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Abstract: In this study, a simple and low-energy synthesis scheme of Fe single-atom anchored carbon
nitride was reported to improve the photocatalytic performance of g-C3N4. Synthesized Fe single-
atom doped graphite carbon nitride (Fe-SACs/g-C3N4) showed high activity and stability for the
degradation of 2-mercaptobenzothiazole (MBT); under visible light irradiation, 99% of MBT could be
degraded within 35 min, and the degradation ability basically did not decline after five cycles, mainly
due to the synergistic effect of the Fe single atoms and carbon nitride. The results of X-ray absorption
fine structure (EXAFS), X-ray photoelectron spectroscopy (XPS), and density functional theory
calculations show that the single-atom Fe forms Fe-N4 coordination with pyridine nitrogen to generate
a new electron transfer channel, which can significantly improve the in-plane separation and transfer
of carriers, finally enhancing the generation of superoxide radicals. This is confirmed by time-resolved
photoluminescence, photoelectron chemistry, and electron spin resonance measurements. The main
intermediates of MBT degradation were determined using a liquid chromatograph–mass spectrometer
(LC-MS), and a possible photocatalytic mechanism based on the quenching experiment and electron
paramagnetic resonance (EPR) test was proposed. A deep understanding of the contribution of Fe
single-atom sites with clear local coordination structures will help to design effective catalysts for
photocatalytic performance.

Keywords: graphitic carbon nitride; single-atom; NaBH4 reduction; photocatalytic degradation

1. Introduction

As global industrialization accelerates and the world’s population grows [1–3], a large
number of organic substances, such as antibiotics, organic dyes, and pesticides, are released
into different kinds of water every day [4–6]. It is important to adopt efficient methods
to eliminate these organic pollutants from the environment. 2-Mercaptobenzothiazole
(MBT) is an organic substance widely used in medicine, rubber vulcanization accelerators,
antidotes, synthetic fungicide raw materials, and other fields [7]. In recent years, it has often
been found in wastewater treatment plants and in anaerobic sludge digestion, where it is
not easily degraded by biological treatment [8]. Therefore, removing MBT from wastewater
is of great significance for ecological development and human health. As a semiconductor
photocatalyst [9–12], g-C3N4 has attracted extensive attention because of its light stability,
nontoxicity, and appropriate water treatment potential. However, the poor electron transfer
ability, low specific surface area and low absorption efficiency of visible light exhibited
by bulk g-C3N4 limit its development [13,14]. Various modification strategies reported in
the literature have been able to achieve better photocatalytic performance, among which
metal doping is considered to be one of the most effective methods [15–18]. The activity of
iron-doped carbon nitride has improved, but it is still unsatisfactory [19,20].

Transition metal single-atom catalysts (SACs) have received much attention in the
field of heterogeneous catalysis due to their high metal utilization, low cost, and favorable
catalytic activity. However, in many cases, single-atom catalysts are not sufficiently stable.
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As we all know, the surface free energy of metals increases as the particle size of the metal
decreases, which leads to the clustering of isolated individual atoms into nanoparticles
during the synthesis and reaction. This is a significant challenge for the stability of SACs.
To overcome this problem [21], the construction of strong covalent coordination interactions
between the central metal single atom and the surrounding ligand atoms is essential [22,23].
The typical two-dimensional (2D) layered structure of g-C3N4 brings abundant surface
loading sites. Adjacent layers are connected by weak van der Waals forces, and in-plane
C and N atoms hybridize with sp2 to form a highly exotic π-conjugated system [24]. The
existence of a lone pair of electrons in the N atom provides an opportunity for the coordi-
nation of metal atoms. The abundant lone pair electrons of N atoms in CN heterocycles
can confine highly reactive single metal atoms, thereby producing a stable g-C3N4-based
single-atom photocatalyst. Therefore, g-C3N4 is an ideal carrier material for loading single
atoms [25–28].

Generally, the methods for synthesizing single-atom catalysts include direct synthesis
and post-synthesis [29]. The direct synthesis method usually involves high-temperature
calcination in an inert atmosphere, and the synthesis is carried out with or without a
template. Guo and co-workers [30] used C3N4 to synthesize FeNx/C3N4 using the template
pyrolysis method, and synthesized iron precursor (Fe-ICC) synthesis using ball milling,
followed by the complete grinding of the purified iron precursor and melamine in an agate
mortar. Finally, the whole mixture was calcined at 600 ◦C for 5 h under inert conditions.
However, the preparation process for the hard template method is complicated, the cost
is high, the metal leaching activity is high, and the stripping process is complicated and
necessary. Especially with the heated acid treatment, the choice of different leaching
solutions can have a significant effect on the active metal [31]. Wang and co-workers [32]
used a template-free strategy to synthesize a two-dimensional Fe/N co-doped carbon
network (C3N4) as an efficient catalyst for ORR. In their work, melamine and chlorinated
1,10-phenanthroline were dispersed and polymerized under argon at 600 or 800 ◦C for 2
h. The subsequent black powder was treated with 1 M sulfuric acid and pyrolyzed again
at 800 ◦C for 1 h, resulting in the final Fe-NC-PT catalyst. This kind of synthesis method
will produce high energy consumption and is still hampered by low metal loading. The
post-synthesis method refers to the loading of metal ions on carbon nitride after carbon
nitride synthesis. Tian and co-workers [33] adopted a wet-chemical “precursor preselection”
strategy. The Fe2-C3N4 catalyst was synthesized by using a dicarbonyl-cyclopentadienyl
iron molecular precursor as an iron resource, mixed with the mesoporous C3N4 carrier
using DMF as the solvent, and then calcined again at a high temperature. Obviously, this
synthesis method, which required secondary calcination, also results in higher energy
consumption. Despite extensive efforts, it is still challenging to find a simple and low-
energy method to prepare single-atom catalysts.

