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Abstract: Memantine is a pharmaceutical used to treat memory loss, one of the main symptoms of
dementia and Alzheimer’s disease. The use of memantine is expected to continue to grow due to the
increasing proportion of the elderly population worldwide. The aim of this work was to conduct
a comprehensive study on the behaviour of memantine in the environment and the possibilities of
its removal from wastewater. Abiotic elimination processes (hydrolysis, photolysis and sorption) of
memantine in the environment were investigated. Results showed that memantine is stable in the
environment and easily leached from river sediment. Therefore, further investigation was focused
on memantine removal by advanced oxidation processes that would prevent its release into the
environment. For photolytic and photocatalytic degradation of memantine, ultraviolet (UV) lamps
with the predominant radiation wavelengths of 365 nm (UV-A) and 254/185 nm (UV-C) were used as
a source of light. TiO2 in the form of a nanostructured film deposited on the borosilicate glass wall
of the reactor was used for photocatalytic experiments. Photodegradation of memantine followed
pseudo-first-order kinetics. The half-life of photocatalytic degradation by UV-A light was much
higher (46.3 min) than the half-life obtained by UV-C light (3.9 min). Processes degradation efficiencies
and evaluation of kinetic constants were based on the results of HPLC-MS/MS analyses, which
also enable the identification of memantine oxidation products. The acute toxicity of the reaction
mixture during the oxidation was evaluated by monitoring the inhibition of the luminescence of Vibrio
fischeri bacteria. The results showed that memantine and its oxidation products were not harmful to
Vibrio fischeri.

Keywords: memantine; hydrolysis; photolysis; sorption; photocatalysis; sol-gel TiO2 film; degradation
products; toxicity

1. Introduction

With the increase in the aging population worldwide, Alzheimer’s disease and other
dementias have become a rapidly increasing public health concern, with an estimated
50 million people currently living with dementia [1]. The prevalence of Alzheimer’s disease
is approximately 0.6% at the age of 60 but it doubles every five years, so the prevalence is
about 40% at the age of 90 [2]. Currently, no cure exists for Alzheimer’s disease but there
are treatments that temporarily slow down the development of symptoms and improve
cognitive functions. In Europe and the USA two symptomatic treatments are approved, the
use of acetylcholinesterase (AChE) inhibitors and N-methyl-D-aspartate receptor antagonist
memantine (3,5-dimethyladamantan-1-amine) [1]. Once in the organism, memantine is
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poorly metabolized and most (57–82%) of the administered dose is excreted unchanged in
urine [3]. Memantine is a compound highly soluble in water (29.4 mg/L, [4]).

In view of this, it is reasonable to expect that memantine will end up in wastewater
and, without proper treatment, in environmental waters. Memantine was detected in rivers
and sewage treatment plant (STP) influents and effluents in Japan at high frequency (>70%),
with a maximal measured environmental concentration in seven rivers of 47.4 ng/L. The
measured concentration of memantine in STP was lower than 1 µg/L with an average
removal rate in three STPs lower than 20% [5]. Memantine was detected in effluent
wastewater from a wastewater treatment plant (WWTP) located near Barcelona (Spain)
at a concentration ranging from 0.028 to 0.134 µg/L for samples taken on 10 different
days [6]. Memantine was also detected in sewage effluents in three Sweden STPs in
concentrations ranging from 10 to 14 ng/L. It is also detected in the plasma of fishes exposed
to sewage effluents (from <LOQ (0.5 ng/mL) to 2.3 ng/mL) [7]. Kårelid et al. [8] studied
the adsorption of pharmaceuticals on granular activated carbon (GAC) and powdered
activated carbon (PAC) at three Swedish wastewater treatment plants and observed that,
among 22 investigated pharmaceuticals, only memantine showed removal lower than 95%.
Despite the evidence that memantine is present in the environment, data on the fate and
behaviour of memantine in the environmental are scarce.

The incomplete removal of pharmaceuticals in conventional wastewater treatment
plants clearly indicates the need for the development of innovative technologies such as
advanced oxidation processes (AOPs). AOPs have been proposed as a tertiary treatment
for wastewater [9,10]. Among different AOPs, heterogeneous photocatalysis is a promising
method for removing organic micropollutants (OMPs), including pharmaceuticals [11–13].
The most commonly used semiconductor photocatalyst is TiO2 with the potential for the
total mineralization of OMPs, resulting in the formation of non-toxic compounds (CO2,
H2O and the corresponding mineral acids). TiO2 can be used in the form of TiO2 powder
suspension (slurry) or it can be immobilized by different techniques on different substrates
such as borosilicate glass [14,15], alumina foam [16], alumina ring and borosilicate ring.
Immobilization of TiO2 on the adequate reactor walls eliminates the need to separate the
photocatalyst from the treated water. Among different deposition techniques (sol-gel,
thermal treatment, pulsed laser deposition, reactive evaporation, physical vapour deposi-
tion (PVD), chemical vapour deposition (CVD), electrodeposition, sol-spray, hydrothermal
deposition, etc.), the sol-gel technique offers many advantages: relatively low cost, low pro-
cessing temperature, simple deposition, relatively simple control of composition, possibility
of various forming processes, and ability to prepare nano-sized thin films and to produce
fine structures [14,17]. Sol-gel films can be generally deposited by two methods—the dip
coating and the spin coating technique [18].

The aim of this study was to investigate the environmental behaviour of memantine
and possibility of its degradation by advanced oxidation processes. Environmental be-
haviour was investigated by studying abiotic elimination processes: hydrolysis, photolysis
and sorption. For investigation of photolytic/photocatalytic oxidation of memantine, a
photoreactor with UV-A and UV-C lamps, and TiO2 in a form of a nanostructured film de-
posited on borosilicate glass wall of the reactor was used. Process degradation efficiencies
and evaluation of kinetic constants were based on the results of HPLC-MS/MS analyses,
which also enable identification and monitoring of memantine degradation products. In
addition, the acute toxicity of the reaction mixture during the degradation experiment was
evaluated by monitoring the inhibition of the luminescence of Vibrio fischeri bacteria.

