14–18). Diminished yield was obtained when the
reaction was performed without I2 (entry 19). Lower yield was obtained when the reaction
was carried out in air atmosphere (entry 20). Finally, no desired product was detected
when using NH4Cl instead of NH4I as nitrogen source for this kind of transformation
(entry 21). We believed that iodine, periodate and oxygen were used as the oxidant. The
iodine anion could be oxidized to iodine, which could further promote the oxidative
aromatization process.

Table 1. Optimization of the reaction conditions 1.
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N
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2 NH4I
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1a 3aa
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Entry Additive Oxidant Solvent Yield (%) 2 
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Entry Additive Oxidant Solvent Yield (%) 2

1 KI DMSO o-DCB 45
2 KIO3 DMSO o-DCB 68
3 NaIO4 DMSO o-DCB 76
4 I2O5 DMSO o-DCB trace
5 NIS DMSO o-DCB trace
6 NaIO4 DMSO PhCl 65
7 NaIO4 DMSO toluene 53
8 NaIO4 DMSO mesitylene 40
9 NaIO4 DMSO PhCF3 39

10 NaIO4 DMSO DMF trace
11 NaIO4 DMSO CH3CN trace
12 NaIO4 DMSO NMP trace
13 NaIO4 DMSO Pyridine trace
14 NaIO4 H2O2 o-DCB 38
15 NaIO4 TBHP o-DCB 35
16 NaIO4 DTBP o-DCB 30
17 NaIO4 K2S2O8 o-DCB trace
18 NaIO4 Na2S2O8 o-DCB 15

19 3 NaIO4 DMSO o-DCB 58
20 4 NaIO4 DMSO o-DCB 63
21 5 NaIO4 DMSO o-DCB 0

1 Reaction conditions: 1a (0.2 mmol), 2a (0.4 mmol), NH4I (0.6 mmol), I2 (0.04 mmol), additive (0.2 mmol), oxidant
(0.4 mmol), solvent (0.6 mL), 150 ◦C, 16 h, oxygen. 2 GC yield based on 1a. 3 Without I2. 4 Under air. 5 With
NH4Cl (0.6 mmol) instead of NH4I.

With the optimal conditions established, the substrate scope of indole-3-carboxaldehydes
was explored (Scheme 2). As depicted, various substitutes of indole-3-carboxaldehyde
could participate in current reaction regardless of the electronic nature of substituents
incorporated on the C4, C5, C6, C7 positions. The model reaction provided product 3aa
in 73% isolated yield. N-methylindole-3-carbaldehyde could also be used as the sub-
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strate to give product 3ba in 66% isolated yield. To our surprise, 4-chloro-1H-indole-3-
carbaldehyde was the best effective substrate that the corresponding product 3ca was
obtained in 96% yield, whereas 4-bromo substituent indole-3-carbaldehyde afforded 3da
in 71% yield. Moreover, when fluoro, chloro and methyl substituents were located at
C5, C6 and C7 positions, the counterparts were obtained in moderate to good yields
(3ea, 3fa, 3ga, 3ia, 3la and 3ma). Similarly, bromo substituent at C5 and C6 positions
led to lower isolated yields (3ha and 3ja). It was regrettable that 6-methoxy-1H-indole-
3-carbaldehyde only provided product 3ka in 23% yield. Further study revealed that
1H-pyrrolo[2,3-b]pyridine-3-carbaldehyde was also a viable substrate for this kind of re-
action, leading to the corresponding product 3na in 59% yield. Unfortunately, sulfur
containing heterocyclic aldehyde such as benzo[b]thiophene-3-carbaldehyde was ineffec-
tive for this type of cyclization process.
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Additional experiments revealed that the current protocol for 2-aryl-9H-pyrimido[4,5-
b]indole synthesis was very effective and efficient, and various aromatic aldehydes derived
from 2a could also react well with indole-3-carboxaldehyde 1a (Scheme 3). Electron-
donating and electron-withdrawing groups decorated on the aryl ring were well tolerated,
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regardless of the position. A series of para-substituted benzaldehydes smoothly reacted
with indole-3-carboxaldehyde 1a to give the desired products in moderate to good yields
(3ab–3al). It should be noted that other substrates with electron-withdrawing groups at
the 4-position on the phenyl ring such as trifluoromethyl, trifluoromethoxy and cyano
performed well in the reaction, affording target products 3ai–3ak in good yields. Halogen
substituents located at the para, meta and ortho positions were able to smoothly involve
the reaction (3af–3ah, 3ap–3ar, 3at and 3au). The steric effect of the reaction is unintel-
ligible. For example, when chloro substituent was located at the para, meta and ortho
positions, the corresponding products 3ag, 3aq and 3au were obtained in 71%, 56% and
43% yields, respectively. However, the use of meta-methoxybenzaldehyde could afford
product 3an in 91% yield. Benzaldehyde with two functional groups could also react
with 1a and ammonium iodide, affording tricyclic N-heterocyclic products 3aw and 3ax in
47% and 64% yields, respectively. Moreover, the tolerance of chloro and bromo groups
has offered a convenient handle for further transition-metal catalyzed cross-coupling
reactions. Analogously, 2-naphthaldehyde was suitable for this cyclization reaction, pro-
viding product 3av in 70% yield. Although picolinaldehyde was not appropriate substrate,
thiophene-2-carbaldehyde and thiophene-3-carbaldehyde were also well tolerated under
this reaction condition. No desired products were observed when alkyl- or cycloalkyl
aldehydes reacted with 1a.
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Based on the above research and some related literatures [44,45], a plausible reaction
pathway is depicted in Scheme 4. Nucleophilic addition of indole-3-carboxaldehyde with
ammonium iodide generates animine intermediate A. Meanwhile, the nucleophilic addition
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of benzaldehyde with another ammonium iodide affords an imine intermediate B. The [4+2]
annulations reaction of A and B formed an intermediate C. Oxidative dehydrogenation of
the intermediate C in the presence of iodine/DMSO affords the final product 2-phenyl-9H-
pyrimido[4,5-b]indole 3aa.
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3. Discussion

In summary, we have developed a four-component strategy which can provide an
efficient approach to various substituted pyrimido[4,5-b]indoles from commercially avail-
able indole-3-carboxaldehyde, aromatic aldehydes and ammonium iodide under simple
reaction conditions. The C–H bond on the C2 position of indole was directly functionalized
and used for a further cyclization process under metal-free conditions. Ammonium iodide
was involved in this reaction and was used as two nitrogen sources for the pyrimidine ring
construction. The reaction showed good functional group tolerance and wide substrate
scope. This four-component mixture could be selectively assembled into the target products
in one pot without the use of transition-metal catalyst.