Here, a simple and low-energy-consumption method was adopted. This study used
Fe(acac)3 (iron acetylacetonate) as the precursor, firstly adsorbed on g-C3N4 in solution,
and then used NaBH4 as the reducing agent to prepare a Fe single-atom catalyst (Fe-
SACs/g-C3N4) successfully. The morphology, composition, and optical properties of
the synthesized samples were characterized by SEM, STEM, ATR-FTIR, UV-vis, and PL.
The coordination form of Fe single atoms in carbon nitride was analyzed by XPS and
EXAFS, and the electron transfer changes of Fe single atoms anchored in carbon nitride
were calculated by density functional theory (DFT). The photocatalytic performance and
stability were evaluated by the degradation of 2-mercaptobenzothiazole (MBT) under
visible light irradiation. Furthermore, a possible photocatalytic mechanism is proposed
based on the results of EPR and the experimental results of trapping active species. Finally,
the intermediates of MBT degradation were determined by LC-MS, and the degradation
pathway of MBT was proposed. This research will provide promising solutions for the
treatment of environmental pollutants and ideas for the rational design of high-performance
single-atom catalysts.
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2. Results and Discussion
2.1. Morphology and Crystal Structure

The morphology and microstructure information of the as-prepared samples were stud-
ied using SEM and TEM images. Figure 1a–c show the SEM images of g-C3N4, Fe(acac)3/g-
C3N4, and Fe-SACs/g-C3N4, respectively. It can be seen that the materials are in a stacked
layered structure; no aggregated Fe species were found on the surface of the Fe(acac)3/g-
C3N4 and Fe-SACs/g-C3N4 samples. High-resolution TEM (HR-TEM) (Figure 1d) also
shows that no Fe particles were observed in Fe-SACs/g-C3N4, and no obvious lattice
fringes were found, proving the amorphous state of Fe-SACs/g-C3N4, which suggested
that Fe might only be connected to the unsaturated coordinating N atom in the tri-s-triazine
unit [34]. This is also consistent with the test results of XRD. Aberration-corrected high-
angle annular dark-field scanning TEM (AC-HAADF-STEM) images (Figure 1e,f) further
confirm that there are no agglomerated Fe nanoparticles in Fe-SACs/g-C3N4; uniformly
dispersed single-atom-sized bright spots can be observed, and thus Fe single atoms are
uniformly dispersed in the g-C3N4 nanosheets. At the same time, the result of the element
mapping image (Figure 1g) also shows that C, N, O, and Fe elements are uniformly dis-
tributed in g-C3N4. According to the ICP test, the Fe content of the 2% Fe-SACs/g-C3N4
sample is approximately 0.1 wt% (Table S1).
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Figure 1. SEM images of g-C3N4 (a) Fe(acac)3/g-C3N4 (b), and Fe-SACs/g-C3N4 (c); TEM image of Fe-
SACs/g-C3N4 (d); HAADF-STEM images of Fe-SACs/g-C3N4 (e–f); and the corresponding element
mappings for the C (Green), N (Red), O (Blue) and Fe (cyan-blue) atoms of Fe-SACs/g-C3N4 (g).
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Figure 2a displays the XRD patterns of g-C3N4, Fe(acac)3/g-C3N4, and Fe-SACs/g-
C3N4, respectively. The stronger peak, which corresponds to the (002) crystal plane at
27.4◦, represents the characteristic interlayer stacking reflection of conjugated aromatic
systems. The weaker peak is at 13.1◦, and corresponds to the (100) crystal plane [35]. It
represents the in-plane structural orderly stacking of tri-s-triazine units. It can be seen that
the peak intensity changes slightly after adding Fe(acac)3, probably because Fe(acac)3 is
only adsorbed on the surface of g-C3N4 and has little effect on the structure of g-C3N4, and
with the reduction, Fe atoms enter the g-C3N4 framework. The peak at 27.4◦ decreases,
which indicates the host-guest interaction and the inhibition of polymer condensation by
excessive Fe species [36]. The full width at half maxima (FWHM) data and the crystallite
size of the (002) peak show that with the addition of single atom Fe, the half-peak width
of the (002) crystal plane of carbon nitride material was expanding and the crystallite size
was decreasing (Table S2). The Fe peak was not detected, which may be due to the low
concentration and uniform dispersion of Fe in g-C3N4 [37].
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To further study the chemical bonding and chemical structure of the prepared samples,
Fourier Transform Infrared (FT-IR) studies were carried out. The FT-IR spectra of the
samples are shown in Figure 2b. The absorption in the range of 3050–3450 cm−1 can be
attributed to the amino vibrations, the multiple peaks in the range of 1200–1680 cm−1 can
be attributed to the CN heterocyclic [38], and the peak at 809 cm−1 can correspond to the
breathing mode of triazine units [39]. The basic framework of carbon nitride is unchanged,
which is due to the introduction of a trace amount of Fe into the framework.

