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Abstract: Coronavirus disease-2019 is caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) and is the most difficult recent global outbreak. Semiconducting materials can be used
as effective photocatalysts in photoactive technology by generating various reactive oxidative species
(ROS), including superoxide (•O2

−) and hydroxyl (•OH) radicals, either by degradation of proteins,
DNA, and RNA or by inhibition of cell development through terminating the cellular membrane.
This review emphasizes the capability of photocatalysis as a reliable, economical, and fast-preferred
method with high chemical and thermal stability for the deactivation and degradation of SARS-
CoV-2. The light-generated holes present in the valence band (VB) have strong oxidizing properties,
which result in the oxidation of surface proteins and their inactivation under light illumination.
In addition, this review discusses the most recent photocatalytic systems, including metals, metal
oxides, carbonaceous nanomaterials, and 2-dimensional advanced structures, for efficient SARS-
CoV-2 inactivation using different photocatalytic experimental parameters. Finally, this review
article summarizes the limitations of these photocatalytic approaches and provides recommendations
for preserving the antiviral properties of photocatalysts, large-scale treatment, green sustainable
treatment, and reducing the overall expenditure for applications.

Keywords: SARS-CoV-2; heterogeneous catalysis; light adsorption; mechanism of inactivation;
photocatalysis

1. Introduction

The coronavirus disease 2019 has spread from person to person on a global scale. This
dangerous respiratory syndrome (SARS-CoV-2) has caused pandemic-scale illnesses that
spread primarily through the airborne transmission of infected people’s droplets and/or
aerosols. The coronavirus has been found in common places, particularly in health centers,
raising the possibility of this communicable disease [1,2]. Economic devastation was already
visible as the epidemic spread, demonstrating that it was one of the largest economic shocks
in history [3]. The COVID-19 crisis demonstrates the significance of immediate action to
mitigate the epidemic’s health and lay the groundwork for long-term recovery [4]. Several
countries have made significant efforts to address this problem. As COVID-19 is widespread
all over the world, many restrictions were followed, such as six-foot distance, lockdown,
quarantine, and stay-at-home [5]. Symptoms usually appear within 2–14 days, and specific
treatments, medicines, and vaccinations are not obtainable. Modern high-tech equipment,
such as polymerase chain reaction (PCR) and X-ray crystallography, help understand the
physicochemical properties and anatomy of viruses [6,7]. For sample testing, the cost
increases in tandem with the number of clinical studies.

Recent research has demonstrated the enormous potential of photocatalytic material
surfaces for the inactivation of SARS-CoV-2 [8]. Several different photocatalyst nanoma-
terials have been used as antibacterial or antiviral materials for photo-induced bacterial

Catalysts 2023, 13, 620. https://doi.org/10.3390/catal13030620 https://www.mdpi.com/journal/catalysts

https://doi.org/10.3390/catal13030620
https://doi.org/10.3390/catal13030620
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/catalysts
https://www.mdpi.com
https://doi.org/10.3390/catal13030620
https://www.mdpi.com/journal/catalysts
https://www.mdpi.com/article/10.3390/catal13030620?type=check_update&version=1


Catalysts 2023, 13, 620 2 of 28

and viral infections and self-cleaning properties [9]. In addition, a photocatalytic system
using semiconductors made of graphene oxide (GO) to cure cancer has been identified. GO
can be employed as an antibacterial and anticancer agent owing to its excellent properties.
Porcine herpes virus was used to investigate GO’s antiviral activity, and the results showed
that GO inhibited viral infection in noncytotoxic samples [10,11]. The development of
reusable TiO2 nanowire-based air filters as photoactive materials have been described for
the first time [12]. The filters were significantly more efficient to a greater extent because of
their large surface area, polycrystalline counterparts, and super-hydrophilicity. Thus, it is a
promising photocatalyst owing to the chemical species that are adsorbed on its surface’s
highly potent ability to oxidize when exposed to light [13]. Photocatalytic activities are
generally influenced by structural and surface modifications, including specific surface area,
particle shape, size, and adsorption nature [14]. Therefore, this review discusses the most
recent photocatalytic systems, including metals, metal oxides, carbonaceous nanomaterials,
and 2-dimensional advanced structures, for efficient SARS-CoV-2 inactivation.

2. Photocatalysis: Concept and Technology in Biomedical

In primary photocatalysts, the catalytic components are linked to single metal oxides,
carbonaceous materials, or two-dimensional advanced materials [15]. The photocatalytic
mechanism is illustrated in Figure 1. Many carbon-based carriers and semiconductor
materials have enhanced the quality of photocatalytic degradation through their active
surface area, improving the absorption of visible light, forming effective p- and n-type
semiconductor nanojunctions, and suppressing interfacial charge recombination [16,17].
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Many studies on photocatalysis have reported operational parameters that can influ-
ence process efficiencies, such as the intensity of light, solution pH, wavelength, and the
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presence of O2 (Table 1). These factors have been shown to have a prominent impact on
light penetration, catalyst activation, reaction rate/order, organic molecule adsorption, and
catalyst stability during catalytic reactions [18,19].

Table 1. Operation parameters that affect the catalytic performance in the photocatalysis process.

Operational Parameters Effect on the Photocatalytic Performance References

Light sources
• The rate of the photocatalytic process increases with light intensity.
• The inclusion of a photocatalyst in water decreases the energy requirement. [20,21]

pH

• The pH level has a significant impact on how well semiconductor catalyst particles degrade in
particle aggregations, where their bandgap edges are located in the reaction fluid, how charged
their surfaces are, and how organic contaminants adhere to them.

• The impact of pH is related to the surface charge of the catalyst and the ionic form of
the substrate.

• The catalyst particles are protonated and positively charged because the pH is below the point
of zero.

• The surface is deprotonated and more negatively charged at high pH levels.

[22,23]

Oxidants

• The surface was deprotonated and negatively charged at high pH levels.
• Stimulation of hydroxyl radical formation.
• The oxidation reaction and charge separation are facilitated by the ability of peroxide to

absorb light.

[24,25]

Surface modification
by doping

• Non-metallic metal doping and co-doping lead to impurity energy and improve the absorption
of visible light by the catalyst.

• Doping with non-metal type reduces the band gap of the semiconductor and gathers the
photocatalytic response of visible light.

• The carbon-doped increase the reaction rate.
• With metal doping, the electronic configuration of the dopant ions is related to the subsequent

photocatalytic characteristics, and the metal ions affect carrier recombination and
electron transport.

[26,27]

Semiconductor
compounds

• The combination of semiconductors and narrow-bandgap semiconductors reduces the energy
required for light activation.

• Extending the spectral response of semiconductor photocatalysts.
• Facilitating electron-hole pair separation.
• Present heterogeneous junctions between the compounded semiconductor for the separation of

carriers and reduced recombination of electron-hole pairs produced by light.

[28,29]

Precious metal deposition
• Metals and semiconductors have different Fermi levels. As both are in contact, electrons

transfer from the Fermi level of the semiconductor to the Fermi level of the metal.
• Effectively serves as an electron barrier to stop electrons and holes from recombining.