4. Materials and Methods
4.1. General Information

All reactions were carried out under an atmosphere of oxygen unless otherwise noted.
Column chromatography was performed using silica gel (200–300 mesh) or neutral alumina.
1H NMR and 13C NMR spectra were recorded on Bruker-AV (400 and 100 MHz, respectively,
Hangzhou, China) instrument internally referenced to tetramethylsilane (TMS) and using
chloroform-d (CDCl3) and dimethyl sulphoxide-d6 (DMSO-d6) as solvent. The obtained
spectra can be found in Supplementary Materials. Mass spectra were measured on Agilent
5975 GC-MS instrument (EI) from Agilent Technologies Co., Ltd. (Beijing, China). High-
resolution mass spectra (ESI) were obtained with the Thermo Scientific LTQ Orbitrap XL mass
spectrometer from Thermo Fisher Scientific (Shanghai, China). Melting points were mea-
sured with a YUHUA X-5 melting point instrument from Gongyi Yuhua Instrument Co., Ltd.
(Gongyi, China) and were uncorrected. The structures of known compounds were further
corroborated by comparing their 1H NMR, 13C NMR data and MS data with those of
literature. All reagents were obtained from commercial suppliers and used without further
purification unless otherwise noted.

4.2. General Procedure for the Synthesis of 2-Phenyl-9H-pyrimido[4,5-b]indole Derivatives

It was added to an oven-dried reaction vessel with a stir bar including indole-3-
carboxaldehyde (0.2 mmol), benzaldehyde (0.4 mmol) and ammonium iodide (0.6 mmol),
NaIO4 (0.2 mmol), DMSO (0.4 mmol), I2 (0.04 mmol), and 1,2-dichlorobenzene (0.6 mL).
The reaction vessel was purged with oxygen for three times and then stirred at 150 ◦C
for 16 h. After cooling to room temperature, the volatiles were removed under reduced
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pressure. The residue was purified by column chromatography on neutral alumina to give
the desired product 3aa in 73% yield.

Characterization of products are below:
2-Phenyl-9H-pyrimido[4,5-b]indole (3aa, CAS: 1904604-60-9)
Yellow solid (37.3 mg, yield 76%, petroleum ether/ethyl acetate = 15:1), m.p. 295–297 ◦C.

1H NMR (400 MHz, DMSO-d6) δ 12.35 (s, 1H), 9.53 (s, 1H), 8.51 (d, J = 6.1 Hz, 2H), 8.24 (d,
J = 7.8 Hz, 1H), 7.60–7.48 (m, 5H), 7.33 (t, J = 7.3 Hz, 1H). 13C NMR (101 MHz, DMSO)
δ 160.1, 156.5, 149.4, 139.5, 138.7, 130.7, 129.1, 128.2, 128.0, 122.1, 121.5, 119.5, 112.8, 112.3.

9-Methyl-2-phenyl-9H-pyrimido[4,5-b]indole (3ba):
Yellow solid (34.2 mg, yield 66%, petroleum ether/ethyl acetate = 15:1), m.p. 190–192 ◦C.

1H NMR (400 MHz, DMSO-d6) δ 9.46 (s, 1H), 8.56 (d, J = 5.9 Hz, 2H), 8.22 (d, J = 7.8 Hz,
1H), 7.71–7.48 (m, 5H), 7.36 (t, J = 7.5 Hz, 1H), 3.93 (s, 3H). 13C NMR (101 MHz, DMSO)
δ 160.0, 155.6, 149.1, 140.6, 138.5, 130.8, 129.0, 128.3, 128.0, 122.0, 121.8, 119.0, 112.5, 110.7,
27.9. HRMS (ESI): m/z calcd. for C17H14N3 [M + H]+ 260.1182, found 260.1185.

5-Chloro-2-phenyl-9H-pyrimido[4,5-b]indole (3ca):
Yellow solid (53.7 mg, yield 96%, petroleum ether/ethyl acetate = 15:1), m.p. 320–322 ◦C.

1H NMR (400 MHz, DMSO-d6) δ 12.70 (s, 1H), 9.57 (s, 1H), 8.50 (d, J = 7.1 Hz, 2H),
7.56–7.46 (m, 5H), 7.36 (d, J = 6.4 Hz, 1H). 13C NMR (101 MHz, DMSO) δ 160.6, 156.5, 150.3,
140.6, 138.3, 131.0, 129.1, 129.0, 128.4, 128.3, 121.6, 117.5, 111.8, 111.3. HRMS (ESI): m/z
calcd. for C16H11ClN3 [M + H]+ 280.0636, found 280.0632.

5-Bromo-2-phenyl-9H-pyrimido[4,5-b]indole (3da):
Yellow solid (55.0 mg, yield 71%, petroleum ether/ethyl acetate = 15:1), m.p. 274–276 ◦C.

1H NMR (400 MHz, DMSO-d6) δ 12.73 (s, 1H), 9.74 (s, 1H), 8.55–8.47 (m, 2H), 7.63–7.43 (m,
6H). 13C NMR (101 MHz, DMSO) δ 160.7, 156.5, 149.9, 140.6, 138.3, 131.0, 129.2, 129.1, 128.4,
124.8, 119.3, 116.6, 112.5, 111.7. HRMS (ESI): m/z calcd. for C16H11BrN3 [M + H]+ 324.0131,
found 324.0160.