2. Results and Discussion
2.1. Environmental Behaviour
2.1.1. Hydrolytic and Photolytic Degradation

Hydrolytic degradation of memantine was investigated according to the procedure
described in OECD 111 [19]. The results of hydrolytic degradation experiments showed
that memantine is persistent to hydrolytic degradation with the degree of hydrolytic
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degradation between 1.5% and 2.8% under the applied conditions (Figure 1A). Given that
hydrolytic degradation of 10% at 50 ◦C corresponds to a half-life of approximately 30 days,
which is equivalent to the half-life of 1 year at 25 ◦C [1], memantine was considered stable
and no further investigation is required.
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Photolytic degradation was investigated with memantine solution in MilliQ water
(direct photolysis) and in the presence of substances commonly present in environmental
waters: humic acids (HA), chloride and nitrate (indirect photolysis). The concentrations
of inorganic ions and humic acids were typical for the environment. The presence of
HA and nitrates resulted in a lower concentration of memantine, while chlorides did not
affect photolytic degradation of memantine. The photolysis due to the presence of HA
and nitrate can be attributed to the formation of highly reactive hydroxyl radicals [20,21].
However, the observed decrease in the concentration of memantine was not significant
(less than 15% after 24-h exposure to simulated solar radiation, Figure 1B), which points to
the conclusion of its persistence during exposure to artificial solar radiation. Blum et al. [22]
reported similar results of memantine photolytic persistence with a degree of degradation
of less than 10%.

According to the available literature, similar environmental behaviour was not ob-
served for other pharmaceuticals detected in environmental waters. They are usually
susceptible to photolytic [20,21,23–25] or hydrolytic [26,27] degradation or to both elimina-
tion processes [28,29].

2.1.2. Sorption
Kinetics of Sorption and Desorption

Based on previously published papers [30,31], there is already some information about
the tendency of memantine to sorption on soil and sediment particles, namely that sorption
is definitely not a dominant process in its case. In this context, our goal was to compare
from a kinetic point of view how much memantine is sorbed to the sediment particles and
how much memantine is desorbed from the same sediment studied.

From Figure 2A, it can be seen that the “faster” sorption of memantine to the sediment
sample occurs in the first 6 h, after which further sorption of memantine occurs slowly
over the observed 24-h period. At the same time, desorption of the previously sorbed me-
mantine takes place during the same time intervals (Figure 2B). It should be noted that, as
the concentration of memantine increases, the amount of memantine sorbed and desorbed
decreases, so that the largest difference between the amount sorbed and desorbed was
obtained at the lowest initial concentration of memantine tested (0.1 mg/L). To investigate
the control mechanisms of the sorption [32] and desorption processes, experiments were
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performed at different time periods, i.e., a kinetic study was performed at three concentra-
tion levels (0.1, 0.5 and 2.0 mg/L), in contrast to the other six concentrations at which the
sorption experiments will be carried out.
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Figure 2. Kinetics of (A) sorption and (B) desorption for memantine on the sediment Studena, T = 25 ◦C.

The sorption and desorption data were analysed using three different kinetic models;
Lagergren pseudo-first-order, pseudo-second-order and the intraparticle diffusion (IPD)
model. All kinetic models are presented in Table 1 where qe and qt are the amounts of
memantine (µg/g) adsorbed/desorbed on investigated sediment samples at equilibrium
and at time t; k1 (1/min) is the rate constant of the pseudo-first-order adsorption; k2
(g/µg min) is the rate constant of the pseudo-second-order sorption and kpi (µg/g min1/2)
is the intraparticle diffusion rate parameter of stage i. Ci, the intercept of stage i, gives an
indication of the thickness of the boundary layer, i.e., the larger the intercept, the larger the
boundary layer effect.

Table 1. Kinetic models.

Kinetic Model Linear Form

Lagergren pseudo-first-order ln(qe − qt) = lnqe − k1t
Ho’s pseudo-second-order t

qt
= 1

k2q2
e
+ t

qe

IPD model qt = kpi
√

t + Ci

The sorption and desorption rate constants k1, k2 and qe,cal as well as the correlation
coefficients (R2) for the pseudo-first and pseudo-second models are shown in Table 2.

Table 2. Sorption and desorption kinetic parameters of memantine on the sediment Studena.

Initial Concentration,
mg/L

qe,exp, µg/g
Pseudo-First-Order Pseudo-Second-Order

qe,calc, µg/g k1, 1/min R2 qe,calc, µg/g k2, g/µg min R2

Sorption process
2.0 10.11 13.33 2.303·10−4 0.7666 10.24 0.0035 0.9990
0.5 3.67 2.29 4.606·10−4 0.5838 3.70 0.0162 0.9999
0.1 0.91 0.25 9.212·10−4 0.7508 0.91 0.0966 0.9998