[30,31]

In this context, significant research efforts have been made to immobilize photocat-
alysts efficiently; in most cases, photocatalysts require energy to overcome the bandgap
energy required for electron excitation [32]. This additional energy is required because of
insufficient light penetration and adsorption, which significantly increases cost require-
ments. Furthermore, charge carrier, recombination rate, transfer rate, and charge carrier
transit time are factors that limit the use of photocatalysts [33,34]. During the breakdown
process, these harmful components create a high possibility for the conversion of phenol
derivatives, acidic compounds, and ionic species [35]. Several modifications to improve the
catalytic performance have been reported, including precious metal deposition, doping
of elements, and recombination of holes and electrons [20,30]. These modifications result
in a smaller bandgap and recombination process at a lower rate, consuming low energy.
Hence, it is highly used because of its non-toxicity, high selectivity, and efficiency in treat-
ing Alzheimer’s disease, disabling contaminants, bacterial/virus disinfection, and water
treatment.

2.1. Photocatalysts in Alzheimer’s Sickness

Alzheimer’s disease (AD) is an age-related brain disorder that affects memory and is
caused by environmental, lifestyle, and genetic factors. There are several treatments avail-
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able for this disease, each with its drawbacks (Table 2). Through technology development
in recent years, photocatalysts have been used in the treatment of Alzheimer’s disease by
oxygenating the substrate under the influence of a small amount of light as the energy
source [36]. Photooxygenation of amyloid protein (Aβ) is associated with Alzheimer’s
disease. Table 3 lists the properties of the β protein that are suitable for use in photocatalyst
technology. Treatment plans for Alzheimer’s disease that inhibit Aβ aggregation have been
deemed both therapeutic and preventive. The treatment involved oxygenating Aβ and
aggregating it under light irradiation. Selective oxygenation of amyloid-β (Aβ) aggregates
a peptide that is associated with the emergence of Alzheimer’s disease. In this state, a pho-
tocatalyst containing oxygenated Aβ in a test tube is typically used. An amyloid structure
can be distinguished as a photocatalyst combined with a peptide that accepts Aβ to reduce
the toxicity of Aβ aggregates to cells [37].

Table 2. Photocatalysis in Alzheimer’s treatment with its details and limitation.

Treatment Details Limitation References

Enzyme degradation
Type of enzymes including neprilysin,

insulin-degrading enzyme, and
endothelin-converting enzyme.

• The large-scale production of these
enzymes on a big scale is expensive,
labor-intensive, and intricate for
widespread use.

• Most of these enzymes are not affected
by Aβ oligomers.

• The enzyme cannot distinguish between
Aβ plaques and proteins with typical
biological functions.

• High potential for adverse side effects.

[37–39]

Fullerene derivatives treatment
Fullerene derivatives with specific

affinities for decomposing Aβ peptides in
conjunction with photoirradiation.

• Not easily utilized for more
biological research

• Low biological matrix solubility
• Modification difficulty

[40,41]

Inorganic compounds as
antitumors

Inorganic ligands inhibit and degrade Aβ
peptide aggregation at a very early stage

• Require a specific condition for the Aβ
degradation process. [42,43]

Inorganic nanomaterials (carbon
nanotubes, graphene oxide,
carbon quantum dots, and

graphene-like nanosheets of
molybdenum disulfide)

Demonstrate specific suppression of
amyloid aggregation.

• Inhibitors of amyloid only slow down or
halt the aggregation process of amyloid
proteins but do not destroy the existing
amyloid deposits without external
energy input.

• The aggregation state of amyloid protein
is thermodynamically favorable.

• Temporospatial control over the length
and placement of conventional
treatments in vivo is challenging
to implement.

[44–46]

Photodynamic therapy
Neoplastic tissue-containing porphyrin
mixture may fluoresce in the UV, visible,

and near-infrared spectrums

• Strong phototoxicity for the treatment
• Minimal invasiveness [47,48]

Uv excitation-based strategy

Destruction of amyloid fibrils with laser
assistance under long-wavelength UV

radiation results in the breakdown of Aβ
peptide monomers and oligomers.

• UV light with invasive energy hindered
its clinical application. [49,50]
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Table 3. General characteristics of Aβ protein cell in photocatalyst application.

Characteristics Details References

Stability
High ordered stability

Aggressive potency depends on thermodynamics
and interaction with an aqueous medium

[20,51]

Toxicity Able to be attenuated via the photocatalysis process [24,52]

Reactivity
Ability to form a covalent installation of hydrophilic
oxygen atoms in the presence of light and catalyst

Formation of less undesired side reactions
[53,54]

Molecular mechanism Self-assembly of mature b-sheet-rich amyloid fibrils
from Aβ peptides in the pathogenesis [55]

Many photoactivated photosensitizers have been developed and have been used to in-
hibit and degrade amyloid proteins. Natural organic dyes and photocatalysts composed of
metal oxides are frequently used as photoactive agents. Examples of porphyrin derivatives
that can prevent Aβ aggregation under blue light include meso-tetra 94-sulfonate phenyl)
porphyrin. Both the neuronal cells and the Drosophila AD model confirmed that it reduced
the cytotoxicity of Aβ [56]. Additionally, it has been demonstrated that Aβ 42 fibrils can
be destroyed by methylene blue when exposed to red light up to 630 nm with a longer
wavelength. These therapies are inexpensive and simple, but a lengthy evaluation of their
photodegradation and biosafety in mammalian animal models is required [57].

2.2. Photocatalysts in the Treatment of Emerging Contaminants

Conventional methods such as adsorption, membrane separation, precipitation, chem-
ical coagulation, and biodegradation are used to remove or degrade dyes. Owing to
their short- and long-term toxicity, emerging contaminants such as perfluorinated com-
pounds, endocrine-disrupting chemicals, pharmaceuticals, and personal care products
are frequently found in wastewater, surface water, groundwater, and drinking water at
concentrations between mg/L and ng/L [58]. They are also difficult to degrade using
traditional water treatments, owing to their high stability. Modern sewage treatment
facilities frequently struggle to remove compounds present in extremely low quantities.
Consequently, effluent discharge and the reuse of sludge have emerged as major causes
of pollution in both aquatic and terrestrial environments [59]. However, they present
limitations such as high operating costs, production of secondary sludge, use of large
quantities of chemicals, large treatment plants, and inefficiency at low concentration levels.
Advanced photocatalysis has been shown to effectively degrade trace organic pollutants
under benign conditions, while producing very few byproducts, allowing the removal of
chemically stable and non-biodegradable organic contaminants (Table 4).

Table 4. The photocatalytic performance of different semiconductors towards the degradation of
emerging contaminants compounds.

Nanosemiconductor Photocatalytic Performance References

TiO2
Naproxen was removed 75% of the time with xenon

light for a 2-h exposure time. [60]

TiO2 85 to 100% of IBP was degraded after 3 h. [61]

TiO2

Progesterone, triclosan, ofloxacin, acetaminophen,
hydroxyphenyl, DCF, IBP, and caffeine were

destroyed using 5 mg/L TiO2.
[62]

ZnO 90% degrade under solar irradiation in 90 min [63]

ZnO-coated via
activated carbon

Under UV irradiation, 99% of tetracycline at 40
mg/L broke down in an hour. [64]
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Table 4. Cont.

Nanosemiconductor Photocatalytic Performance References

GO-WO3
Under visible-light irradiation, sulfamethoxazole

was removed in 3 h with a 98% clearance rate. [65]

g-C3N4/Nb2O5 81% removal of drug amiloride [66]

Au/Ag/AgCl
97% degradation of IBP

98% degradation of clofibrate acid under
solar irradiation

[67,68]

TiO2/g-C3N4
Under sun radiation, TiO2 photodegrades at a rate

that is four times faster than pristine TiO2. [69]

TiO2-rGO

90–97% degradation of ibuprofen, sulfamethoxazole,
and carbamazepine at reaction rates of 8.98, 12.6,

and 4.3 10−3/min, respectively under high-pressure
UV light of 140 W.