6-Methyl-2-phenyl-9H-pyrimido[4,5-b]indole (3ea):
Yellow solid (36.8 mg, yield 71%, petroleum ether/ethyl acetate = 15:1), m.p. 359–361 ◦C.

1H NMR (400 MHz, DMSO-d6) δ 12.20 (s, 1H), 9.47 (s, 1H), 8.51 (d, J = 6.4 Hz, 2H), 8.02 (s,
1H), 7.58–7.43 (m, 4H), 7.38–7.31 (m, 1H), 2.47 (s, 3H). 13C NMR (101 MHz, DMSO) δ 160.0,
156.6, 149.2, 138.8, 137.6, 130.6, 130.4, 129.3, 129.0, 128.2, 121.8, 119.6, 112.7, 112.0, 21.5.
HRMS (ESI): m/z calcd. for C17H14N3 [M + H]+ 260.1182, found 260.1181.

6-Fluoro-2-phenyl-9H-pyrimido[4,5-b]indole (3fa):
Yellow solid (30.0 mg, yield 57%, petroleum ether/ethyl acetate = 15:1), m.p. 317–319 ◦C.

1H NMR (400 MHz, DMSO-d6) δ 12.40 (s, 1H), 9.54 (s, 1H), 8.51 (d, J = 7.1 Hz, 2H), 8.10
(d, J = 8.1 Hz, 1H), 7.60–7.50 (m, 4H), 7.38 (t, J = 8.0 Hz, 1H). 13C NMR (101 MHz, DMSO-
d6) δ 160.6, 158.0 (d, J = 235.0 Hz), 157.1, 150.3, 138.6, 135.9, 130.8, 129.1, 128.3, 120.2 (d,
J = 10.5 Hz), 115.8 (d, J = 25.6 Hz), 113.5 (d, J = 9.2 Hz), 112.7 (d, J = 4.5 Hz), 108.0 (d,
J = 24.9 Hz). 19F NMR (376 MHz, DMSO) δ −121.9. HRMS (ESI): m/z calcd. for C16H11FN3
[M + H]+ 264.0932, found 264.0929.

6-Chloro-2-phenyl-9H-pyrimido[4,5-b]indole (3ga):
Yellow solid (45.7 mg, yield 82%, petroleum ether/ethyl acetate = 15:1), m.p. 290–292 ◦C.

1H NMR (400 MHz, DMSO-d6) δ 12.52 (s, 1H), 9.58 (s, 1H), 8.51 (d, J = 7.9 Hz, 2H), 8.38 (s,
1H), 7.61–7.49 (m, 5H). 13C NMR (101 MHz, DMSO) δ 160.8, 156.9, 150.4, 138.5, 138.0, 130.9,
129.1, 128.3, 127.9, 125.8, 121.8, 120.9, 113.9, 112.2. HRMS (ESI): m/z calcd. for C16H11ClN3
[M + H]+ 280.0636, found 280.0632.

6-Bromo-2-phenyl-9H-pyrimido[4,5-b]indole (3ha):
Yellow solid (25.9 mg, yield 40%, petroleum ether/ethyl acetate = 15:1), m.p. 292–294 ◦C.

1H NMR (400 MHz, DMSO-d6) δ 12.54 (s, 1H), 9.59 (s, 1H), 8.55–8.48 (m, 3H), 7.67 (d,
J = 8.5 Hz, 1H), 7.54 (d, J = 6.9 Hz, 4H). 13C NMR (101 MHz, DMSO) δ 160.8, 156.7, 150.5,
138.5, 138.2, 130.9, 130.5, 129.1, 128.3, 124.8, 121.5, 114.3, 113.6, 112.0. HRMS (ESI): m/z
calcd. for C16H11BrN3 [M + H]+ 324.0131, found 324.0155.
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7-Fluoro-2-phenyl-9H-pyrimido[4,5-b]indole (3ia):
Yellow solid (37.9 mg, yield 72%, petroleum ether/ethyl acetate = 15:1), m.p. 286–288 ◦C.

1H NMR (400 MHz, DMSO-d6) δ 12.50 (s, 1H), 9.52 (s, 1H), 8.50 (d, J = 6.4 Hz, 2H), 8.27 (dd,
J = 8.6, 5.5 Hz, 1H), 7.59–7.48 (m, 3H), 7.34 (d, J = 7.3 Hz, 1H), 7.19 (t, J = 9.2 Hz, 1H). 13C
NMR (101 MHz, DMSO-d6) δ 162.4 (d, J = 242.0 Hz), 159.9, 157.2, 149.3, 140.4 (d, J = 12.5 Hz),
138.5, 130.7, 129.1, 128.2, 123.8 (d, J = 10.6 Hz), 116.2, 112.5, 109.6 (d, J = 24.2 Hz), 99.1 (d,
J = 26.7 Hz). HRMS (ESI): m/z calcd. for C16H11FN3 [M + H]+ 264.0932, found 264.0930.

7-Bromo-2-phenyl-9H-pyrimido[4,5-b]indole (3ja):
Yellow solid (27.6 mg, yield 43%, petroleum ether/ethyl acetate = 15:1), m.p. 291–293 ◦C.

1H NMR (400 MHz, DMSO-d6) δ 12.52 (s, 1H), 9.57 (s, 1H), 8.50 (d, J = 8.1 Hz, 2H), 8.21 (d,
J = 8.3 Hz, 1H), 7.72 (s, 1H), 7.57–7.46 (m, 4H). 13C NMR (101 MHz, DMSO) δ 160.6, 156.8,
150.0, 140.4, 138.5, 130.9, 129.1, 128.3, 124.4, 123.9, 120.7, 118.7, 115.0, 112.3. HRMS (ESI):
m/z calcd. for C16H11BrN3 [M + H]+ 324.0131, found 324.0160.