Desorption process
2.0 4.40 3.74 −2.303·10−4 0.8514 4.46 0.0107 1.000
0.5 1.29 1.64 −2.303·10−4 0.3369 1.30 0.0545 0.9999
0.1 0.29 0.51 −1.612·10−4 0.5115 0.29 0.3025 0.9999
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From the results, it can be concluded that the pseudo-second-order kinetic model
perfectly describes both the kinetics of memantine sorption and the kinetics of desorption
of previously sorbed memantine, since very high correlation coefficients (R2 > 0.999) were
obtained in both cases. These results suggest that the sorption/desorption capacity is
regulated by the number of available active sites on the sediment. According to this model,
the maximum concentration absorbed at equilibrium (qe) on the Studena sediment was
approximately 10.11 µg/g, which corresponds to the maximum sorption capacity of this
sediment for memantine in the experiments performed. However, if we consider the results
of desorption according to the same model, it follows that the maximum concentration
desorbed at equilibrium on the Studena sediment was about 4.40 µg/g, which practically
corresponds to almost half of the amount of memantine previously sorbed. This ratio
of sorbed/desorbed memantine from the sediment studied depends, of course, on the
memantine concentration in contact with the sediment, so that Table 2 shows that, at con-
centrations of 0.1 mg/L and 0.5 mg/L, almost one-third is desorbed, which is less than the
previously mentioned concentration of 2.0 mg/L, at which almost half was desorbed. The
higher the concentration of memantine in contact with the sediment, the more memantine
is washed out of the sediment, which is consistent with what was said before, i.e., that
the sorption/desorption capacity is regulated by the number of available active sites on
the sediment. The desorption rate constants according to the pseudo-second-order kinetic
model are much higher than the sorption constants under the same conditions. Such a
result is even more discouraging because, no matter how little memantine is sorbed on a
sediment, it is still quite a lot and is rapidly desorbed, posing a risk of water contamination
by memantine.

The kinetics of sorption and desorption can also be described from a mechanical point
of view. The whole process of sorption and desorption can be controlled by one or more
steps, such as surface diffusion, pore diffusion, external diffusion and sorption/desorption
at the pore surface. When the sorbent is porous, as in the case of sediments, intraparticle
diffusion often plays a major role. During rapid stirring, the diffusion mass transport
can be related to the diffusion coefficient, which describes well the experimental sorp-
tion/desorption data. Results of the IPD model are shown in Table 3.

Table 3. Intraparticle diffusion model constants and correlation coefficients for memantine on the
sediment Studena at different initial concentrations.

Initial Concentration,
mg/L

Intraparticle Diffusion

First Phase Second Phase Third Phase

kp1,
µg/g min1/2 C1 R2 kp2,

µg/g min1/2 C2 R2 kp3,
µg/g min1/2 C3 R2

Sorption
process

2.0 0.5123 3.4451 0.9716 0.1853 5.4711 0.9819 0.0176 9.4375 1.000
0.5 0.2895 0.8587 0.9934 0.0269 2.9168 0.9924 0.0062 3.4343 1.000
0.1 0.0425 0.4792 0.9853 0.0046 0.7624 1.000 0.0014 0.8556 1.000

Desorption
process

2.0 0.4058 0.3216 0.9915 0.0505 3.2505 0.9731 0.0009 4.3602 1.000
0.5 0.0631 0.5692 0.9681 0.0142 0.9752 0.9975 0.0030 1.1806 1.000
0.1 0.0156 0.1348 0.9673 0.0015 0.2490 0.9986 0.0003 0.2799 1.000

From these results, it is evident that the process of sorption and desorption of me-
mantine on the studied sediment is multilinear, indicating that the sorption and desorp-
tion process occurs in three phases [33]: (i) initial boundary layer diffusion or adsorp-
tion/desorption at the outer surface, (ii) gradual intraparticle diffusion or diffusion in the
pores, where the degree of intraparticle diffusion is rate-controlled, and (iii) equilibrium
stage showing saturation of the sorbent surface.

This multilinearity of the sorption and desorption processes suggests that IPD was not
the only rate-controlling step [34] but that multiple steps occur at this microlevel. All the ki-
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netic results obtained are of great importance, especially the desorption information, which
plays an important role in evaluating the behaviour of memantine in the environment.

Sorption Isotherms

The sorption of memantine was tested on three sediment samples (Pakra, Petrinjčica
and Studena) and described by two sorption isotherms: the Linear and Freundlich sorption
isotherms, and results are presented in Table 4. All presented values are expressed by the
average value of three determinations. Achieved relative standard deviations are lower
than 10%.

Table 4. Sorption coefficients (Kd), Freundlich and Dubinin-Radushkevich sorption isotherm parame-
ters in 0.01 M CaCl2 at initial pH values.

Sediment
Samples

Linear Freundlich Dubinin-Radushkevich

Kd,
mL/g R2 n KF,

(µg/g)(mL/µg)1/n R2 β,
mol2k/J2

qm,
µg/g

E,
kJ/mol R2

Pakra 1.4267 0.9917 1.8776 1.6372 0.9189 0.0435 1.6394 3.39 0.7082
Petrinjčica 2.9658 0.9906 2.0467 3.1362 0.8894 0.0286 2.7194 4.18 0.6642

Studena 0.9771 0.9933 1.5868 1.0290 0.8932 0.0477 1.0377 3.24 0.6451

From the obtained regression coefficients R2, it can be seen that only the linear isotherm
describes the sorption process with R2 > 0.99 in all cases, while the range of regression
coefficients for the Freundlich isotherm is 0.89–0.92. The values of the Freundlich exponent,
n, range from 1 to 10, indicating favourable sorption [35]. The Dubinin–Radushkevich
model shows the worst agreement with the experimental data since R2 ranges from
0.6451 to 0.7082. Since the values of sorption energy, E (obtained from the D-R isotherm
model), are from 3.24 to 4.18 kJ/mol for the investigated sediments, it could be said that
the sorption of memantine on the investigated sediments is of a physical nature.

In addition to these three sorption models, many other sorption isotherm models were
tried in the preliminary experiment to obtain more information about sorption of meman-
tine, but without success. For example, when trying to applied the Langmuir isotherm
we either obtained negative values for the Langmuir isotherm constants or the R2 were
extremely low (R2 < 0.25). This indicates that the Langmuir sorption isotherm is not suitable
to explain the sorption process of memantine on the sediment samples studied, since these
Langmuir constants indicate the binding surface energy and monolayer coverage.