[70]

TiO2-CNTs
100% removal of 10 ppm tetracycline at a high

reaction rate of 64.2 × 10−3/min under a
12 W UV lamp.

[71]

2.3. Photocatalysts in Degradation of Emerging Pollutant Molecules

The textile, printing, plastic, pharmaceutical, food processing, and cosmetic industries
generate a considerable amount of colored wastewater that often reaches natural waters,
decreasing their transparency, preventing light penetration, impairing photosynthesis
efficiency, and affecting aquatic plant growth. Hence, polluted molecules can be degraded
by photocatalysis on solid and water surfaces [72]. Photocatalytic paints and polishes
also play an important role in pathogen surface disinfection. TiO2 and modified TiO2
photocatalysts are commonly used in paints to clean and break down volatile organic
compounds (VOCs) [20]. However, the effectiveness and dependability of such materials
remain unknown because of the lack of research in this area [16]. In contrast, photocatalytic
air filters can be used to sterilize air. For example, a graphene-based air filter induced by a
laser can be used to encapsulate germs and can be purified using a photocatalytic membrane
filter [73]. The particles and bacteria were captured by a porous photocatalytic membrane,
which was then periodically broken down and rendered inactive by high-temperature and
Joule heating.

2.4. Photocatalysts in Medical Applications

A significant tool is required to inhibit rapid transmission and increase the inactivation
rate of dangerous bacteria. From this perspective, semiconductor photocatalysts have
been identified as promising avenues for the disinfection of medical equipment. TiO2
photocatalysts must be applied to disinfect implants such as dental implants, discs, and
plates. In addition, covering PPE such as veils can aid in halting and preventing the
transmission of SARS-CoV-2 [74,75]. The COVID-19 pandemic can be fought with the
help of a face mask coated with TiO2 and N-doped TiO2, polyvinyl alcohol, polyethylene
oxide, and cellulose nanofibers, all of which have a comprehensive bactericidal effect [76].
Photocatalytic face masks have shown great reusability and self-sterilization ability, which
may reduce the amount of plastic pollution caused by the masks used. The peroxide
produced on the nano-porous TiO2 surface successfully killed airborne bacteria and viruses
including SARS-CoV-2. Prefabricated filters have been used as purification or conditioning
agents [77]. Therefore, the above-mentioned environmentally friendly, recyclable, and
sustainable solutions could be a great way to address the present COVID-19 pandemic.

2.5. Photocatalysts in Disinfection

Photocatalysis has been investigated for the decontamination and disinfection of
SARS-CoV-2 [78]. The high biodegradability, filterability, breathability, and mechanical



Catalysts 2023, 13, 620 7 of 28

strength of photocatalytic self-sterilizing masks enable their handling and minimize harm
to the environment as shown in Figure 2a [79]. Figure 2b shows the schematic view of the
structure of the air cleaner and the porous ceramic substrate [80]. For instance, they created
a self-sterilizing N-TiO2/TiO2 air filter with coated bacterial disinfection and laser-induced
graphene (LIG), which are conductive and microporous materials. It is well known that
this offers benefits over advanced homogeneous-phase oxidation techniques [81].
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For instance, viruses are eliminated from the water via size exclusion in physical pro-
cesses such as heating, adsorption, and filtration [22,82]. Nonetheless, they are challenging
to eliminate and deactivate owing to their small size and distinctive characteristics. Chlori-
nation, which uses chlorine gas, chloramines, or a hypochlorite solution, is one of the most
commonly used methods for virus disinfection [83]. Chlorination was found to effectively
eliminate SARS-CoV-2 in a previous study. Unfortunately, the production of mutagenic and
carcinogenic disinfection byproducts has led to opposition to chlorination. Similarly, chlori-
nation produces water with a bad flavor and smell. Fighting against epidemics is of great
importance [47,84]. The photocatalytic system is perfect in this respect because of its strong
solar radiation, minimal startup costs, and viability for a longer duration. Wastewater
treatment using nanotechnology has been documented in the literature. Antibiotic-resistant
E. coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria that were sown in
greywater were rendered inactive by the bimetallic bio-nano particles [77,85]. The protein
and carbohydrate components of the bacterial cell wall are reportedly disrupted, leading
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to the inactivation of bacterial cells. The functional groups in the bacterial cell wall have
broken C-C bonds. A new disinfection technique for neutralizing human viruses can be
developed by combining solar disinfection (SODIS) and nanotechnology. ZnO is the most
commonly utilized nanoparticle for wastewater disinfection, which theoretically makes the
antiviral activity more effective when exposed to sunlight [86]. The photocatalytic system
is perfect in this respect because of its strong solar radiation, minimal startup costs, and
viability for longer durations [87].

2.6. Photocatalysts in Water Treatment

TiO2 photocatalysts are promising candidates for wastewater treatment with the
necessary properties and have shown tremendous promising results for SARS-CoV-2 using
bacteriophages MS2, phage f2, human adenovirus, and murine norovirus. Furthermore,
TiO2 has advantageous properties such as affordability, firmness, harmlessness, and suitable
potential for redox reactions, allowing for photocatalytic applications in the synthesis of
H2, degradation of pollutants, reduction of CO2 [88], and fixation of N2 [89]. Photocatalytic
water disinfection can overcome the limitations of conventional disinfection techniques by
reducing the production of hazardous byproducts and significant quantities of chemicals.
Other semiconductor materials have been effectively applied in photocatalytic wastewater
treatment, including ZnO, graphene, BiVO4, g-C3N4, and metal-organic frameworks. TiO2
is one such material [90].

3. General criteria of Photocatalyst in COVID-19 Treatment

Wastewater discharged from hospitals contains a variety of toxins including phar-
maceutical residues, chemicals, radioisotopes, and microbiological infections. Notably,
adenoviruses, hepatitis A virus (HAV), and polioviruses have been discovered in hospital
wastewater. For affected patients residing in apartment buildings, drainage plumbing
systems have been suggested as a potential route for transferring SARS-CoV-1 coronavirus
to sewage systems [89,91]. Coronaviruses are transferred through aerosols or microscopic
water droplets.

3.1. Functioning of Inactive Virus

Viral capsids and viral DNA are produced as a result of viral capsid formation and
viral DNA release by TiO2 photocatalysis, which inactivates viruses by degrading their
proteins and genomes [77,92]. In this instance, the four steps that comprise the virus inacti-
vation process are (a) modification of the protein sequence, (b) disruption of the protein
conformation, (c) disruption of the protein aggregate size, and (d) disruption of the ability
of the spike virus protein to bind to other proteins in the host cells (Figure 3). When using
TiO2, the amount of ROS produced is influenced by the particle size, surface area, porosity,
and structure, which in turn reduces the effectiveness of inactivation. Yoshizawa et al.
(2020) [93] inactivated the contagious bursal disease virus using photocatalytic scrubber
oxidation and UV radiation (IBDV). They discovered that uracil dimerization in viral RNA
is the principal cause of the UV inactivation of viruses [94]. Additionally, it has been re-
ported that a photocatalytic system based on a non-woven fabric made of Cu/TiO2 attained
bioaerosol inactivation (up to 70%) owing to cell death. Through the deterioration of viral
proteins, TiO2 thin films also significantly disinfected the influenza virus. The degradation
was dependent on UV illumination time and purpose. When the photocatalyst surface
and viral particles meet, the aforementioned mechanisms are affected, thereby increasing
the photocatalytic effectiveness because more ROS are produced [95]. The efficiency of
the proposed photocatalyst was improved by the addition of silica to TiO2 nanoparticles
because silica increased the band gap of the TiO2 nanoparticles, which increased OH ions.
Viral inactivation was achieved using silica-doped TiO2 nanoparticles. The silica-doped
TiO2 was attributed to an increase in the adsorption rate of the virus onto the catalyst and
higher generation of OH•, which is reasonable for inactivation (Figure 3) [96]. Notably,
the inclusion of silica does not expand the surface, which results in the formation of a
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photocatalyst [77,91]. Several variables are crucial for the effectiveness of the inactivation of
airborne viruses [97]. A continual model for the virus might not be specific to other airborne
viruses, because photocatalytic mechanisms have varying efficiencies for rendering viruses
in the air inactive [98]. The photocatalytic procedure, by adjusting the photocatalytic rate,
was significantly affected by environmental conditions such as temperature and humidity
for virus inactivation.
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3.2. Highly Light Sensitivity Photocatalyst System