Figure S1 shows the N2 adsorption and desorption isotherm curves. The N2 adsorption
curves of the samples are all type IV H3 hysteresis curves. According to the literature, the
relative pressure range of a H3 hysteresis curve is 0.65–0.95, and these curves are typical
slit-shaped mesopores [40]. In accordance with the test results, the specific surface area and
pore diameter of the materials were calculated using the BET method and the BJH method.
The specific surface area of Fe-SACs/g-C3N4 was 7.80 m2/g, which was slightly higher
than the 7.72 m2/g specific surface area of g-C3N4. The increase in the specific surface area
of g-C3N4 may be due to the influence of Fe doping on the crystallinity of g-C3N4. A higher
specific surface area means more active centers and more sufficient contact between the
catalyst and the pollutants, thereby improving the photocatalytic activity. The average pore
diameter of g-C3N4 is 19.45 nm, and that of Fe-SACs/g-C3N4 is 17.76 nm, which indicates
that the material has a mesoporous (2–50 nm) structure [41].
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The chemical state and chemical composition of Fe-SACs/g-C3N4 samples were
measured by X-ray photoelectron spectroscopy (XPS) Figure 3a is the full spectrum of the
catalyst element. C, N, and O were detected respectively. Specifically, the high-resolution
C 1s XPS of Fe-SACs/g-C3N4 (Figure 3b) has four distinct peaks: among them, 284.6 eV
belongs to adventitious carbon (C-C), and 286.4 eV belongs to the sp3-hybridized carbon
(C-(N)3). The peak at 288.4 eV is attributed to the sp2-hybridized carbon (N-C=N), and the
peak at 293.2 eV is assigned to the π-π* satellite structure [42]. The N 1s spectra (Figure 3c)
have four peaks centered at 398.5 eV, which are assigned to the sp2-hybridized nitrogen in
aromatic triazine rings (C-N=C), usually called pyridine nitrogen. The peak at 399.8 eV
belongs to the tertiary nitrogen (N-(C)3), 400.9 eV is attributed to the free amino groups
(C-N-H), and 404.2 eV belongs to the charging effects or positive charge localization in the
heterocycles [43]. It is worth noting that compared with g-C3N4, the binding energy of
pyridine nitrogen in the Fe-SACs/g-C3N4 catalyst has shifted, which may be due to the
combination of Fe and pyridine nitrogen, and the content of pyridine nitrogen has also
increased, which is more conducive to the binding with Fe atom [37]. In other words, the
electron density of pyridine N atoms is slightly reduced due to their interaction with Fe
atoms. Therefore, it can be concluded that Fe atoms in carbon nitride are mainly stabilized
by pyridine N atoms [44], which may be formed in coordination with Fe and become a new
electron transfer channel. However, as the binding energy of Fe(acac)3/g-C3N4 does not
shift in comparison to g-C3N4, we speculate that when NaBH4 is not added for reduction,
the Fe in Fe(acac)3 is still connected to the ligand, not bonded to carbon nitride, and is
only adsorbed on the surface of carbon nitride. After reduction, the positive charge of the
iron atom disappeared, and then the interaction with acetylacetonate negative ions became
weak. Meanwhile, the coordination interaction between the iron and the pyridine nitrogen
increased, so the iron stabilized in carbon nitride. Due to the low iron content of the 2%
Fe-SACs/g-C3N4 sample (Figure 3d), high-resolution XPS spectra of Fe were not detected.
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The atomic local structure information and coordination of Fe-SACs/g-C3N4 were
studied using X-ray absorption fine structure (XAFS) spectroscopy and extended XAFS
(EXAFS) measurement. The Fe K-edge X-ray absorption near-edge structure spectrum of
Fe-SACs/g-C3N4 (Figure 4a) shows that with the increase in the Fe element valence, the
rising edge gradually moves to the higher energy region. The rising edge position of Fe-
SACs/g-C3N4 is between the FeO and Fe2O3, indicating that a single Fe atom is positively
charged between +2 and +3 valence [45]. From the quantitative EXAFS fittings (Table S3),
the coordination characteristic of Fe-SACs/g-C3N4 to Fe-N is 4.2, indicating the presence
of predominant single Fe atoms in Fe-SACs/g-C3N4. The FT k3-weighted χ(k) function
EXAFS spectrum (Figure 4b) of Fe-SACs/g-C3N4 did not match the main peak of Fe foil at
~2.2 Å, indicating no obvious iron-iron bonding [46]. This further demonstrates the atomic
dispersion of Fe in the Fe-SACs/g-C3N4 catalyst. The dominant peak at ~1.5 Å can be
attributed to Fe-N coordination [47]. Furthermore, the WT contour plot of Fe-SACs/g-C3N4
showed an intensity maximum at ~4.2 Å −1 (Figure 4c). In Fe-SACs/g-C3N4, no maximum
intensity of ~7.1 Å −1 associated with Fe-Fe linkages was observed, suggesting that in
the as-prepared catalysts, dispersed Fe is dominated by Fe atoms. To obtain quantitative
structural parameters of Fe in Fe-SACs/g-C3N4 catalysts, we performed least-squares
EXAFS curve fitting. (Figure S2) The results show that the Fe-Nx coordination number of
the Fe-SACs/g-C3N4 catalyst is 4. Moreover, the coordination characteristics show that
all Fe sites in Fe-SACs/g-C3N4 can be assigned as Fe single atoms. The single-atom iron
reduced by NaBH4 was not stable and would be oxidized to an iron positive ion after
coordinating with g-C3N4.
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Figure 4. (a) XANES spectra at the Fe Kedge of FeSACs/gC3N4 and reference samples; (b) FT
k3weighted EXAFS spectra of FeSACs/gC3N4 and reference samples; (c) WT plot of Fe-SACs/g-
C3N4; (d) Differential charge density of the Fe-N4 coordination systems (The blue regions illustrate
charge depletion while the green regions indicate charge accumulation); (e) Density of states of the
Fe-N4 coordination systems.
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To further demonstrate the electronic structure of Fe-SACs/g-C3N4, we performed
density functional theory (DFT) calculations. Using differential charge density to analyze
the interaction between Fe-N4 sites (Figure 4d), it was observed that most of the charge
transfer occurred between Fe and N. The interaction between Fe and C is weak because
there is no obvious charge transfer between Fe and C. This charge redistribution can
generate more charge transfer around the Fe single-atom sites and more catalytic active
sites to effectively degrade MBT. Moreover, as can be seen from the projected density of
states (DOS) curves (Figures 4e and S3), these bonds are formed by the interaction of Fe 3d
with N 2p orbitals, further confirming the formation of in-plane bonds, which may lead to
the formation of in-plane electron transfer improvements.