7-Methoxy-2-phenyl-9H-pyrimido[4,5-b]indole (3ka):
Yellow solid (12.4 mg, yield 23%, petroleum ether/ethyl acetate = 10:1), m.p. 244–246 ◦C.

1H NMR (400 MHz, DMSO-d6) δ 12.27 (s, 1H), 9.39 (s, 1H), 8.49 (d, J = 6.5 Hz, 2H), 8.10
(d, J = 8.6 Hz, 1H), 7.57–7.46 (m, 3H), 7.05–6.90 (m, 1H), 3.87 (s, 3H). 13C NMR (101 MHz,
DMSO) δ 160.2, 158.9, 156.8, 147.9, 141.1, 138.8, 130.4, 129.0, 128.0, 123.0, 113.1, 112.8, 110.5,
95.9, 55.9. HRMS (ESI): m/z calcd. for C17H14N3O [M + H]+ 276.1131, found 276.1137.

8-Chloro-2-phenyl-9H-pyrimido[4,5-b]indole (3la):
Yellow solid (42.9 mg, yield 77%, petroleum ether/ethyl acetate = 15:1), m.p. 247–249 ◦C.

1H NMR (400 MHz, DMSO-d6) δ 12.81 (s, 1H), 9.57 (s, 1H), 8.51 (d, J = 7.1 Hz, 2H), 8.20
(d, J = 7.7 Hz, 1H), 7.61–7.50 (m, 4H), 7.31 (t, J = 7.8 Hz, 1H). 13C NMR (101 MHz, DMSO)
δ 160.9, 156.9, 150.4, 138.5, 136.7, 130.9, 129.1, 128.3, 127.4, 122.5, 121.6, 120.8, 116.8, 112.9.
HRMS (ESI): m/z calcd. for C16H11ClN3 [M + H]+ 280.0636, found 280.0632.

8-Methyl-2-phenyl-9H-pyrimido[4,5-b]indole (3ma):
Yellow solid (36.8 mg, yield 71%, petroleum ether/ethyl acetate = 15:1), m.p. 189–191 ◦C.

1H NMR (400 MHz, DMSO-d6) δ 12.38 (s, 1H), 9.49 (s, 1H), 8.52 (d, J = 7.4 Hz, 2H), 8.02
(d, J = 7.7 Hz, 1H), 7.53 (q, J = 9.8, 8.5 Hz, 3H), 7.30 (d, J = 7.3 Hz, 1H), 7.21 (t, J = 7.5 Hz,
1H), 2.56 (s, 3H). 13C NMR (101 MHz, DMSO) δ 160.0, 156.7, 149.4, 138.8, 138.8, 130.6, 129.1,
128.6, 128.2, 121.9, 121.6, 119.3, 119.2, 113.2, 17.5. HRMS (ESI): m/z calcd. for C17H14N3
[M + H]+ 260.1182, found 260.1181.

2-Phenyl-9H-pyrido[3’,2’:4,5]pyrrolo[2,3-d]pyrimidine (3na):
Yellow solid (29.0 mg, yield 59%, petroleum ether/ethyl acetate = 10:1), 1H NMR

(400 MHz, DMSO-d6) δ 12.92 (s, 1H), 9.57 (s, 1H), 8.63 (d, J = 7.7 Hz, 1H), 8.57–8.48 (m, 3H),
7.59–7.50 (m, 3H), 7.39 (dd, J = 7.8, 4.9 Hz, 1H). 13C NMR (101 MHz, DMSO) δ 160.8, 156.3,
152.0, 150.6, 148.3, 138.4, 131.0, 130.6, 129.1, 128.3, 117.9, 112.8, 111.3. HRMS (ESI): m/z
calcd. for C15H11N4 [M + H]+ 247.0978, found 247.0972.

2-(p-Tolyl)-9H-pyrimido[4,5-b]indole (3ab):
Yellow solid (39.4 mg, yield 76%, petroleum ether/ethyl acetate = 15:1), m.p. 277–279 ◦C.

1H NMR (400 MHz, DMSO-d6) δ 12.29 (s, 1H), 9.49 (s, 1H), 8.40 (d, J = 7.9 Hz, 2H), 8.22
(d, J = 7.8 Hz, 1H), 7.61–7.45 (m, 2H), 7.36–7.27 (m, 3H), 2.38 (s, 3H). 13C NMR (101 MHz,
DMSO) δ 160.3, 156.6, 149.4, 140.3, 139.4, 136.1, 129.7, 128.2, 127.9, 122.0, 121.4, 119.6, 112.6,
112.3, 21.5. HRMS (ESI): m/z calcd. for C17H14N3 [M + H]+ 260.1182, found 260.1181.

2-(4-(tert-Butyl)phenyl)-9H-pyrimido[4,5-b]indole (3ac):
Yellow solid (47.6 mg, yield 79%, petroleum ether/ethyl acetate = 15:1), m.p. 171–173 ◦C.

1H NMR (400 MHz, DMSO-d6) δ 12.36 (s, 1H), 9.50 (s, 1H), 8.43 (d, J = 8.5 Hz, 2H), 8.22
(d, J = 7.6 Hz, 1H), 7.58–7.49 (m, 4H), 7.36–7.28 (m, 1H), 1.33 (s, 9H). 13C NMR (101 MHz,
DMSO) δ 160.2, 156.6, 153.4, 149.3, 139.4, 136.0, 128.1, 128.0, 125.9, 122.0, 121.4, 119.5, 112.6,
112.3, 35.0, 31.5. HRMS (ESI): m/z calcd. for C20H20N3 [M + H]+ 302.1652, found 302.1635.

2-(4-Methoxyphenyl)-9H-pyrimido[4,5-b]indole (3ad):
White solid (40.7 mg, yield 74%, petroleum ether/ethyl acetate = 10:1), m.p. 256–258 ◦C.