Different methods, such as doping with non-metals, linked semiconductors, metal
deposition, and defect-induced visible-light-active photocatalysts, have been used to in-
crease the spectral responsiveness of TiO2 to visible light. Ceramic plates with TiO2-coated
surfaces can be activated for hepatitis B virus release by poor ultraviolet light, sunlight, or in-
door sunlight [16,99]. Through the deterioration of viral proteins, UVA and TiO2 thin films
may be successfully employed to decontaminate the influenza virus in the air (Figure 4).
The duration and strength of UV irradiation affect the inactivation effect [100]. To prevent
from working of SARS-CoV-2 in indoor settings, a tungsten trioxide-based photocatalyst
with ultraviolet irradiation fixed on a filter combination and an antiviral fabric-treated
copper nanocluster has been used [91]. After 10 min, the viral load decreased to 98%, and
after 30 min, the virus was completely inactivated. After 30 min, the SARS-CoV-2 RNA
burden dropped by 1.5 log10, indicating that SARS-CoV-2 was effectively inactivated.
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LEDs have also been used as light sources for photocatalytic devices. In a related study,
Bono et al., 2021 [101] investigated the use of LEDs and solid alveolar foam as efficient and
economical technologies for inactivating airborne viruses using photocatalysts. They per-
formed this study by first introducing an LED photocatalytic system with TiO2/−SiC solid
alveolar foams to prevent airborne viruses, such as T2 bacteriophages [90]. Additionally, a
UV-LED air purifier device was used to inactivate the influenza virus linked to aerosols. In
this instance, the aerosol-associated influenza virus in indoor air was effectively inactivated
by a TiO2-coated aluminum plate exposed to UV-LED radiation [98].

3.3. Anti-Bacterial Properties

To create surfaces that are both antibacterial and antiviral free from germs or viruses,
the anti-bacterial properties of nanomaterial can be used. To combat SARS-CoV-2, several
nanomaterials composed of metals, semiconductors, and alloys have been suggested.
Contagious viruses have been observed close to patients in public places and hospitals
or residences, antiviral nanomaterial-based surfaces, or coatings. This could successfully
function both indoors and outdoors, as it would be more promising for these reasons. In
this regard, photocatalytic surfaces may hold more promise as they oxidize, deactivate, and
eliminate microorganisms in environments with typical ambient lighting, i.e., they work
well inside. Recent research has demonstrated the enormous capability of material surfaces
to inactivate SARS-CoV-2 [96]. TiO2 is well known for its ability to photo-degrade organic
pollutants, promote bacterial and viral disinfection, and possess self-cleaning properties. It
is a promising photocatalyst because, when exposed to ultraviolet (UV) light, the chemical
species adsorbed on its surface are substantially oxidized [102]. TiO2-based photocatalysts
generate highly oxidizing free radicals under the influence of UV irradiation and are known
to have bactericidal and antiviral effects against a variety of bacteria and viruses, including
influenza, rotavirus, and SARS-CoV-2. To successfully impact photocatalytic performance,
surface changes by combining with other functional anti-microbial/viral nanomaterials
are one of the key elements, along with the modification of the material [103]. This makes
TiO2 highly desirable for surface, air, and water disinfection, which could be helpful for
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inactivating SARS-CoV-2 and affecting individuals and the environment. It has been
demonstrated that when exposed to UV light, TiO2 NPs may have harmful impacts on both
people and the environment by inducing oxidative stress, which can lead to cell damage,
genotoxicity, inflammation, immunological response, and other problems [95].

3.4. Non-Toxic Photocatalyst System

The application of photocatalysts in thin-film coating forms remains a significant
component of the technology used in daily life, particularly in hospitals or homes for the
prevention of bacteria and viruses. Handling nano-powder photocatalysts can lead to
severely limited secondary issues, such as the separation of the photocatalyst from the
solution or immersion during the photocatalytic reaction, as well as health issues [22,104].
In the absence of light, the TiO2 nanocrystal forms, sizes, and orientations have also
demonstrated the ability to deactivate microbial agents. In particular, highly textured
(004) anatase-nanograin-based nanostructured TiO2 films have demonstrated exceptionally
high photocatalytic performance. Such oriented nanograins display potent bacterial death
in ultraviolet light radiation owing to the high Ti atomic density on their planes [105].
The nanostructured TiO2 surface can greatly benefit from this observation because it can
provide antibacterial capabilities even when the surface is not exposed to light or does not
receive continuous light. TiO2-based photocatalysts appear to be important cutting-edge
materials for preventing the spread of viruses and their contamination because of their
efficient photocatalytic actions for their potential applications in low light using other anti-
microbial/viral agents such as Cu/Ag, as discussed above [106]. Figure 5 illustrates the
proposed mechanism for the potential photocatalytic inactivation of the AgCN composite
photocatalysts [107].
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4. Mechanism and Setup in COVID-19 Treatment

The process that produces ROS production is crucial for viral destruction. The cyto-
plasmic membranes strike the components present in the intercellular, including genetic
contents inside the microorganism, which are the next steps in the major breakdown of
microorganisms after a protracted ROS attack damages the cell wall (Figure 6). Viruses and
bacteria that serve as hosts frequently coexist in natural water. Hence, the effectiveness of
the inactivation of photocatalytic in a virus/bacterium is crucial from a practical standpoint.
Natural organic molecules affect photocatalytic virus disinfection in water systems. The
water systems contain natural organic materials (NOMs) such as nucleic acids, carbohy-
drates, and proteins, in addition to bacteria [77,89]. They may also act as disinfectants and
quench ROS production. Therefore, NOMs must be considered when disinfecting viruses.
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4.1. Metal Oxide-Based Photocatalyst
4.1.1. Titanium Oxide