The values of the distribution coefficient Kd from the linear isotherm and the ad-
sorption capacity KF from the Freundlich isotherm indicate a slightly weaker binding of
memantine to the sediments of Studena and Pakra compared to the sediment of Petrinjčica.
However, it should be noted that high values of sorption coefficients were not expected at
all, since, according to previous studies, a low tendency of memantine to sorption on soil
and sediment particles was observed [30,31]. In any case, the results obtained in this study
support the fact that memantine poses a major threat to natural waters because it is easily
leached from sediment samples and thus has high mobility in these sediments.

Numerous previous studies clearly show that pH is one of the most important factors
affecting the sorption mechanism and rate [36,37]. This is supported by the fact that
whether the observed molecule behaves as a cation, anion or neutral molecule depends
on the pH of the medium, but also that the activity/presence of metal ions present in the
sediment changes depending on it. Since memantine as a molecule is characterized by a
pKa constant (10.27), it can be concluded that it also occurs in ionic form. However, based
on the natural pH value of the sediments studied, it could be concluded that memantine
occurs exclusively as a neutral molecule in all sediments studied [30].

In addition to the effect of pH on the distribution of the ionic/molecular species of
the memantine under environmental conditions, the effect of pH on their sorption at three
different pH values (pH 5, 7 and 9) was also investigated (Figure 3A).
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In these experiments, an inverse relationship between sorption and pH was observed
for memantine [38,39], i.e., with higher acidity, the sorption coefficient decreases. In all
three sediments studied, differences in Kd values are observed with the change in pH.
While the changes in distribution coefficient from neutral to the alkaline pH range are easily
visible, the change in distribution coefficient from the neutral to the acidic pH range is
much less pronounced. From these results, it can be clearly concluded that the influence of
pH on the sorption of memantine dominates.

In addition to the influence of pH, the influence of ionic strength on the sorption of
memantine was also investigated. It was found that the sorption coefficients decreased
with increasing ionic strength (Figure 3B). The obtained results indicate a possible surface
complexity between the memantine and the studied sediments. For all sediments studied,
the highest Kd coefficient values were obtained at the lowest concentration of CaCl2 solution
tested. The influence of ionic strength on sorption could be related to the fact that the
thickness of the charged surface of the “electric double layer” is reduced, resulting in
decrease in surface charge and fewer interactions between the ionic form of the drug and the
sediment surface [40]. Of course, this theory is also supported by the fact that memantine
is in the form of a neutral molecule [30] in all experiments performed, which makes a
possible interaction even less likely. A similar trend was observed in a previous study of the
sorption of memantine and in other studies of the sorption of pharmaceuticals [30,41–43].

2.2. Photolytic and Photocatalytic Oxidation of Memantine in Aqueous Solution

The photocatalytic activity of sol-gel TiO2 film was evaluated through the degrada-
tion of memantine aqueous solution (10 mg/L) under ultraviolet (UV) lamps with the
predominant radiation wavelengths of 365 nm (UV-A) and 254/185 nm (UV-C).

In order to investigate the kinetics of the photocatalytic degradation of memantine
by photolytic and photocatalytic processes, the pseudo-first-order kinetic model was used.
The linear form of the pseudo-first-order kinetic model is [44]:

ln
C0

Ct
= −k1·t (1)

The half-life time t1/2 was calculated using the following expression [16]:

t1/2 =
ln (2)

k
(2)

where Ct (mg/L) is the concentration of memantine at time t (min), C0 (mg/L) is the initial
memantine concentration and k1 (1/min) is the degradation rate constant.

The first-order degradation rate constant (k1, 1/min) from equation 1 can be calculated
by the slope of the straight line obtained from plotting linear regression of −ln (Ct/C0)
versus irradiation time (t) (Figure 4A). Table 5 shows the pseudo-first-order kinetic constant
(k1, 1/min), coefficient of determination (R2), half-life time (t1/2, min) and efficiency (η, %)
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for memantine removal by photolysis and photocatalysis. It is noticed that the pseudo-
first-order model has an R2 > 0.96, which confirms that the memantine removal follows a
pseudo-first-order model.
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Figure 4. (A) Photolytic and photocatalytic degradation of memantine under UV-A (365 nm) and
UV-C (254/185 nm) radiation by sol-gel nanostructured TiO2 film as a function of irradiation time,
C0 (memantine) = 10 mg/L. Inset: linear transform of −ln (Ct/C0) versus t. (B) Photolytic and
photocatalytic degradation efficiency. All experiments were triplicated with the standard deviation
from the average value ± 4%.

Table 5. Photolytic and photocatalytic degradation rate constants and half-lives of memantine.

Experiment R2 Regression Equation k1, 1/min t1/2, min η, %

UV-A – – – – 0 (after 120 min)

UV-C (254/185 nm) 0.9686 y = 0.0908x − 0.2293 0.0908 7.6 100 (after 45 min)
TiO2 film + UV-C (254/185 nm) 0.9693 y = 0.1779x − 0.4418 0.1779 3.9 100 (after 45 min)

TiO2 film + UV-A (365 nm) 0.9984 y = 0.0159x + 0.0277 0.0159 46.3 85 (after 120 min)