1H NMR (400 MHz, DMSO-d6) δ 12.35 (s, 1H), 9.47 (s, 1H), 8.45 (d, J = 8.9 Hz, 2H), 8.21
(d, J = 7.8 Hz, 1H), 7.56 (d, J = 8.0 Hz, 1H), 7.54–7.46 (m, 1H), 7.35–7.26 (m, 1H), 7.08 (d,
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J = 8.9 Hz, 2H), 3.84 (s, 3H). 13C NMR (101 MHz, DMSO) δ 161.5, 160.2, 156.6, 149.4, 139.3,
131.3, 129.8, 127.8, 121.8, 121.4, 119.6, 114.4, 112.3, 112.2, 55.8. HRMS (ESI): m/z calcd. for
C17H14N3O [M + H]+ 276.1131, found 276.1133.

2-(4-Ethoxyphenyl)-9H-pyrimido[4,5-b]indole (3ae):
Yellow solid (49.1 mg, yield 85%, petroleum ether/ethyl acetate = 10:1), m.p. 244–246 ◦C.

1H NMR (400 MHz, DMSO-d6) δ 12.26 (s, 1H), 9.46 (s, 1H), 8.44 (d, J = 8.9 Hz, 2H), 8.20
(d, J = 7.8 Hz, 1H), 7.58–7.47 (m, 2H), 7.34–7.26 (m, 1H), 7.05 (d, J = 8.9 Hz, 2H), 4.09 (q,
J = 6.9 Hz, 2H), 1.35 (t, J= 6.9 Hz, 3H). 13C NMR (101 MHz, DMSO) δ 160.8, 160.2, 156.6,
149.4, 139.3, 131.1, 129.8, 127.8, 121.8, 121.4, 119.6, 114.8, 112.2, 112.2, 63.7, 15.1. HRMS (ESI):
m/z calcd. for C18H16N3O [M + H]+ 290.1288, found 290.1289.

2-(4-Fluorophenyl)-9H-pyrimido[4,5-b]indole (3af):
Yellow solid (38.9 mg, yield 74%, petroleum ether/ethyl acetate = 15:1), m.p. 247–249 ◦C.

1H NMR (400 MHz, DMSO-d6) δ 12.36 (s, 1H), 9.51 (s, 1H), 8.58–8.50 (m, 2H), 8.23 (d,
J = 7.8 Hz, 1H), 7.60–7.48 (m, 2H), 7.40–7.28 (m, 3H). 13C NMR (101 MHz, DMSO-d6) δ 164.1
(d, J = 247.4 Hz), 159.2, 156.5, 149.4, 139.4, 135.2 (d, J = 2.9 Hz), 130.5 (d, J = 8.6 Hz), 128.1,
122.1, 121.5, 119.5, 116.0 (d, J = 21.6 Hz), 112.7, 112.3. 19F NMR (376 MHz, DMSO) δ −111.5.
HRMS (ESI): m/z calcd. for C16H11FN3 [M + H]+ 264.0932, found 264.0929.

2-(4-Chlorophenyl)-9H-pyrimido[4,5-b]indole (3ag):
Yellow solid (39.7 mg, yield 71%, petroleum ether/ethyl acetate = 15:1), m.p. 288–290 ◦C.

1H NMR (400 MHz, DMSO-d6) δ 12.39 (s, 1H), 9.53 (s, 1H), 8.50 (d, J= 8.6 Hz, 2H), 8.24 (d,
J = 7.8 Hz, 1H), 7.63–7.51 (m, 4H), 7.36–7.31 (m, 1H). 13C NMR (101 MHz, DMSO) δ 159.1,
156.4, 149.4, 139.5, 137.6, 135.5, 129.9, 129.2, 128.2, 122.1, 121.6, 119.4, 113.0, 112.4. HRMS
(ESI): m/z calcd. for C16H11ClN3 [M + H]+ 280.0636, found 280.0632.

2-(4-Bromophenyl)-9H-pyrimido[4,5-b]indole (3ah):
Yellow solid (42.8 mg, yield 66%, petroleum ether/ethyl acetate = 15:1), m.p. 284–286 ◦C.

1H NMR (400 MHz, DMSO-d6) δ 12.37 (s, 1H), 9.52 (s, 1H), 8.43 (d, J = 8.6 Hz, 2H), 8.24
(d, J = 7.8 Hz, 1H), 7.73 (d, J = 8.6 Hz, 2H), 7.61–7.50 (m, 2H), 7.38–7.29 (m, 1H). 13C
NMR (101 MHz, DMSO) δ 159.2, 156.4, 149.4, 139.5, 137.9, 132.1, 130.2, 128.2, 124.4, 122.2,
121.6, 119.4, 113.0, 112.4. HRMS (ESI): m/z calcd. for C16H11BrN3 [M + H]+ 324.0131,
found 324.0160.

2-(4-(Trifluoromethyl)phenyl)-9H-pyrimido[4,5-b]indole (3ai):
Yellow solid (48.3 mg, yield 78%, petroleum ether/ethyl acetate = 10:1), m.p. 290–292 ◦C.

1H NMR (400 MHz, DMSO-d6) δ 12.48 (s, 1H), 9.58 (s, 1H), 8.69 (d, J = 8.1 Hz, 2H), 8.27
(d, J = 7.8 Hz, 1H), 7.90 (d, J = 8.2 Hz, 2H), 7.63–7.51 (m, 2H), 7.39–7.31 (m, 1H). 13C
NMR (101 MHz, DMSO-d6) δ 158.6, 156.4, 149.5, 142.5, 139.7, 130.5 (q, J = 31.6 Hz), 128.8,
126.0 (q, J = 4.0 Hz), 124.8 (q, J = 272.1 Hz), 122.3, 121.7, 119.3, 113.4, 112.4. 19F NMR
(376 MHz, DMSO) δ −61.1. HRMS (ESI): m/z calcd. for C17H11F3N3 [M + H]+ 314.0900,
found 314.0930.