It was already noted that a variety of materials, typically composed of metal oxides,
metal sulfides, oxysulfides, oxynitrides, and composites, have been employed as photo-
catalysts. Among these, TiO2 is utilized more frequently to sterilize organic substances
and microbiological agents. The most effective catalyst for rendering airborne MS2 viruses
inactive was a TiO2/UV photocatalyst. TiO2 is utilized in air purifiers as a photocatalyst
in the form of a filter. This filter must have a sufficient surface area to pass a certain
amount of dirty air while in the air stream [92]. By adopting vacuum UV (VUV, wave-
length 200 nm) the performance of the photocatalytic process for air applications can be
improved because the light is substantially absorbed in the atmosphere. The hepatitis
B virus (HBV) is inactivated using nano-TiO2 particles and TiO2-coated ceramic plates
acting as a photocatalyst [101]. The inactivation of influenza viruses was accomplished
using a thin sheet of TiO2-coated glass. TiO2 has been used with other substances, such
as copper (II), for the inactivation of airborne viruses. Cu (II)-TiO2 nanocomposite has
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been created and utilized to inactivate viruses in the air, and it had adequate antiviral
properties [90]. Currently, numerous works were performed to improve the commercial
TiO2’s photocatalytic properties for inactivating microbiological agents. Anatase TiO2
nanoparticles are a straightforward microwave-hydrothermal approach to manufactur-
ing anatase TiO2 quantum dots. which resulted in a greater energy gap. Additionally, it
demonstrated an increase in UV light absorbance owing to the improved photocatalytic
inactivation capabilities of E. coli. Additionally, the TiO2 thin film was able to kill the
influenza virus by reducing viral proteins; nevertheless, the duration and strength of the
UV irradiation were key factors in this inactivation process. This leads to the conclusion
that TiO2 thin films can be effectively utilized to kill the virus called influenza in the air, as
well as other airborne viruses, and to obstruct the spread of viruses through the air [108].
Moreover, a novel method for improving TiO2’s photocatalytic activity involves doping it
in metals. Additionally, noted that when Au and Ag are used to adorning TiO2, a secondary
impact of the surface plasmon resonance causes a significant light absorption, increasing
the performance of the decorated material [97].

The size of the photoactive TiO2 after 20 min of solar light was enhanced, by increasing
its size and achieving 99.9% antiviral efficacy against SARS-CoV-2. For instance, iron- and
nitrogen-doped TiO2 nanoparticles are effective antibacterial options with good anti-biofilm
action and low toxicity toward lung and skin cells [109]. Additionally, several textile fabrics
have been successfully coated with photoactive antiviral compounds with large surface
areas. Hydrophobic interactions play an important role on coated fabric surfaces for the
inactivation of the virus by adsorption process, distortion form, and induction under normal
conditions. Therefore, the surface impact was particularly crucial for TiO2-coated samples
to detect virucidal activity at night. For instance, TiO2 produced from a hydrosol was
treated with –OH and –COOH functional groups, which considerably aided in TiO2 particle
retention within the fabric fibers. In addition, after the addition of TiO2 particles, hydrosols
would extend the surface by several orders of magnitude [103]. As a result, the free radicals
produced by TiO2 particles may harm the viral surface proteins, reducing their ability
in binding cells and harming the DNA, thereby stopping the activeness of reproduction.
Therefore, virucidal activity in other fabrics may also benefit through combining TiO2
particles with the cellulose fibers. Because the cotton fabric is coated by TiO2 particles,
providing a small amount of resistance to water because of the low adherence among the
TiO2 particles and fibers. Goods made of cotton were typically laundered and reutilized in
hospitals [8]. The hydrophilicity of the coated textiles with the expansion in the exterior
portion of the TiO2 particles is responsible for antiviral effects. Additionally, after washing
the TiO2-coated materials for one cycle, similar viral inactivation was observed.

4.1.2. TiO2-Ag

The higher surface area Ag-TiO2 systems created in the laboratory demonstrated strong
antibacterial capabilities against bacteria and MC3T3-E1 cells. It has been suggested that
even in the dark, the process functioned rigorously as a bactericide agent [110]. According
to the Schottky barrier effect, the flow of charges from the membrane to the surface and
the attachment of Ag and TiO2 are the mechanisms of bacterial inactivation. Due to the
surface plasmon characteristics of the silver nanoparticles placed on the base of TiO2,
Ag-TiO2 systems may show promise in the ability to kill bacteria like E. coli in the dark.
According to this theory, respiratory electrons from germ membranes might be transported
to silver NPs and afterward to TiO2, causing microorganisms to gradually remove the
electrons completely [111]. Ag-TiO2-CS filter bed without valence electron was developed
to remove and deactivate airborne MS2 bacteriophage particles. In contrast, photocatalytic
elimination, and inactivation of microorganisms and the H1N1 virus were accomplished
using an Ag-TiO2 nanocomposite covering. Owing to the inclusion of Ag, the composite
had increased photocatalytic activity and exceptionally potent antibacterial and antiviral
actions against infectious viruses and E. coli that were greater than 99.99% effective [112].
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4.1.3. TiO2/CuO Hybrid Photocatalyst

The powder form of CuO/TiO2 may even inactivate its extremely pathogenic delta
version of SARS-CoV-2 by coating it with glass. The Cu(I) species in CuO denaturalize
spike proteins, leading to SARS-CoV-2 RNA fragmentation in the absence of light [113].
Furthermore, exposure to white light leads to the photocatalytic oxidation of SARS-CoV-2
chemical compounds. The current material that is antiviral will be efficient in inactivating
a variety of potential mutant strains and will not be restricted to a particular viral variation
according to the mechanism [101]. The CuO/TiO2 photocatalyst is particularly capable to
lower the probability of COVID-19 infection inside buildings where light and darkness
are typically intermittently present. This can be ascribed to the varied valence states of Cu.
The results obtained through Cu (II) species observed on the surface of TiO2 nanoclusters
show the strong oxidation property predicting the formation of holes and anti-virus Cu(I)
species in the visible light through photo-induced interfacial charge transfer. However,
the virus can be made inactive by denaturing the proteins in the absence of light using
Cu(I) species [114]. This literature analysis showed the antiviral activity of TiO2-based
photocatalysts both indoors and outdoors. As a result, the CuxO/TiO2 photocatalyst can
be employed as an antiviral coating substance to lower the risk of viral infection.

4.1.4. Co-Doped TiO2

A cost-effective electrochemical biosensor for spike protein (RBD) detection of coron-
avirus was reported for treating the infections caused by SARS-CoV-2 using cobalt-doped
TiO2 nanomaterials [92]. Therefore, functionalized TiO2 nanotubes were prepared using
the electrochemical anodization approach in a wet chemical process to identify SARS-
CoV-2 in a rapid time [92]. The designed sensor was able to identify the S-RBD protein
of SARS-CoV-2 at extremely low concentrations between 14 and 1400 nM, indicating a
linear response for the detection of viral proteins over the tested concentration range. The
advantage of this technology was that the sensor could promptly (30 s) identify the viral
S-RBD protein with a LOD of only 0.7 nM. [92]. TiO2 nanoparticles have also demonstrated
several advantages, such as catalytic performance, extended surface, and strong antiviral
properties [71]. TiO2 is recognized as one of the most efficient photocatalytic semiconduc-
tors owing to its excellent stability and cost-effectiveness. As a result, nitrogen-doped TiO2
can perform efficient photocatalysis when exposed to light [115]. N-TiO2 has been used to
sterilize pathogens and rejuvenate masks for reuse by simply exposing the mask to light for
a certain time [115].During the absorption of light, ROS was produced, in which hydroxyl
radicals (OH), has a vital part in adhering to and inactivating SARS-CoV-2 infection [116].

4.1.5. Iron Oxide

It has been demonstrated that the various iron oxides, such as Fe2O3 [117] and Fe3O4,
are used with the SARS-CoV-2 glycoproteins to engage with host cell recipients, and the
virus can be inactivated by altering its glycoproteins. Reverse transcription-polymerase
chain reaction (RT-PCR) tests can often assess COVID-19 in the laboratory in under two
hours [118]. A portable device that uses magneto-plasmonic nanoparticles and plasmonic
heating for rapid testing in under 20 min. This nano-PCR equipment has a high sensitivity
(500%) and great specificity (500%) and is portable, dependable, and exact (500%). It offers
COVID-19 detection and enables the creation of ambulatory clinics for numerous affected
people, with exceptional testing accurately [119].