From the photocatalytic experiments, it is observed that, under UV-A light (Figure 4A,B) af-
ter 45 min of irradiation, complete degradation of memantine is achieved (100% efficiency).
Conversely, the photocatalytic experiments under UV-C light (Figure 4A,B) show that, after
120 min of irradiation, 85% of memantine removal is obtained. The photocatalytic degrada-
tion rate of memantine in the “UV-C + TiO2 film” experiment is much faster (0.1779 min−1)
than that in the “UV-A + TiO2 film” experiment (0.0159 min−1). Similar behaviour was also
observed in a recently published study of memantine oxidation [45]. In addition, photolytic
oxidation of memantine by UV-A and UV-C light radiation was investigated. Memantine
showed no degradation after 120 min of exposure to UV-A light alone, which is attributed
to the low energy level of this type of UV light. Memantine degradation efficiency under
exposure to UV-C light is the same as photocatalytic degradation by TiO2 film irradiated
with UV-C light (100% efficiency after 45 min, Table 5) but a rate constant of memantine
degradation is two times lower for UV-C photolysis than for photocatalysis in the “TiO2
film + UV-C” experiment (Table 5). The half-life of photolytic memantine degradation
by UV-C light was almost two times higher (7.6 min) than the half-life obtained in the
“TiO2 film + UV-C” photocatalytic degradation experiment (3.9 min). It was found that the
half-life of photocatalytic degradation by UV-A light was much higher (46.3 min) than the
half-life obtained by UV-C light (3.9 min).
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Švagelj et al. [16] published their findings on the photocatalytic degradation of me-
mantine using a sol-gel TiO2 film deposited on alumina foam substrate irradiated by UV-A
light. The application of sol-gel TiO2 film deposited on alumina foam substrate resulted in
a larger specific surface area and therewith fast degradation of memantine can be obtained.

The diffuse reflectance spectroscopy (DRS) result and the Tauc plot are shown in
Figure 5A,B. It was found that prepared TiO2 only absorbs photons at wavelengths shorter
than 400 nm. Based on the DRS, the Tauc plots can be obtained to determine the energy
bandgap of TiO2 (Figure 5B). It is observed that prepared TiO2 presents a lower energy
bandgap (2.99 eV) in comparison to commercial TiO2 P25 (3.20 eV) [46].
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2.3. Oxidation Products of Memantine

Compared to the chromatogram of the memantine before oxidation, five new peaks
were observed corresponding to the possible oxidation products of memantine. All five
degradation products have lower retention times than memantine (Table 6), indicating that
they are more polar. Tentative structures of memantine oxidation products (Table 6) were
proposed based on the retention times, m/z-values and fragmentation patterns obtained
through HPLC-MS/MS analysis. Mass spectra of memantine and its oxidation products
are shown in Supplementary Materials, Figure S1.

Despite the different kinetics, all five degradation products were detected in all ox-
idation experiments, except photolysis UV-A light when degradation was not achieved.
The same oxidation products after UV-C/H2O2 and UV-A/TiO2 treatment were recently
reported in [40].

2.4. Toxicity of the Mixture of Memantine and Its Degradation Products

Generally, some compounds do not show toxicity to a specific species, but this does
not necessarily mean that they are not toxic or harmful to the environment or humans or
another organism tested for toxicity [47,48]. Papac et. al. [45] determine that memantine
was toxic to Daphnia magna (EC50 = 7.19 mg/L). Blaschke et al. [49] demonstrate that
chronic toxicity is not always more sensitive than acute toxicity. Keeping that in mind,
assessment of the acute toxicity of memantine and its oxidation products during TiO2
photocatalysis by UV-C light was carried out using Vibrio fischeri bacteria. Luminescence
inhibition (%) was measured in triplicate for each tested sample and mean values and
standard deviations (s) were calculated. The results presented in Table 7 indicate that
memantine (10 mg/L) and its oxidation products were not harmful to Vibrio fischeri under
the applied experimental conditions.



Catalysts 2023, 13, 612 10 of 17

Table 6. Proposed chemical structures of memantine oxidation products.

Compound tR, min Chemical Formula Chemical Structure

memantine 14.7
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toxicity is not always more sensitive than acute toxicity. Keeping that in mind, assessment 
of the acute toxicity of memantine and its oxidation products during TiO2 photocatalysis 
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tions (s) were calculated. The results presented in Table 7 indicate that memantine (10 
mg/L) and its oxidation products were not harmful to Vibrio fischeri under the applied 
experimental conditions. 
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Table 7. Luminescence inhibition during the TiO2 photocatalysis by UV-C light.

Exposure Time, min 0 10 20 30 45 60 180

Luminescence inhibition ± s, % 0.86 ± 0.02 1.04 ± 0.03 1.40 ± 0.05 0.76 ± 0.03 0.67 ± 0.04 0.73 ± 0.04 1.98 ± 0.07

3. Environmental Relevance

The fate and behaviour of pharmaceuticals in the environment is controlled by their
physicochemical properties and the characteristics of the environment. Once in the envi-
ronment, the pharmaceutical can be distributed between different compartments of the
environment (such as water, soil, air and biota) and be exposed to different biotic and
abiotic elimination processes that can potentially lead to lowering of their environmental
concentration. On the other hand, the results of elimination processes can lead to the
formation of new compounds—degradation products—with different physicochemical
and toxic properties.

Memantine is highly soluble in water (Table S1). From the results of in silico prediction
of memantine biodegradability using different QSAR models provided by EPISuit [50],
memantine can be considered a persistent compound because it does not biodegrade fast
(biowin 2 < 0.5 or biowin 6 < 0.5) and its ultimate biodegradation timeframe prediction is
longer than months (biowin 3 < 2.25) [51] (Table S1).
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The results of our research showed that memantine is persistent to hydrolytic degra-
dation. Although some photolytic degradation was observed in the presence of humic
acids and nitrates, the degree of photodegradation was insignificant. Due to the absence
of chromophores in the molecule of memantine, such results are expected. For persistent
compounds, such as memantine, it is important to investigate their potential mobility in
the environment determined by the compound’s water solubility and sorption properties.
Results of sorption/desorption experiments showed that memantine has a low tendency
to sorption and is easily leached from river sediments. Considering this and its high solu-
bility in water, it is possible to conclude that memantine will not be eliminated by natural
processes and has the potential to be transported from the release site.