2-(4-(Trifluoromethyl)phenyl)-9H-pyrimido[4,5-b]indole (3aj):
Yellow solid (37.6 mg, yield 60%, petroleum ether/ethyl acetate = 10:1), m.p. 285–287 ◦C.

1H NMR (400 MHz, DMSO-d6) δ 12.42 (s, 1H), 9.52 (s, 1H), 8.59 (d, J = 8.9 Hz, 2H), 8.24 (d,
J= 7.8 Hz, 1H), 7.59–7.48 (m, 4H), 7.37–7.29 (m, 1H). 13C NMR (101 MHz, DMSO-d6) δ 158.8,
156.4, 150.3, 149.4, 139.5, 137.8, 130.2, 128.2, 122.2, 121.6, 121.4, 120.6 (q, J = 256.8 Hz), 119.4,
113.0, 112.4.19F NMR (376 MHz, CDCl3) δ −51.9. HRMS (ESI): m/z calcd. for C17H11F3N3O
[M + H]+ 330.0849, found 330.0876.

4-(9H-Pyrimido[4,5-b]indol-2-yl)benzonitrile (3ak):
Yellow solid (27.0 mg, yield 50%, petroleum ether/ethyl acetate = 10:1), m.p. 298–300 ◦C.

1H NMR (400 MHz, DMSO-d6) δ 12.47 (s, 1H), 9.56 (s, 1H), 8.62 (d, J = 8.2 Hz, 2H), 8.25
(d, J = 7.8 Hz, 1H), 7.98 (d, J = 8.1 Hz, 2H), 7.62–7.51 (m, 2H), 7.38–7.30 (m, 1H). 13C
NMR (101 MHz, DMSO) δ 158.2, 156.3, 149.4, 142.8, 139.7, 133.1, 128.7, 128.5, 122.3, 121.7,
119.3, 119.3, 113.5, 112.8, 112.4. HRMS (ESI): m/z calcd. for C17H11N4 [M + H]+ 271.0978,
found 271.0976.
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2-([1,1′-Biphenyl]-4-yl)-9H-pyrimido[4,5-b]indole (3al):
Yellow solid (36.6 mg, yield 57%, petroleum ether/ethyl acetate = 15:1), m.p. 298–300 ◦C.

1H NMR (400 MHz, DMSO-d6) δ 12.38 (s, 1H), 9.55 (s, 1H), 8.60 (d, J = 8.4 Hz, 2H), 8.25 (d,
J = 7.8 Hz, 1H), 7.85 (d, J = 8.2 Hz, 2H), 7.77 (d, J = 7.2 Hz, 2H), 7.60–7.47 (m, 4H), 7.41 (t,
J = 7.4 Hz, 1H), 7.34 (t, J = 7.1 Hz, 1H). 13C NMR (101 MHz, DMSO) δ 159.9, 156.5, 149.5,
142.1, 140.0, 139.5, 137.8, 129.5, 128.8, 128.3, 128.1, 127.3, 127.2, 122.1, 121.5, 119.5, 112.8,
112.3. HRMS (ESI): m/z calcd. for C22H16N3 [M + H]+ 322.1339, found 322.1325.

2-(m-Tolyl)-9H-pyrimido[4,5-b]indole (3am):
Yellow solid (39.4 mg, yield 76%, petroleum ether/ethyl acetate = 15:1), m.p. 247–249 ◦C.

1H NMR (400 MHz, DMSO-d6) δ 12.35 (s, 1H), 9.51 (s, 1H), 8.34 (s, 1H), 8.30 (d, J = 7.8 Hz,
1H), 8.23 (d, J = 7.8 Hz, 1H), 7.60–7.48 (m, 2H), 7.41 (t, J = 7.6 Hz, 1H), 7.36–7.28 (m, 2H),
2.42 (s, 3H). 13C NMR (101 MHz, DMSO) δ 160.3, 156.5, 149.3, 139.4, 138.6, 138.1, 131.3,
129.0, 128.8, 128.0, 125.5, 122.0, 121.5, 119.5, 112.8, 112.3, 21.6. HRMS (ESI): m/z calcd. for
C17H14N3 [M + H]+ 260.1182, found 260.1185.

2-(3-Methoxyphenyl)-9H-pyrimido[4,5-b]indole (3an):
Yellow solid (50.0 mg, yield 91%, petroleum ether/ethyl acetate = 10:1), m.p. 265–267 ◦C.

1H NMR (400 MHz, DMSO-d6) δ 12.34 (s, 1H), 9.51 (s, 1H), 8.23 (d, J = 7.8 Hz, 1H), 8.11 (d,
J = 7.8 Hz, 1H), 8.06 (s, 1H), 7.60–7.49 (m, 2H), 7.45 (t, J = 7.9 Hz, 1H), 7.33 (t, J = 7.3 Hz,
1H), 7.13–7.04 (m, 1H), 3.87 (s, 3H). 13C NMR (101 MHz, DMSO) δ 160.0, 159.9, 156.5, 149.3,
140.2, 139.5, 130.1, 128.1, 122.1, 121.5, 120.7, 119.5, 116.7, 113.0, 112.9, 112.3, 55.6. HRMS
(ESI): m/z calcd. for C17H14N3O [M + H]+ 276.1131, found 276.1137.

2-(3-(Trifluoromethoxy)phenyl)-9H-pyrimido[4,5-b]indole (3ao):
Yellow solid (46.7 mg, yield 71%, petroleum ether/ethyl acetate = 10:1), m.p. 280–282 ◦C.