4.1.6. Copper Oxide

The surface coating of both copper and copper oxide nanoparticles has a significant
antimicrobial action in resisting SARS-CoV-2 [120]. This served as an inspiration for the
development of a clever and simple method to create an antiviral mask. To increase the
hydrophobicity of the mask and render it impervious to aqueous droplets, the mask was
coated by a non-woven surgical mask with shellac/copper (Cu and CuO) nanoparticles.
The obtained photocatalytic mask has outstanding photothermal and photoactivity charac-
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teristics for viral activity as well as superior reusability and self-sterilization effectiveness.
The temperature of the mask’s surface increases to 70 ◦C as exposed to light, creating
reactive radical species that make it easier for viruses with membranes smaller than 100 nm
to burst [121].

4.2. Metal-Based Photocatalysts
4.2.1. Silver

To provide an antiviral capability, the silver nanoparticles produced in this case
were coated onto the surface of the air filter using spark discharge generation (SDG)
technology [122]. The silver node surface in this system is affected by the acceleration
of ions and electrons under the influence of the electric field, which causes its surface
to vaporize. Ag/TiO2 with a range of Ag concentrations is improved for the oxidation
process of microbial agents. According to Moongraksathum et al. (2018) [123], the virucidal
effects of UV-A radiation are markedly enhanced by the presence of silver on TiO2. To
enhance Ag’s photocatalytic abilities for inactivating the virus present in the air, Ag might
be coated with TiO2 [9,124]. Depending on the basic TiO2 material, nAg/TiO2 increased
the inactivation rate of MS2 five times more, and the potential of inactivating the virus has
been improved with silver content. The effectiveness of the nAg/TiO2 nanoparticles in
inactivating the MS2 virus in drinking water matched the increased hydroxyl free radicals
caused by UV absorption irradiation about four times in the 8 W UV-A lamps (in the
range of 315–400 nm). Thus, to summarize, the interaction between them results in virus
inactivation when Ag nanoparticles are added to TiO2 [125]. Additionally, it has been
noted that silver-doped TiO2 improves both the adsorption and inactivation of viruses by
increasing the generation of hydroxyl free radicals. It must be emphasized as the majority of
the aforementioned analysis is aimed at photocatalytic inactivation in liquids, some scientists
have also investigated the effects because of the inactivation of viral agents in the air [126].

4.2.2. Copper

Copper (Cu) is used in the process of photocatalysis with different organic molecules
present in the air. According to previous reports, the existence of copper on the surface may
change depending upon the organic contaminant’s interaction with the catalytic surface,
thereby increasing its effectiveness [127]. The semiconductor cuprous oxide (Cu2O) is
used as a photocatalyst due to its excellent bandgap absorption. Cu2O can be a good
substitute for the quick inactivation of viral agents through photocatalytic processes for
effective antiviral characteristics [128]. The CuxO/TiO2 photocatalyst is used as an antiviral
agent by denaturing the viral protein during photocatalytic oxidation. Cu (II) species
in CuxO function as electron acceptors, producing Cu(I) species with antiviral activity
and holes with high oxidation potential in the valence band, similar to TiO2 [129]. The
CuxO/TiO2 photocatalyst can continue to have an antiviral effect even in the dark owing
to the active Cu (I) species [130]. Consequently, it was proposed that the CuxO/TiO2 acting
as a photocatalyst can reduce the damaging factors of the viral infection present in the air
by applying a photocatalyst coating [131].

4.3. Carboneous-Based Photocatalysts

Carbon-based photocatalysts show the best possible ability to capture natural light
and have received a lot of attention because there is no risk of metals seeping into the
water supply. Carbon-based substances, such as fullerene, carbon nanotubes, carbon
dots, and graphitic carbon nitride, are among the non-metal photocatalysts created for the
disinfection of viruses (g-C3N4).

4.3.1. Fullerene

The primary mechanism by which fullerene aggregates inactivate viruses is the gen-
eration of singlet oxygen (1O2), a ROS. Viral resistance is governed by the structural
and chemical makeup of non-enveloped viral capsids [93]. However, the aggregation of
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nanoscale particles is the extent of fullerene’s potential as a photocatalyst in the process
of wastewater treatment [108]. Therefore, it seems most practical to immobilize fullerene
to maintain its photoactivity in aqueous systems [129]. The straightforward nucleophilic
addition of a primary amine and subsequent transfer of proton immobilizes fullerene
on silica gel and polystyrene resin in suitable conditions [132]. It is proposed that these
surfaces are coated with a single layer of fullerene without any discernible aggregation.
Fullerene immobilization on solid substrates greatly enhanced 1O2 generation in water
when exposed to visible light and rendered MS2 bacteriophages inactive even after repeat-
ing the cycles significantly not reducing the photocatalytic activity. In addition, fullerene
is immobilized on MCM-41 and exhibits antiviral characteristics toward MS2 in a water
system when exposed to visible light [133].

4.3.2. Carbon Nitride

g-C3N4 is a non-metal catalyst frequently helpful for water treatment because it
is composed of organic elements, including carbon, nitrogen, and hydrogen, and can
break water and generate hydrogen when exposed to light [134]. Through photocatalytic
degradation, g-C3N4 has been shown to exhibit antibacterial and antiviral properties.
According to Figure 7, viral inactivation by photocatalysis is a nonselective reaction brought
on by photogenerated e and the ROSs that it produces (mainly (•O2

−) and hydroxyl (•OH)
radicals) [135]. A typical hydrogen electrode serves as a reference, and the bandgap of
g-C3N4 is 2.7 eV, which is suitable for visible-light-driven photocatalysts with conductive
bands of −1.1 eV and valence bands of +1.6 eV [85].
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Kong et al. (2021) [136] employed bacteriophage MS2 to assess the inefficiency of pho-
tocatalytic in g-C3N4 for virus disinfection. Under visible light irradiation, bacteriophage
MS2 was fully rendered inactive in 360 min. The 72-h regrowth test was also carried out
in complete darkness. No obvious plaques appeared, demonstrating the g-photocatalytic
C3N4 inactivation of the virus [137]. By contrasting the efficiency of g-C3N4 for viral
deactivation as the visible-driven photocatalyst, such as nitrogen-doped TiO2 (N-TiO2),
Bi2WO6, and Ag@AgCl [138]. It had discovered that g-C3N4 deactivated more than 7-log
of MS2, whereas the N-TiO2 and Bi2WO6 photocatalysts deactivated MS2 by roughly
1-log and 4-log, respectively. Ag@AgCl exhibits the maximum inactivation of MS2 by the
separation of charges and improving the harvesting of photons. The use of silver-based
photocatalysts is expensive and can result in health hazards in treated water due to the
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dissolution process [139]. Ag3PO4/g-C3N4 nanocomposites (AgCN) were synthesized
hydrothermally and used in a photocatalytic inactivation process to analyze the bacterio-
phage f2 virus. The combination of Ag3PO4 and g-C3N4 improved the effectiveness of the
proposed Z-scheme mechanism by effective charge carrier separation and broad visible-
spectrum absorption. The inactivation of the f2 virus by binary nanocomposite catalysts
was tested using radical quenching, and the results showed that the virus was catalytically
disinfected with an efficiency of 6.5 log in 80 min due to selective ROS damage to the virus
following charge separation through the components of g-C3N4 and Ag3PO4. As a result, a
new, promising nanocomposite photocatalyst for viral disinfection of contaminated water
was produced [140]. A new metal-free nanocomposite was created as oxygen-doped g-
C3N4/hydrothermal carbonation carbon (O-g-C3N4/HTCC) microspheres using a two-step
hydrothermal procedure. Under ideal circumstances, this nanocomposite demonstrated
outstanding virucidal effectiveness for HAdV-2 with visible light absorption to eradicate
5 log in 2 h. As a result, the Z-scheme mechanism has been used to control and improve the
antiviral activity of the O-g-C3N4/HTCC nanocomposite, with effective OH production
leading to severe destruction of the HAdV-2 rigid capsid following an outstanding charge
separation process [141]. The primary mechanism of degradation of g-C3N4 under natural
light involves oxidative damage to the viral surface protein caused by ROS. This leakage
and shape distortion ultimately cause the fast removal of genetic materials, specifically
RNA, and result in viral death without defoliation [142].