Such compounds, persistent and mobile in the environment, are of great concern for
water quality since they are highly polar and are not removed from water by sorption.
They can therefore end up in drinking water, posing a potential risk to human health [52].
Conventional wastewater treatment, based on microbial degradation and sorption, is
expected to be ineffective for the removal of persistent and mobile compounds, since
they are neither biodegradable nor sorbed substantially [52]. Therefore, it is of great
importance to prevent their release into the environment by developing advanced and
effective wastewater treatment processes.

Today, water treatment technology is trying to introduce processes that will be efficient
and cheap, but also in accordance with ecological principles. One of the methods for
degradation of such persistent and mobile compounds in water that is close to meeting
these requirements is photocatalytic oxidation, with the use of titanium(IV) oxide (TiO2) as
a photocatalyst [53]. In addition to TiO2, the presence of a suitable source of UV radiation
that starts the process and oxygen dissolved in water are also necessary. It is a process that
is included in the so-called advanced oxidation processes (AOPs). For the photocatalytic
oxidation process, it is not necessary to add any additional chemicals except a solid photo-
catalyst (in the form of particles or nanostructured films on the reactor walls) and oxygen,
while ensuring irradiance in UV spectra [54]. The use of solar radiation as a process activa-
tor (i.e., a source of UV radiation) and oxygen from the air around the reactor contribute
to approaching the ecological principles of this technology. Photocatalytic oxidation of
memantine resulted with the occurrence of five degradation products. According to the
shorter chromatographic retention times compared to memantine, it is assumed that the
oxidation products are more polar than memantine. This may indicate better solubility in
water and a weaker tendency for sorption. Although oxidation products of memantine do
not show inhibition of bioluminescence of Vibrio Fischeri, future studies on the current topic
are suggested to assess the cytotoxicity and genotoxicity of memantine and its oxidation
products in surface waters and wastewaters, as well as toxicological risks to ecosystems
and human health. Furthermore, experimental data on the biodegradation of memantine
and its oxidation products should be gathered.

4. Experimental Section
4.1. Materials and Chemicals

Analytical standard of memantine hydrochloride (CAS number: 41100-52-1) (Sigma
Aldrich, St. Louis, MO, USA) of high purity (>98%) was used in this study. Memantine
stock solution concentration of 1000 mg/L was prepared by weighing the accurate mass of
memantine standard and dissolving it in methanol.

Acetonitrile, formic acid, citric acid, ascorbic acid and inorganic salts were of analytical
grade and supplied by Kemika (Zagreb, Croatia). For buffer preparation, analytical grade
reagents were used. Ultra-pure water was prepared using a Millipore Simplicity UV system
(Millipore Corporation, Billerica, MA, USA).

For toxicity evaluation, freeze-dried and liquid luminescent bacteria Vibrio fischeri
NRRL-B-11177 (LCK484, LUMINStox LUMISmini, Hach Lange, Varaždin, Croatia) were
used. The bacterial reagents as well as reconstitution reagents were purchased from Kemika
(Zagreb, Croatia).
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For the preparation of TiO2 sol (colloidal solution), the following components were used:
titanium (IV) isopropoxide (Ti(C3H5O12)4, TTIP, 97%, Sigma-Aldrich, St. Louis, MO, USA),
i-propanol (C3H7OH, Grammol, Croatia), acetylacetone (CH3(CO)CH2(CO)CH3 ≥ 99%,
Honeywell, Charlotte, NC, USA), nitric acid (HNO3, Carlo Erba Reagents, Barcelona, Spain)
and polyethylene glycol (H(OCH2CH2)nOH, Mr = 5000–7000, Sigma-Aldrich, St. Louis,
MO, USA). All these chemicals were analytical grade reagents.

4.2. Sediment Samples

Samples of river or fluvial sediments were collected on the territory of the Republic of
Croatia and in the following areas: in Sisak-Moslavina County on the Petrinjčica River in
the town of Petrinja, in Požega-Slavonia County on the Pakra River in the town of Pakrac
and in Primorsko-Goranska County on the Studena River in the surroundings of the city
Rijeka. In all locations, the samples were collected outside of human activities, which
provides some assurance that the samples are not contaminated, especially in the case of
pharmaceuticals, and in the summertime when it is easier to reach the area and collect
samples due to dryness. All samples were air-dried, crushed, sieved through a 2-mm
sieve and characterized according to the proposed procedure [55]. The physicochemical
properties of used samples can be seen in the previously published work [31].

4.3. Hydrolytic Degradation Experiments

Hydrolytic degradation was conducted at (50 ± 0,1) ◦C (Incubator shakers KS 3000 i
control, IKA, Staufen, Germany) for 5 days and at three pH values (4, 7 and 9) in capped
glass vials under dark conditions. A buffer solution with a pH value of 4 was prepared by
mixing 38.55 mL of 0.2 M K2HPO4 and 61.45 mL of 0.1 M citric acid. A pH value buffer
solution of 7 was prepared by mixing 29.63 mL of 0.1 M NaOH, 50 mL of 0.1 M KH2PO4
and 20.37 mL of MilliQ water, and the pH 9 buffer solution was prepared by mixing
21.30 mL of 0.1 M NaOH, 50 mL of 0.1 M H3BO3 in 0.1 M KCl and 28.70 mL of MilliQ
water. The pH of each buffer solution was checked with pH meter S20 SevenEasy (Mettler
Toledo, Greifensee, Switzerland). Memantine solutions were prepared in appropriate
buffer solutions at a concentration of 10 mg/L. Concentration of memantine solutions after
hydrolytic degradation experiment were determined by HPLC-MS/MS. All experiments
were performed in three replicates.