2.2. Optical and Photoelectrochemical Properties

The PL spectra of g-C3N4, Fe(acac)3/g-C3N4, and Fe-SACs/g-C3N4 were measured
at an excitation wavelength of 355 nm, as shown in Figure 5a. A broad peak of pristine
g-C3N4 was observed at 470 nm with the highest peak intensity, indicating an increased rate
of carrier recombination. In addition, with the introduction of Fe(acac)3, a slight increase in
fluorescence was observed. This may be due to the adsorption of Fe(acac)3 by a g-C3N4 that
reduces the thermal vibration of the molecule and, as Fe(acac)3 contains the fluorophore
C=O, this results in an increased fluorescence intensity [48]. Among all the samples, the
Fe-SACs/g-C3N4 composite has the lowest photoluminescence intensity, which indicates
that the photogenerated electron/hole separation is the most efficient. Therefore, the
introduction of Fe atoms to the g-C3N4 structure facilitates the separation of photogen-
erated electron-hole pairs in g-C3N4, which can effectively inhibit the recombination of
photogenerated carriers [49].
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Time-resolved photoluminescence (TRPL) decay experiments provide a more detailed
understanding of the carrier transfer kinetics of the catalyst (Figure 5b). The TRPL decay
spectrum curve fitted with exponential decay kinetic function expressed as Equation (1)

I(t) = A1(exp−t/τ1) + A2(exp−t/τ2) + A3(exp−t/τ3). (1)

At the same time, the average emission lifetime (τA), which reflects the overall emission
decay behavior, is calculated using Equation (2)

τA = (A1τ1
2 + A2τ2

2 + A2τ2
2)/(A1τ1 + A2τ2 + A2τ2). (2)

In this equation, τ1, τ2, and τ3 are the emission lifetimes, τ1 is caused by free exciton
recombination, and τ2 and τ3 are caused by nonradiative recombination of surface defect
states charge carriers [50], and A1, A2, and A3 are the corresponding amplitudes. As shown
in Table 1, the fluorescence lifetime of g-C3N4 decays from 13.1 ns to 9.4 ns (Fe(acac)3/g-
C3N4), and finally to 7.6 ns (Fe-SACs/g-C3N4), revealing the existence of a more efficient
carrier dissociation and migration process [51]. This also proves that there are new electron
transfer channels, and the electron transfer rate is accelerated. It can be seen that the τ1 of
(Fe(acac)3/g-C3N4) is slightly larger than that of g-C3N4, which is also consistent with the
phenomenon in PL.