4.3.3. Graphene Oxide

Graphene oxide (GO) exhibits superior hydrophilicity, bonding capacity, and wet-
tability due to its extremely active sites on the margin and in its surface layer than in
pristine graphene. GO might harm the viral structure by limiting virus implantation into
host cells, GO/PVP nanocomposites have demonstrated high antiviral activity due to
their non-ionic behavior [143,144]. However, the inactivation mechanism of GO involves
interactions with proteins, causing GO to superficially reduce into the graphene form. The
reduced version of GO, known as reduced graphene oxide (rGO), performed along with
polysulfated dendritic polyglycerol, demonstrated significant inactivation features against
several viruses, including orthopoxviruses, equine herpesvirus type 1 (EHV-1), and herpes
simplex virus type 1. (HSV-1) [129]. A freestanding LIG membrane typically consists of a
carpet of porous fibers that encourages the capture of microorganisms, specifically bacteria,
and limits the growth of filtered microbes. In addition, periodic Joule heating was used
to assist the LIG membrane filter [96]. This raised the temperature (to over 300 ◦C) and
aided in the breakdown of bacteria as well as other compounds and microorganisms [96].
Therefore, graphene-based materials have the potential to avoid and combat COVID-19 by
fusing with the technology of nanosized membranes as more environmentally friendly and
sophisticated photocatalytic techniques [145].

4.4. Dimensional Advanced Materials-Based Photocatalysts

Several two-dimensional materials, including MXenes, metal-organic frameworks
(MOFs), and covalent organic frameworks (COFs), can serve as semiconductor photocata-
lysts for the catalytic deactivation of SARS-CoV-2. They have attractive properties such as
good conductivity, layered structure, mechanical firmness, flexibility, large surface area,
and high affinity [146].

4.4.1. MXenes

2D carbides and nitrides (MXenes) have a high surface area and porosity, with superior
adsorption of molecules and viruses [147–149]. Additionally, these materials encourage the
production of ROS, which aids in inactivating the surface-adsorbed virus. The plasmon
resonance feature of MXenes, when exposed to visible or infrared (IR) light, aids in the
conversion of light into heat (photothermal effect), contributing to the deactivation of
viral species and enabling phototherapy [150]. Recently, a Schottky heterojunction with
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interfacial engineering was built based on the work function values of Ti2C2Tx MXenes
linked with Bi2S3 to modify the photocatalytic antibacterial activity of MXenes [151]. The
engineering of work functions improved charge carrier transfer and made it possible to
quickly kill microorganisms. Additionally, the carbides and nitrides with composites can
be used as preservative coatings on PPE, which is promising [152]. In addition, docking
analysis of proteomic data utilizing SARS-CoV-2 protein interactions as a comparison has
proposed an MXene-dependent antiviral activity mechanism. The ability of MXenes to
modulate viral proteins comprising host proteins, such as GRPEL1, NUTF2, and GNG5,
controlling the antiviral activity, results in excellent antiviral efficacy. In addition, host and
SARS-CoV (red-colored) proteins interact [150,153]. Additionally, the SARS-CoV-2 viral
protein NSP15 is involved in nuclear and vesicle trafficking, while NSP7 is implicated in
membrane trafficking and GPCR signaling.

4.4.2. Metal Oxide Framework (MOF)

The potential characteristics of MOF are high porosity, stability, tunability, a wide
range of host-guest interactions, sorption, and release of ions terming as suitable candidates
for a variety of photocatalytic applications, as well as in the biomedical sector. Owing
to their exceptional ability to destroy bacterial cell walls, zinc-based imidazole MOFs
(ZIF-8) were recently demonstrated as 100% virus-inactivation efficacy against E. coli within
30 min under sunlight [154]. Therefore, MOFs can be used to produce filters in industrial
quantities for air-cleaning masks, clothing, ventilators, and air purifiers. Bismuth and
bismuth-graphene nanocomposites (Bi@graphene) have been developed through recent
research to function as photocatalysts when exposed to ultraviolet (UV) light. In addition,
compared to pure bismuth nanospheres, the Bi@graphene nanocomposites demonstrated
outstanding photocatalytic deactivation against E. coli. Thus, highly oxidative ROS produc-
tion is associated with the enhanced antibacterial activity of nanocomposites [155]. Strong
excitation and a quick charge transfer mechanism were produced by the involvement of
the Bi surface and graphene. Subsequently, it was reported that aluminum-terephthalate-
based MOFs can be used for removing airborne germs and controlling water content for
interior applications [156]. Furthermore, monohydroxy terephthalate-based MOFs demon-
strated outstanding antibacterial photocatalytic efficacy against E. coli bacteria, with 99.94%
efficiency under 60% relative humidity. In particular, non-woven fabric air filters with
monohydroxy-terephthalate coatings offer effective defense against abrupt variations in
air humidity when used externally. By managing the effectiveness of the air, this study
provides a significant result to the future scopes of antimicrobials, water adsorbents, and
active filters. According to several investigations, the bioactive MOF (bioMOF) effectively
disposed of E. coli, P. aeruginosa, S. aureus, and C. Albicans have much lower minimum
inhibitory concentrations (MIC) [96]. Additionally, bioMOF demonstrated strong cytotoxi-
city toward the aberrantalytic air purifier epithelioid cervical cancer (HeLa) cell line and
HAdV-36 deactivation activity, generating the potential of MOFs against the COVID-19
virus. MOFs and COFs might deactivate SARS-CoV-2 by removing crown-like spike pro-
teins through the perforation of the lipid membrane and allowing the RNA to escape.
Although the production of ROS impairs spike proteins, photocatalytic deactivation results
in greater virucidal action [157].

5. Challenges in Photocatalyst Treatment

There are some limitations in the photocatalytic system for the inactivation of the virus.
Some of them are recovery and reusability, unsafe disinfection, unstable coating, and fiber
(Table 5).
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Table 5. Common challenges/drawbacks in photocatalysis systems for environmental remediation.

Issue Associated Problems Outcome Suggestions References

Recovery and reusability

• Suspended photocatalyst from
the reaction solution

• Adsorbed species at the
surface of the photocatalyst

• Partially degradation of
pollutants molecules

• Fabrication of self-recovery photocatalyst
• Application of magnetic photocatalyst
• Design and develop a second-generation

solid catalyst with high separation
efficiency and the ability to be recovered
and regenerated

[44,55]

Unsafe of disinfection

• The inactivation process is
not completed.

• The surface of the
photocatalyst still contains
dangerous virus organisms.

• Incomplete recovery from the
reaction mixture

• Adsorbed of viral species

• Fabrication of a wide range of light
adsorption of photocatalyst

• Reduction in particle size
• Improvement of surface reactivity and

functionality of photocatalysis
• Catalyst synthesis should be designed to

produce catalysts with well-defined crystal
structures, high affinity for different organic
pollutants, and smaller particle sizes.