4.4. Photolytic Degradation Experiments at Environmentally Relevant Conditions

Direct photolysis experiment was performed with memantine solution in MilliQ water
(10 mg/L). To test the possibility of indirect photolysis, solutions of memantine (10 mg/L)
were prepared in solutions of Cl− ions (10 mg/L), NO3

− ions (3 mg/L) and humic acids
(3 mg/L). Forty millilitres of test solution were irradiated in quartz vessels (diameter
4.6 cm) placed in Suntest CPS+ simulator (Atlas, Linsengericht, Germany). Suntest CPS+ is
equipped with a temperature sensor and a xenon lamp as a source of artificial sunlight in
the wavelength range of 300–800 nm. The distance between the liquid surface and the lamp
was 14 cm. During the experiments, the radiation intensity was maintained at 500 W m−2

and the reaction temperature was kept at (25 ± 2) ◦C. In all photolysis experiments, dark
control experiments were performed under the same conditions but protected from the
radiation. Control samples with the same composition as test solutions were used to
establish that memantine degradation was a consequence of the irradiation. Aliquots of
irradiated memantine solution were analysed by HPLC-MS/MS. All experiments were
performed in three replicates.

4.5. Sorption Experiments

Batch sorption experiments were performed according to the OECD 106 procedure [56].
The procedure is performed in triplicate by shaking on a laboratory shaker (Innova 4080
Incubator Shaker, NewBrunswick Scientific, Edison, NJ, USA), which allows continuous
contact of the sediment samples with the memantine solution. To avoid photolytic degra-
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dation, all experiments were performed in the dark and, to avoid microbiological activities,
all sediment samples were sterilized beforehand.

It is very important to choose a good ratio between sediment (sorbent) and memantine
solution. Since previous studies [30,31] show that memantine does not have excessive
sorption potential to sediment or soil samples, all experiments were performed with a 1:10
(w/v) sediment/memantine solution ratio. In a previously published paper [30], it was
determined that 24 h was sufficient for memantine to reach sorption equilibrium, so all
experiments were conducted with 24 h of shaking. The procedure consisted of adding
10 mL known concentration (0.1–2.0 mg/L) of memantine solution in 50 mL of laboratory
glass to 1 g of air-dried sediment. The prepared suspension was shaken in a shaker (at
200 rpm) for 24 h at room temperature (25 ◦C), filtered through a 0.45 µm syringe filter and
transferred to HPLC vials. Blank samples containing the same amount of sediment and
soil in contact with 10.0 mL of 0.01 M CaCl2 solution were also included in the analysis.
They served as controls to detect interfering compounds or contaminated sediment.

In order to investigate the influence of pH and ionic strength on the sorption of
memantine on the sediments studied, a series of experiments were performed in which
one of the factors was changed while the others remained constant. The effect of pH
was monitored using three series of experiments with different pH values of the studied
memantine solutions (pH values 5, 7 and 9). All these experiments were performed in a
0.01 M CaCl2 solution. To determine the effect of ionic strength, the pH of the memantine
solution must be adjusted to the initial value (pH 7.0). These experiments were performed
with three different concentrations of CaCl2 solution (0.001, 0.01 and 0.1 mol/L).

Since the experiments to determine the required contact time (24 h) were the basis for
the determination of sorption kinetics, we were able to start immediately with the determi-
nation of the kinetics of memantine desorption from the sediments studied. Desorption
kinetics were studied for three memantine solutions in 0.01 mol/L CaCl2 (0.1, 0.5 and
2.0 mg/L) using a decanting and refilling technique. After 24 h of shaking, the memantine
solutions in contact with the sediment samples were replaced with fresh 0.01 mol/L CaCl2.
Memantine solution was removed using a disposable glass pipette. The residual solution
that could not be removed before the desorption experiment was determined gravimetri-
cally, and the same amount of 0.01 mol/L CaCl2 as the removed memantine solution was
weighed and added to the residual solution. Samples were then shaken at 25 ◦C for various
periods (10, 20, 30, 40 and 50 min, and 1, 2, 4, 6, 12, 18 and 24 h).

4.6. Photolytic and Photocatalytic Oxidation Experiments

All experiments were carried out with 10 mg/L memantine solution in two borosilicate
glass tubes (200 mm in height, 30 mm in diameter, 0.11 L) with continuous purging with air
(O2), at (25 ± 0.2) ◦C: (i) with the TiO2 film, for photocatalytic experiments and (ii) without
the TiO2 film, for photolytic experiments. UV lamps (UV-A and UV-C) were placed in the
middle of each reactor. Detailed experimental set-up is published elsewhere [17]. UV lamps
used in experiments were 15 W mercury UV lamps: (i) model Pen-Ray CPQ-7427, UV-A
with λmax = 365 nm and (ii) model Pen-Ray 90-0004-07, UV-C with λmax = 254/185 nm,
manufactured by UVP (Upland, CA, USA). Both lamps were used with the same electrical
source PS-4, I = 0.54 A, from UVP, too. The experimental set-up was described in detail
in [17]. The reaction temperature was controlled by the circulation of cooling water. Total
irradiation time for each oxidation test was 120 min. Aliquots of 1 mL were collected in
defined time intervals and stored in the dark at 4 ◦C until HPLC-MS/MS analysis.