1H NMR (400 MHz, DMSO-d6) δ 12.47 (s, 1H), 9.56 (s, 1H), 8.53 (d, J = 7.8 Hz, 1H), 8.39 (s,
1H), 8.26 (d, J = 7.8 Hz, 1H), 7.69 (t, J = 8.0 Hz, 1H), 7.61–7.48 (m, 3H), 7.35 (t, J = 7.2 Hz,
1H). 13C NMR (101 MHz, DMSO-d6) δ 158.4, 156.4, 149.5, 149.3, 141.1, 139.6, 131.3, 128.4,
127.1, 123.1, 122.2, 121.6, 120.7 (q, J = 256.4 Hz), 119.9, 119.4, 113.4, 112.4. 19F NMR
(376 MHz, DMSO) δ −56.6. HRMS (ESI): m/z calcd. for C17H11F3N3O [M + H]+ 330.0849,
found 330.0844.

2-(3-Fluorophenyl)-9H-pyrimido[4,5-b]indole (3ap):
Yellow solid (36.3 mg, yield 69%, petroleum ether/ethyl acetate = 15:1), m.p. 210–212 ◦C.

1H NMR (400 MHz, DMSO-d6) δ 12.53 (s, 1H), 9.54 (s, 1H), 8.35 (d, J = 7.8 Hz, 1H), 8.25
(d, J = 7.8 Hz, 1H), 8.22–8.15 (m, 1H), 7.64–7.49 (m, 3H), 7.39–7.29 (m, 2H). 13C NMR (101
MHz, DMSO-d6) δ 163.01 (d, J = 242.5 Hz),158.77 (d, J = 3.3 Hz), 156.32, 149.39, 141.32 (d,
J = 7.8 Hz), 139.64, 131.15 (d, J = 8.3 Hz), 128.25, 124.20 (d, J = 2.6 Hz), 122.18, 121.56, 119.36,
117.41 (d, J = 21.1 Hz), 114.47 (d, J = 23.1 Hz), 113.20, 112.47. HRMS (ESI): m/z calcd. for
C16H11FN3 [M + H]+ 264.0932, found 264.0930.

2-(3-Chlorophenyl)-9H-pyrimido[4,5-b]indole (3aq):
Yellow solid (31.3 mg, yield 56%, petroleum ether/ethyl acetate = 15:1), m.p. 201–203 ◦C.

1H NMR (400 MHz, DMSO-d6) δ 12.49 (s, 1H), 9.55 (s, 1H), 8.48 (s, 1H), 8.47–8.42 (m, 1H),
8.25 (d, J = 7.8 Hz, 1H), 7.63–7.50 (m, 4H), 7.38–7.30 (m, 1H). 13C NMR (101 MHz, DMSO)
δ 158.6, 156.4, 149.4, 140.8, 139.6, 134.0, 131.1, 130.4, 128.3, 127.8, 126.7, 122.2, 121.6, 119.4,
113.3, 112.4. HRMS (ESI): m/z calcd. for C16H11ClN3 [M + H]+ 280.0636, found 280.0632.

2-(3-Bromophenyl)-9H-pyrimido[4,5-b]indole (3ar):
Yellow solid (38.9 mg, yield 60%, petroleum ether/ethyl acetate = 15:1), m.p. 213–215 ◦C.

1H NMR (400 MHz, DMSO-d6) δ 12.54 (s, 1H), 9.54 (s, 1H), 8.63 (s, 1H), 8.49 (d, J = 7.8 Hz,
1H), 8.25 (d, J = 7.8 Hz, 1H), 7.70 (d, J = 8.0 Hz, 1H), 7.61 (d, J = 8.1 Hz, 1H), 7.58–7.47 (m,
2H), 7.33 (t, J = 7.5 Hz, 1H). 13C NMR (101 MHz, DMSO) δ 158.4, 156.3, 149.4, 141.0, 139.6,
133.2, 131.4, 130.7, 128.3, 127.1, 122.5, 122.2, 121.6, 119.4, 113.2, 112.5. HRMS (ESI): m/z
calcd. for C16H11BrN3 [M + H]+ 324.0131, found 324.0160.

2-(o-Tolyl)-9H-pyrimido[4,5-b]indole (3as):
Yellow solid (28.5 mg, yield 55%, petroleum ether/ethyl acetate = 15:1), m.p. 235–237 ◦C.

1H NMR (400 MHz, DMSO-d6) δ 13.04 (s, 1H), 9.73 (s, 1H), 8.36 (d, J = 7.8 Hz, 1H), 7.79
(d, J = 7.2 Hz, 1H), 7.71–7.61 (m, 2H), 7.52–7.37 (m, 4H), 2.53 (s, 3H). 13C NMR (101 MHz,
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DMSO-d6) δ 156.2, 140.2, 137.5, 131.7, 131.0, 130.7, 129.5, 126.5, 122.9, 122.8, 119.4, 113.1,
112.4, 20.8. HRMS (ESI): m/z calcd. for C17H14N3 [M + H]+ 260.1182, found 260.1181.

2-(2-Fluorophenyl)-9H-pyrimido[4,5-b]indole (3at):
Yellow solid (30.0 mg, yield 57%, petroleum ether/ethyl acetate = 15:1), m.p. 271–273 ◦C.

1H NMR (400 MHz, DMSO-d6) δ 12.46 (s, 1H), 9.57 (s, 1H), 8.27 (d, J = 7.8 Hz, 1H), 8.11
(t, J = 7.9 Hz, 1H), 7.61–7.49 (m, 3H), 7.40–7.31 (m, 3H). 13C NMR (101 MHz, DMSO-d6) δ
162.1, 159.6, 158.7 (d, J = 4.3 Hz), 149.3, 139.4, 132.5 (d, J = 2.1 Hz), 131.9 (d, J = 8.5 Hz),
128.3, 127.7 (d, J = 9.7 Hz), 124.8 (d, J = 3.7 Hz), 122.3, 121.5, 119.2, 117.2 (d, J = 22.3 Hz),
112.6, 112.4. 19F NMR (376 MHz, DMSO) δ −114.4. HRMS (ESI): m/z calcd. for C16H11FN3
[M + H]+ 264.0932, found 264.0929.