• Fabricating composites or heterogeneous
photocatalysts for efficient energy
utilization and recovery

[49,138]

Photocatalytic coatings
and membrane filters

• Not suitable for
long-run applicability

• Reduction in the amount of
disposal-generated
critical waste

• Development of facile strategies that
promote the prevention, disinfection, and
reusability of photocatalytic
coating materials

[22,54,139]

Wastewater disinfection

• Aggregation of nanosized
photocatalytic materials

• Fewer surface sites

• Immobilizing photocatalytic materials with
the porous or floating substrate

• Improve recovery along with
agglomeration to enhance reusability

• Designing the morphology according
to virology

• Hybridizing or functionalizing with
transition metals ions

[28,31,158]

Long scale applicability

• Agglomeration in water
• Restricted surface-bound

radical diffusion
• Contact of liberated radicals

with oxidizable cell
wall substrates

• Production rate and
mechanical resistance induced
by diffusion are the critical
limitations associated with
membrane photoreactors

• Internal monolithic structures acting as
catalyst support also offer substantial
surface sites for improved molecular
adsorption and mass transfer

• Fabrication of micro-structured
photoreactors with 10–1000 µm dimensions

• Effective irradiation of the entire catalytic
surface through optimal light sources like
optical fibers, LEDs

[29,30]

5.1. Poor Affinity toward Virus Species

The photocatalysts used in the nanosized are fragile and liable to aggregate in real-
world water applications. It can limit the activation in a particular region and lower the
efficiency of the photocatalyst. Hence, these obstacles must be removed for the degradation
process in wastewater treatment independently. The problems faced by the photocatalysts
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depending upon fluid environments can be resolved to address the aforementioned diffi-
culties by preventing the movement of the catalyst on a permeable or floating substrate.
The porous substrate can be an organic or inorganic membrane for creating the bifunctional
photocatalytic membrane, which acts as a filter and photocatalyst in the same chamber.
Besides, the addition of a catalyst into the substrate can cause it to settle at the bottom
of the substrate. This circumstance can prevent the photocatalyst from being activated
by the greatest amount of light. Therefore, it is possible to modify or functionalize the
photocatalyst and the substrate ensuring the catalyst is on the top region.

5.2. Slow Degradation Rate

Limited light absorption is one factor that slows the rate of deterioration. In addition,
using a translucent or transparent substrate may address the issue of source light usage.
Because of its high surface area to volume ratio nature with extreme porosity, electrospun
nanofibrous photocatalysts are highly preferred with much interest to use in the disinfection
of water systems. However, electrospun nanofibrous photocatalysts are well known to be
brittle and weak, and because of their large pore size, they can readily collapse. Because of
this problem, they are not suited for long-term use in water treatment. The flexibility and
mechanical strength of nanofibrous photocatalysts may be improved after manufacturing.
It is difficult to efficiently recover suspended photocatalysts during water disinfection. The
nanosized objects should be removed after disinfection and before the release/reuse of
treated water. The magnetic isolation procedure is used to remove the suspended particles
from the reaction mixture. Additionally, the difficult problem of recovery can be resolved
by integrating specific prospective photocatalytic materials that have difficulty in removing
magnetically separable elements.

5.3. Highly Cost Treatment

A more thorough evaluation of prospective substitutes for disinfecting water, air, and
surfaces is necessary to improve the attenuation of energy and environmental footprint.
Because of the significant redox capabilities of the generated ROS, photocatalysis is un-
doubtedly a cutting-edge “green disinfection” technique that targets widespread viruses
found everywhere. The efficiency of ROS formation and annihilation of oxidative virus
species are reduced for maximizing the capabilities of semiconductor material through
low sunlight. The reassembly of electron-hole at a higher rate and broad bandgap en-
ergy causes the majority of semiconductor oxides to exhibit less photoactivity than other
materials. The viral cell can be effectively destroyed by oxidation using visible- and/or
NIR-light active photocatalytic materials, while UV-light with poor penetration helps to
limit the use of antiviral agents. It should be noted that numerous modification techniques
were thoroughly investigated to address the problem of insufficient energy utilization
and conversion. However, further investigations are required in the field of modified
nanomaterials for antiviral action. One crucial factor affecting the entire photocatalytic
process is the stability of the semiconductor photocatalyst with difficult reaction factors.
Additionally, to meet the economic requirements, the material used as the catalyst should
demonstrate sufficient stability and reusability, given the long-term environmental stability
of the virus. Advanced heterojunction systems combined with metal-free photocatalysts
have the potential to improve performance while enhancing photostability.

5.4. Resistance of Viruses via Mutation

Variations in their structural and geometric features from other microorganisms, such
as bacteria and viruses, have been observed as better resistant to photocatalytic disin-
fection. In contrast to other microbes, viruses are the smallest type among all types of
microorganisms; they increase quickly by spreading via the air, causing a variety of dis-
eases through the infected cells. When SARS-CoV-2 enters the human body, similar to
COVID-19, it first targets the breathing systems, including the nose, throat, windpipe,
and lungs, before harming the organs and killing the entire body. According to a recent



Catalysts 2023, 13, 620 21 of 28

discovery made using protein, SARS-CoV-1, in contrast, is more unstable, moves more
quickly all the time, and takes more time to bind to human cells. In contrast to MERS and
SARS-CoV-2, COVID-19 has been significantly easier to transfer to humans since it has
high stability and is primed to strike the body. Therefore, the creation of a cutting-edge
treatment to inactivate targeted viruses, particularly SARS-CoV-2, in the fluid environment
is urgently necessary. An intelligent photocatalytic membrane may be created that would
reject, adsorb, and photo-catalytically break down the virus based on its geometric and
structural characteristics. The structural and geometrical differences between viruses and
other microorganisms make them more resistant to photoinactivation. Additionally, the
lengthy environmental persistence of the virus and its capacity for fast mutation increases
its likelihood of transmission, making the inactivation process more difficult. Therefore,
modifying and modeling the photocatalytic reaction needs a thorough knowledge of the
chemical mechanisms that occur during disinfection. To overcome the aforementioned
obstacles and effectively deactivate targeted viruses such as SARS-CoV-2, further research
has to be conducted on photocatalytic devices currently in use. Although the scientific
community has created several disinfection technologies since the COVID-19 pandemic out-
break, which gives hope for neutralizing the microbes in the polluted water, photocatalytic
disinfection will be a long-term solution to reduce its environmental impact.

6. Conclusions

The widespread COVID-19 pandemic affecting world health calls for the development
and widespread use of disinfection for contaminated areas, which are the main sources
of the transmission of diseases. The majority of disinfection methods that are currently
advised are chemical-based and energy-intensive affecting the environment. Oxidation
methods with advancement have been acknowledged as one of the most effective disin-
fection methods. Different morphologies, surface defects, and antiviral activities have
greatly altered the photocatalytic activity of semiconductors toward the inactivation of
SAR-CoV-2. Numerous photocatalytic systems and semiconductors have been developed
to achieve this goal. However, the widespread use of photocatalytic disinfection technology
is constrained by our incomplete understanding of important factors, such as the viral
photo-inactivation mechanism, fast virus mutagenicity, and survival for an extended period
of time. Additionally, this review paper offers up-to-date information on readily avail-
able commercial modalities for a successful virus photoinactivation procedure to validate
the photocatalysis process. A thorough discussion of the long-term problems and viable
solutions is recommended to address these information gaps.
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