Table 1. Kinetic parameters of time-resolved florescence decays of g-C3N4, Fe(acac)3/g-C3N4, and
Fe-SACs/g-C3N4 under 470 nm excitation.

Sample τ1 A1 τ2 A2 τ3 A3 τaverage

g-C3N4 1.7126 0.376 7.0426 0.429 48.0688 0.195 36.284
Fe(acac)3/g-C3N4 1.7263 0.449 7.2545 0.446 51.4631 0.105 32.222
Fe-SACs/g-C3N4 1.4582 0.451 6.2043 0.451 41.9526 0.098 25.248

Figure 5c shows the comparison of g-C3N4, Fe(acac)3/g-C3N4, and Fe-SACs/g-C3N4
LSV curves in the potential window from −1.2 to −1.0 V. Obviously, the photocurrent
density of Fe-SACs/g-C3N4 is higher than that of g-C3N4 and Fe(acac)3/g-C3N4. Addi-
tionally, for the same material, the current density is significantly higher in light conditions
than in dark conditions. The increased photocurrent response implies that the separation
of photogenerated charge carriers is increased [52]. Figure S4 compares the photocurrent
response generated by g-C3N4 and Fe-SACs/g-C3N4 in 0.5 M sodium sulfate solution. It
can be seen that Fe-SACs/g-C3N4 shows the maximum photocurrent density compared
with g-C3N4 when illuminated. In order to further explore the separation and transfer of
photogenerated carriers, electrochemical impedance spectroscopy (EIS) tests were carried
out in the electrochemical workstation [53]. Figure 5d shows the electrochemical impedance
spectroscopy (EIS) Nyquist plot of g-C3N4, Fe(acac)3/g-C3N4„ and Fe-SACs/g-C3N4. Since
the preparation of the electrode and the electrolyte is the same, the semicircle is related to
the resistance of the electrode. The arc radius on the EIS-Nyquist diagram of Fe-SACs/g-
C3N4 is smaller than that of the original g-C3N4 and Fe(acac)3/g-C3N4. This indicates that
the former has more effective photo-generated electron pair separation and faster interface
charge transfer [54]. This phenomenon also proves that a new electron transfer channel
is generated.

The optical properties of the samples were studied using UV-vis diffuse reflectance
spectroscopy, as shown in Figure 6a. It can be seen that the absorbance of g-C3N4 and
Fe(acac)3/g-C3N4 is not much different, but the absorbance of Fe-SACs/g-C3N4 is signifi-
cantly improved, with 2% Fe-SACs/g-C3N4 being the highest. This shows that Fe-SACs/g-
C3N4 can make full use of visible light and generate more effective photo-generated charge
carriers, thus improving photocatalytic activity [55].
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The bandgap energy is obtained by plotting the relationship between (αhν)1/2 and hν,
where α is the absorption coefficient and hν is the photon energy [56]. The Tauc diagram
of the absorption data (Figure 6b) shows that the bandgap energy of Fe-SACs/g-C3N4
is 2.40 eV, which is lower than 2.52 eV of g-C3N4 and 2.53 eV of Fe(acac)3/g-C3N4. It
indicates that the adsorption of Fe(acac)3 has little effect on the band gap of g-C3N4, while
the addition of single-atom Fe is beneficial to reducing the band gap, thus significantly
improving the photocatalytic activity.

The band structures of g-C3N4, Fe(acac)3/g-C3N4, and Fe-SACs/g-C3N4 were studied
by Mott—Schottky analysis. The positive slope of the Mott–Schottky diagram illustrates the
n-type semiconductor characteristics of the material [57] as shown in Figure 6c. Therefore,
the calculated CB of g-C3N4, Fe(acac)3/g-C3N4, and Fe-SACs/g-C3N4 are −0.82, −0.84
and −0.95 V (vs. SCE), respectively, which are equal to −0.68, −0.70 and −0.71 V (vs. NHE)
(Equation (3)), respectively. The band structures of these materials are shown in Figure 6d.

E (vs. SCE) = E (vs. NHE) − 0.24 (3)

2.3. Photocatalytic Activity

The degradation of MBT by the material under visible light irradiation was investi-
gated. Figure 7a compares the photocatalytic activity of the carbon nitride samples before
and after modification. Due to the high recombination rate of electrons and holes and
the insufficient use of visible light, the activity of g-C3N4 is poor. After 35 min of visible
light irradiation, only 42% of MBT was removed. The activity was slightly enhanced after
Fe(acac)3 was adsorbed, and 54% of MBT was degraded after 35 min. However, after
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Fe-SACs were incorporated, the activity was greatly enhanced, and the degradation rate
reached 99% within 35 min. When the incorporation ratio of Fe-SACs was less than 2%,
the presence of Fe-SACs in the photocatalyst improved the catalytic activity and reduced
the recombination rate of photo-induced carriers. However, when the Fe-SACs doping
amount was greater than 2%, its catalytic activity remains basically unchanged or even
slightly decreased, which may be related to the formation of new recombination centers
by the excessive iron. In order to gain insight into the process of degradation reactions,
the reaction rate constants were calculated according to the following first-order model
(Equation (4)).