2-(2-Chlorophenyl)-9H-pyrimido[4,5-b]indole (3au):
Yellow solid (30.0 mg, yield 43%, petroleum ether/ethyl acetate = 15:1), m.p. 261–263 ◦C.

1H NMR (400 MHz, DMSO-d6) δ 12.43 (s, 1H), 9.57 (s, 1H), 8.28 (d, J = 7.5 Hz, 1H),
7.82–7.76 (m, 1H), 7.63–7.45 (m, 5H), 7.37 (t, J = 6.1 Hz, 1H). 13C NMR (101 MHz, DMSO)
δ 161.0, 155.9, 149.1, 139.4, 139.2, 132.4, 132.1, 130.7, 130.6, 128.3, 127.5, 122.3, 121.6, 119.2,
112.6, 112.4. HRMS (ESI): m/z calcd. for C16H11ClN3 [M + H]+ 280.0636, found 280.0632.

2-(Naphthalen-2-yl)-9H-pyrimido[4,5-b]indole (3av):
Yellow solid (41.2 mg, yield 70%, petroleum ether/ethyl acetate = 15:1), m.p. 304–306 ◦C.

1H NMR (400 MHz, DMSO-d6) δ 12.35 (s, 1H), 9.56 (s, 1H), 9.06 (s, 1H), 8.63 (d, J = 8.6 Hz,
1H), 8.25 (d, J = 7.8 Hz, 1H), 8.12–8.07 (m, 1H), 8.05 (d, J = 8.7 Hz, 1H), 8.00–7.94 (m, 1H),
7.62–7.51 (m, 4H), 7.33 (t, J = 6.9 Hz, 1H). 13C NMR (101 MHz, DMSO) δ 160.1, 156.6, 149.4,
139.5, 136.1, 134.4, 133.4, 129.4, 128.5, 128.1, 128.1, 127.6, 127.0, 125.5, 122.1, 121.6, 119.5,
112.9, 112.4. HRMS (ESI): m/z calcd. for C20H14N3 [M + H]+ 296.1182, found 296.1170.

2-(2,4-Dichlorophenyl)-9H-pyrimido[4,5-b]indole (3aw):
Yellow solid (29.5 mg, yield 47%, petroleum ether/ethyl acetate = 15:1), m.p. 212–214 ◦C.

1H NMR (400 MHz, DMSO-d6) δ 12.49 (s, 1H), 9.58 (s, 1H), 8.29 (d, J = 7.8 Hz, 1H), 7.84 (d,
J = 8.4 Hz, 1H), 7.77 (s, 1H), 7.63–7.55 (m, 3H), 7.37 (t, J = 6.4 Hz, 1H). 13C NMR (101 MHz,
DMSO) δ 160.0, 155.8, 149.1, 139.5, 138.0, 134.5, 133.8, 133.2, 130.1, 128.5, 127.8, 122.4,
121.7, 119.1, 112.8, 112.4. HRMS (ESI): m/z calcd. for C16H10Cl2N3 [M + H]+ 314.0246,
found 314.0273.

2-(3,4-Dimethylphenyl)-9H-pyrimido[4,5-b]indole (3ax):
Yellow solid (35.0 mg, yield 64%, petroleum ether/ethyl acetate = 15:1), m.p. 299–301 ◦C.

1H NMR (400 MHz, DMSO-d6) δ 12.30 (s, 1H), 9.49 (s, 1H), 8.30 (s, 1H), 8.22 (d, J = 7.9 Hz,
2H), 7.58–7.47 (m, 2H), 7.35–7.25 (m, 2H), 2.34 (s, 3H), 2.30 (s, 3H). 13C NMR (101 MHz,
DMSO) δ 160.4, 156.6, 149.3, 139.4, 139.1, 136.7, 136.4, 130.2, 129.3, 127.9, 125.8, 121.9, 121.4,
119.6, 112.5, 112.3, 20.1, 19.9. HRMS (ESI): m/z calcd. for C18H16N3 [M + H]+ 274.1339,
found 274.1338.

2-(Thiophen-3-yl)-9H-pyrimido[4,5-b]indole (3ay):
Yellow solid (22.6 mg, yield 45%, petroleum ether/ethyl acetate = 15:1), m.p. 283–285 ◦C.

1H NMR (400 MHz, DMSO-d6) δ 12.33 (s, 1H), 9.46 (s, 1H), 8.39 (s, 1H), 8.22 (d, J = 7.8 Hz,
1H), 7.91 (d, J = 5.0 Hz, 1H), 7.70–7.63 (m, 1H), 7.58–7.47 (m, 2H), 7.32 (t, J = 6.4 Hz, 1H).
13C NMR (101 MHz, DMSO) δ 157.8, 156.4, 149.5, 142.7, 139.3, 127.9, 127.7, 127.7, 127.4,
121.9, 121.5, 119.6, 112.4, 112.3. HRMS (ESI): m/z calcd. for C14H10N3S [M + H]+ 252.0590,
found 252.0588.

2-(Thiophen-2-yl)-9H-pyrimido[4,5-b]indole (3az):
Yellow solid (13.6 mg, yield 27%, petroleum ether/ethyl acetate = 15:1), m.p. 272–274 ◦C.

1H NMR (400 MHz, DMSO-d6) δ 12.38 (s, 1H), 9.42 (s, 1H), 8.21 (d, J = 7.8 Hz, 1H),
8.02–7.96 (m, 1H), 7.73 (d, J = 4.1 Hz, 1H), 7.57–7.47 (m, 2H), 7.36–7.28 (m, 1H), 7.25–7.18 (m, 1H).
13C NMR (101 MHz, DMSO) δ 157.2, 156.2, 149.4, 144.7, 139.3, 130.3, 128.9, 128.4, 128.0,
121.9, 121.6, 119.6, 112.5, 112.3. HRMS (ESI): m/z calcd. for C14H10N3S [M + H]+ 252.0590,
found 252.0588.
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