Nanostructured TiO2 film was deposited on a borosilicate glass substrate by the sol-
gel process using the dip-coating method. TiO2 colloidal solution (sol) was prepared by
mixing titanium(IV) isopropoxide (Ti-iPrOH) as a precursor, i-propyl alcohol (iPrOH) as
a solvent, acetylacetone (AcAc) as a chelating agent, nitric acid (NA, 0.5 M) as a catalyst
and polyethylene glycol as an organic/polymer additive in the amount of 2 g. The molar
ratio of these reactants was Ti-iPrOH:iPrOH:AcAc:NA=1:35:0.63:0.015. The film was dried
at 100 ◦C for 1 h prior to the deposition of the next layer. After the deposition of the three
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layers, the deposited film was heat-treated at 550 ◦C for 4 h [14]. The procedure for the film
preparation as well as its characterization was described in detail elsewhere [14,17].

Energy bandgap (Eg) of prepared TiO2 was calculated from diffuse reflectance spec-
troscopy (DRS) measurements, which were performed on a QE Pro High-Performance
Spectrometer (Ocean Insight, Orlando, FL, USA) equipped with an integrating sphere and
a DH 2000 deuterium–halogen source in the analysis range 200–1000 nm with a resolu-tion
of 1 nm and integration time of 10 s.

4.7. HPLC-MS/MS Analysis

Samples from photolytic and hydrolytic degradation experiments as well as sam-
ples from AOP experiments were analysed using an Agilent Series 1200 HPLC system
(Santa Clara, CA, USA) coupled with an Agilent 6410 triple-quadrupole mass spectrometer
equipped with an ESI interface (Santa Clara, CA, USA). Chromatographic separation was
performed on an Kinetex C18 column (100 mm × 2.1 mm, 2.6 µm) (Phenomenex, Torrance,
CA, USA) using mobile phase comprising MilliQ water with 0.1% formic acid as eluent A
and acetonitrile with 0.1% formic acid as eluent B. The composition of 50% organic phase (B)
was maintained at flow rate of 0.2 mL/min throughout the analysis. An injection volume
of 5 µL was used in all analyses. The analyses were done in positive ion mode under the
following conditions: drying gas temperature 350 ◦C; capillary voltage 4.0 kV; drying gas
flow 11 L/min and nebulizer pressure 35 psi. Instrument control, data acquisition and
evaluation were done with Agilent MassHunter 2003–2007 Data Acquisition for Triple
Quad B.01.04 (B84) software (Santa Clara, CA, USA).

The residual concentration of memantine in the remaining liquid phase after sorption
was analysed using UHPLC-MS (Agilent 6490 coupled with Agilent Infinity UHPLC System
Triple Quadrupole Mass Spectrometer, Santa Clara, CA, USA) with electrospray ionization.
The chromatographic column Shim pack XR ODS II (50 mm× 2 mm i.d., 1.6µm) (Shimadzu,
Duisburg, Germany) was used at 30 ◦C with an injection volume of 1 µL. The mobile phase
consisted of two eluents: eluent A (0.1% formic acid in MilliQ water) and B (0.1% formic
acid in acetonitrile) and was performed in gradient elution mode. The gradient started
with a 0.1-min linear gradient from 100% A to 10% B, followed by a 1.0-min linear gradient
to 98% B, followed by a 0.5-min linear gradient back to 100% A held for 0.4 min. The
flow rate was 0.2 mL/min. All analyses were performed in positive ion mode under the
following parameters: drying gas temperature 200 ◦C, capillary voltage 3.0 kV, drying gas
flow rate 15 L/min and nebulizer pressure 20 psi. Memantine was analysed by MRM, using
the two highest characteristic precursor ion/product ion transitions (m/z 291.25→230.2;
m/z 291.25→123.0).

4.8. Assessment of Acute Toxicity by Vibrio Fischeri

Acute toxicity assessment toward Vibrio fischeri culture was performed on standard
solutions of memantine (10 mg/L), a mixture of memantine with its degradation products
and finally the degradation products themselves without the detectable presence of me-
mantine. Acute toxicity assessment was performed according to the method described
in detail in [29]. In brief, sample solutions for toxicity measurements were prepared by
serial dilutions in linear progression with addition of 2% NaCl. The experiments were
conducted in a test tube by combining each volume of initial or diluted sample (1.5 mL) and
0.5 mL of bacterium Vibrio Fischeri suspension. The inhibition of luminescence was mea-
sured before and after 30 min of exposure of the sample to Vibrio fischeri on a luminometer
(LUMIStox 300 Hach Lange, Düsseldorf, Germany) at 15 ◦C. In order to control bacte-
ria performance, the reference substances ZnSO4 x (OH2)7 (109.9 µg/mL) and K2Cr2O7
(22.6 µg/mL) were used.
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5. Conclusions

This research provides a comprehensive picture of memantine behaviour in the aquatic
environment. The results showed that memantine is resistant to hydrolytic and photolytic
(i.e., irradiated by solar light) degradation, has a low tendency to sorption and is easily
desorbed from river sediments. For such compounds, which are persistent and mobile in
the environment, it is of great importance to prevent their release into the environment by
effective wastewater treatment.

Investigation of memantine oxidation by photolytic/photocatalytic oxidation by UV-A
and UV-C light showed that memantine could be completely oxidized within 30 min during
photocatalytic and within 50 min during photolytic oxidation processes by UV-C light.
Photolytic degradation by UV-A light did not occur, while photocatalytic degradation by
UV-A light did occur although the degradation rate was lower and memantine degradation
was not completed even after 120 min. A kinetic study showed that the oxidation in all
experiments, in which oxidation occurred, followed pseudo-first-order reaction kinetics.

As a result of the oxidation, five oxidation products were formed, which were identi-
fied using high performance liquid chromatography coupled with a triple quadrupole mass
spectrometer. The same oxidation products were identified in all investigated processes in
which oxidation occurred. The results of the acute toxicity assessment of memantine and
its mixture with oxidation products indicate that the resulting products are not harmful.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/catal13030612/s1, Figure S1: Mass spectra of memantine and its oxidation
products; Table S1: Results of EPISuite biodegradability prediction for memantine.
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