−ln(C/C0) = kt (4)

where C is the residual concentration at reaction time (t), C0 is the initial concentration
of MBT after establishing adsorption-desorption equilibrium, and k is the first-order rate
constant [58].
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As shown in Figure 7b, the photocatalytic degradation kinetics of the as-prepared
2% Fe-SACs/g-C3N4 had a maximum rate constant of 0.078 min−1, which was 6.5 and
7.1 times higher than those of Fe(acac)3/g-C3N4 (0.012 min−1) and g-C3N4 (0.011 min−1)
(Figure S5). The UV-Vis spectral changes of MBT during photoreaction are shown in Figure
S6.

The stability of photocatalyst in the experiment is an important parameter in its
practical application. Therefore, we tested the cyclic degradation performance of the as-
prepared Fe-SACs/g-C3N4 for MBT, and the results are shown in Figure 8a. During the
five degradation cycles, there was no significant drop in efficiency. In addition, we also
investigated the physical structure and optical capabilities of the fresh and used Fe-SACs/g-
C3N4 photocatalysts using FTIR and UV-vis (Figure 8b,c). The used catalyst has no change
in morphology (Figure S7). The results showed that the physical and optical properties
of Fe-SACs/g-C3N4 did not change much after the reaction, indicating that the prepared
Fe-SACs/g-C3N4 photocatalyst had good stability.
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2.4. Degradation Mechanism Analysis

The main reactive species in the Fe-SACs/g-C3N4 photocatalytic reaction were studied
by trapping experiments. It can be seen from Figure 9a that when ethanol (EA) (10 mmol/L)
was introduced into the reaction solution, the degradation curve of MBT did not change
significantly, indicating that ·OH did not contribute substantially to the degradation reac-
tion of MBT. The introduction of disodium ethylenediaminetetraacetate (EDTA-2Na) (10
mmol/L) slightly inhibited the degradation curve of MBT, which indicated that holes were
involved in the photocatalytic degradation process of MBT. However, the degradation rate
of MBT was greatly inhibited when nitroxide radical piperidinol (TEMPOL) (10 mmol/L)
was added, indicating that ·O2

− is the main reactive species for the degradation of MBT
in the Fe-SACs/g-C3N4 reaction system. Therefore, it can be inferred that the superox-
ide and holes generated in the photocatalytic reaction are responsible for the enhanced
photooxidative performance of MBT decomposition. The same capture experiments were
performed for g-C3N4 and Fe(acac)3/g-C3N4, and the reactive species were the same as for
Fe-SACs/g-C3N4 (Figure S8).
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ence of various scavengers; (b) the EPR spectrum of DMPO-·O2
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Fe-SACs/g-C3N4.

To further determine the free radical generation obtained above, the presence of ·O2
−

during the photodegradation reaction was confirmed using the EPR technique at room
temperature (Figure 9b). Under dark conditions there is no signal, while the characteristic
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peak of ·O2
− can be clearly observed under visible light. It can be seen that the signal

of Fe-SACs/g-C3N4 is significantly stronger than that of g-C3N4, indicating that the new
electron transfer channel mediated by Fe single atoms accelerates the electron transfer rate,
which helps to generate more ·O2

−. Moreover, ·O2
− increases rapidly with the increase in

illumination time, and the signal will gradually weaken under a longer illumination time.
No signal of ·OH was detected (Figure S9).

Based on the above experimental and characterization results, we propose a possible
photocatalytic mechanism to explain the degradation process of MBT by Fe single-atom
doped g-C3N4 composites (Figure 10). Under visible light activation, the electrons and holes
in Fe-SACs/g-C3N4 are rapidly separated, the electrons are transferred to the conduction
band (CB) and migrate to the iron species, while the holes stay in the valence band (VB),
and then directly oxidize the contamination. Subsequently, electrons in Fe-SACs/g-C3N4
may be trapped by oxygen molecules, resulting in ·O2

−, a powerful oxide species that
can decompose MBT into small molecules. Therefore, the photodegradation reaction of
the as-prepared Fe-SACs/g-C3N4 composites can improve the separation and transfer
of photogenerated e−/h+ pairs, and has a strong photo-redox ability for the efficient
decomposition of MBT.
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2.5. Product Analysis

To study the degradation intermediates in the process of Fe-SACs/g-C3N4 photocat-
alytic degradation of MBT, high-performance liquid chromatography–mass spectrometry
technology was used. Figure 11 showed the possible degradation pathways of MBT. First,
MBT (m/z = 167) undergoes an addition reaction to produce compound B (m/z = 169) [59],
then the -SH group is lost to generate compound D (m/z = 139) [60], or MBT directly
loses the -SH group to generate C (m/z = 135) [61], and then the double bond is broken to
generate compound D. With the progress of the reaction, compound D lost -CH3 to form
E (m/z = 125). Part of E is further decomposed to F (m/z = 110) by losing -NH2 [62]. The
other part is decomposed to G (m/z = 93) by losing -SH. Subsequently, compounds F and
G were decomposed into H (m/z = 114) and I (m/z = 95), and finally degraded to J (m/z
= 82) [63]. With the extension of the degradation time, MBT molecules may eventually
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mineralize into CO2 and H2O. The corresponding mass spectrometry results are shown in
Figure S10.
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3. Experiment
3.1. Chemicals and Materials

All chemicals are analytical grade and require no further purification. Melamine
(C3H6N6, 99%) and iron acetylacetonate (Fe(acac)3, 98%) were purchased from McLean
Reagent Company (Shanghai, China). Sodium borohydride (NaBH4, 98%) was purchased
from Tianjin Damao Chemical Reagent Factory (Tianjin, China). Anhydrous ethanol
(C2H5OH, ≥99.7%) was purchased from Fuyu Fine Chemical Reagent Co., Ltd. (Tianjin,
China), and methanol (EA, ≥99.9%) was purchased from Tedia Company (Hefei, China).
2-Mercaptobenzothiazole (MBT, 98%), nitroxide radical piperidinol (TEMPOL), and dis-
odium ethylenediaminetetraacetate (EDTA-2Na) were purchased from Aladdin Reagent
Company (Shanghai, China). All aqueous solutions were prepared with deionized water.

3.2. Preparation of Catalyst

g-C3N4: 10 g of melamine was put into a ceramic crucible with a lid, heated to 550 ◦C
at a heating rate of 5 ◦C/min in a muffle furnace, and calcined at this temperature for 4 h to
obtain g-C3N4.

Fe(acac)3/g-C3N4: 0.5 g of prepared g-C3N4 was dispersed in 20 mL of ethanol,
different amounts of Fe(acac)3 (30 mg, 60 mg, 90 mg, 150 mg) were added to obtain a
mixed solution, and the solution was then magnetically stirred at room temperature for 8 h.
Afterward, the materials were washed with water and ethanol, respectively, dried at 60 ◦C,
and ground to obtain Fe(acac)3/g-C3N4.

Fe-SACs/g-C3N4: 0.5 g Fe(acac)3/g-C3N4 with different Fe contents were dispersed
in deionized water, 50 mg NaBH4 was added, and the solution was stirred magnetically for
three hours, then washed with water and ethanol, respectively, dried at 60 ◦C, and then
ground. Finally, Fe-SACs/g-C3N4 doped with different amounts of Fe were obtained. They
were named 1% Fe-SACs/g-C3N4, 2% Fe-SACs/g-C3N4, 3% Fe-SACs/g-C3N4, and 5%
Fe-SACs/g-C3N4, respectively.
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3.3. Characterization Method

The phase composition and crystal structure of the prepared catalysts were analyzed
using XRD ray diffraction (XRD, D/max2200PC, Rigaku, Osaka, Japan) using Cu-Kα radia-
tion. The morphology of the synthesized samples was investigated using scanning electron
microscopy (SEM)on a Zeiss Sigma500 (Oberkochen, Baden-Württemberg, Germany), the
microstructure of the catalyst was analyzed by transmission electron microscopy (TEM,
FEI-F20, Hillsboro, OR, USA), and high-angle annular dark-field scanning transmission
electron microscopy (HAADF-STEM) images were made using a FEI Themis Z (Hillsboro,
OR, USA). The chemical states of surface elements were analyzed using X-ray photoelectron
spectroscopy (XPS, Shimadzu Kratos AXIS SUPRA, Tokyo, Japan). Infrared spectra were
recorded using a Fourier transform attenuated total reflection infrared spectrometer (ATR-
FTIR, Bruker INVENIO-R, Saarbrucken, Germany). Nitrogen adsorption isotherms were
acquired using an automatic gas adsorption analyzer (Mike ASAP2460, Atlanta, GA, USA)
to evaluate their surface area and pore structure. Ultraviolet-visible diffuse reflectance spec-
troscopy (UV-vis DRS) data were acquired using a Cary 5000, Agilent, Santa Clara, CA, USA.
The photoluminescence (PL) spectra of the samples were obtained with a fluorescence spec-
trometer (Edinburgh FS5, UK) at room temperature with an excitation wavelength of 355
nm. Linear scanning voltammetry (LSV) and electrochemical impedance spectroscopy (EIS)
were performed in a three-electrode system using an electrochemical analyzer (Chen Hua
CHI660E, Shanghai, China) with Hg/HgCl2, Pt flakes, and prepared photoelectrodes, as
reference electrodes, counter electrodes and working electrodes, respectively. The tests were
performed in a standard three-electrode system using a 0.5 M sodium sulfate (pH = 6.8)
solution. The electron spin resonance (ESR, Bruker E500, Karlsruhe, Germany) spectra of
the samples were measured using 5,5-Dimethyl-1-pyrrolidine-N-oxide (DMPO) as a radical
spin trapping reagent. The MBT product under photoexcitation time was identified by
liquid chromatography-mass spectrometry (LC-MS). The LC-MS was equipped with a BHE
C18 column (50 × 2.1 mm i.d., 1.7 µm) (Agilent Technologies, Santa Clara, CA, USA). The
X-ray absorption discovery structure spectra (Fe-K edge) were collected at Spring-8. The
storage ring of the BSRF was operated at 2.5 GeV with a maximum current of 250 mA. Data
were collected in transmission mode using a Si (111) double-crystal monochromator with
an ionization chamber. All spectra were collected under ambient conditions. In addition,
DFT calculations were used to further understand the active sites of the catalytic process.
DFT calculation uses VASP auxiliary calculation. The generalized gradient approxima-
tion (GGA) and (PBE) functional were used to deal with the exchange-correlation energy.
In terms of geometric optimization, the electron self-consistent convergence criterion is
10−6 eV, and the electron self-consistent convergence criterion is 0.02 eV/Å. VESTA was
used to visualize the differential charge density.

3.4. Photocatalytic Experiments
3.4.1. Degradation of MBT

The photocatalytic activity of all samples was detected using a UV cut filter (300 W,
CEL-HXF300) (λ ≥ 420 nm) as the light source. Typically, 30 mg of the prepared pho-
tocatalyst was added to the MBT solution (30 mL, 20 mg/L). Before the photocatalytic
degradation test was carried out, the reaction solution was stirred for 30 min in the dark to
reach the adsorption-desorption equilibrium. In the process of photoreaction, 1.0 mL of the
reaction solution was taken at specific time intervals and filtered through a 0.22 µm filter
for subsequent assays. The distance between the suspension surface and the light source
was kept at 15 cm during the whole experiment.

3.4.2. Cycle Experiment

The stability of 2% Fe-SACs/g-C3N4 composites was investigated by cycling experi-
ments. MBT was degraded 5 times with 2% Fe-SACs/g-C3N4 samples. After each reaction,
the catalyst was collected and separated with a filter extractor, washed four times with
ethanol and water, and dried in an oven at 60 ◦C.
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3.4.3. Trapping Experiments of Radicals

The main active species during the degradation process was investigated by free
radical trapping experiments. In order to study the active species present in the degradation
reaction, appropriate scavengers were added to the experimental solution. The scavengers
used in this study included EDTA-2Na, TEMPOL, and EA, which were used to quench
holes (h+), superoxide radicals (·O2

−), and hydroxyl radicals (·OH), respectively. The
concentrations of EDTA-2Na, TEMPOL, and EA were all 10 mmol/L.

4. Conclusions

In conclusion, the Fe-SACs/g-C3N4 catalysts exhibit extremely high degradation activ-
ity towards MBT. Fe single-atom doped graphitic carbon nitride material was synthesized
by a simple and low-energy method, and Fe was uniformly dispersed in the g-C3N4 struc-
ture in the form of single atoms. The Fe coordinated with pyridine nitrogen in carbon
nitride to produce a new Fe-N4 electron transfer channel, which further improved the
carrier transport efficiency, produced more active radicals, and improved the degradation
efficiency of the material for MBT. It was shown that 99% of MBT can be degraded in 35
min. According to EPR and active species trapping experiments, holes and ·O2

− are the
main oxidizing species. The high stability of Fe-SACs/g-C3N4 was verified in the cyclic
reaction experiments. The catalytic activity of MBT maintained a degradation efficiency
close to the original level after five cycles, which may be due to the high dispersion as
Fe-N4 active sites in the g-C3N4.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/catal13030619/s1, Figure S1: N2 adsorption-desorption isotherms of
the g-C3N4 and Fe-SACs/g-C3N4 (a) BJH pore size distribution curves of as-prepared photocatalysts
(b); Figure S2: The EXAFS R space fitting curves of Fe-SACs/g-C3N4; Figure S3: Projected density
of states of the Fe-N4 system; Figure S4: Photocurrent density of the g-C3N4 and Fe-SACs/g-C3N4;
Figure S5: Degradation rate constants of different photocatalysts; Figure S6: UV-Vis spectral changes
of MBT during photoreaction; Figure S7: SEM of used Fe-SACs/g-C3N4 photocatalyst; Figure S8: The
photocatalytic activity of g-C3N4 (a), Fe(acac)3/g-C3N4 (b) for degrading MBT with the presence of
various scavengers; Figure S9: The EPR spectrum of DMPO-·OH in the presence of Fe-SACs/g-C3N4;
Figure S10: LC-MS spectra of MBT intermediates in the degradation reaction with Fe-SACs/g-C3N4;
Table S1: ICP Test Details; Table S2: The FWHM data and crystallite size of (002) peak; Table S3:
Parameters of EXAFS fits for Fe-SACs/g-C3N4.
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