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Abstract: In this study, we examined whether catalysts with many defects have excellent photoactiv-
ity. We prepared ZnO nanoplates with varying degrees of defects in a short time of 4 h by varying the
crystal growth temperature at 50, 100, 150, and 200 ◦C under a strong alkali NaOH atmosphere of
4.0 M. During high-temperature preparation of ZnO, crystal defects were reduced and crystallinity
was further increased. In crystallized systems over 100 ◦C, rhombic nanoplates were used to control
particle shape and induce growth in only two axes. The PL, Raman, and XPS analyses confirmed the
presence of strong oxygen vacancies in all ZnO nanoplates, and the vacancies decreased with increas-
ing crystallization temperatures. Methylene blue (MB) dye was initially fixed at 50 mg/L with a peak
decrease in absorption at 600–700 nm, confirming its decomposition over time. For the 5 h reaction,
the MB removal concentration follows the following order: ZnO-50 < ZnO-100 < ZnO-150 < ZnO-200.
The study confirms that ZnO-200 nanoplates with fewer oxygen vacancies decompose MB more
quickly. ZnO-200 nanoplates synthesized at 200 ◦C provided the best sterilization performance
when tested against gram-positives and gram-negatives, Escherichia coli and Staphylococcus aureus,
respectively. ZnO-200 nanoplates after 3 h showed a high sterilization performance of 96.95% (86.67%
in a dark room) for staphylococcus aureus and 95.82% (74.66% in a dark room) for Escherichia coli
when irradiated with light. Particularly noteworthy in this study is that ·OH and ·O2− radicals are
generated more strongly in ZnO-200 than in ZnO-50 nanoplates. These results show that too-strong
oxygen vacancies rather inhibit the antibacterial performance, and that the virtue of moderation also
exists in the catalytic activity.

Keywords: degree of defects; crystallinity; ZnO nanoplate; oxygen deficiency; antibacterial perfor-
mance; photodegradation of dye

1. Introduction

As people around the world are increasingly interested in antibacterial materials
due to the recent outbreak of the COVID-19 pandemic, the excellent antibacterial activ-
ity of nanosized metal oxides is being intensively revealed. The antibacterial activities
of metal oxide nanoparticles are various depending on particle size [1], surface area [2],
crystallinity [3], capping/stabilizing agent [4], particle shape [5], concentration/capacity
used [6], the pH of the solution [7], and the characteristics of the microorganisms [8].
In particular, smaller nanoparticles and more suitable crystalline shapes can easily pen-
etrate through the pores of bacteria, so they can exhibit more effective antibacterial
properties [9,10]. Therefore, developing nano antibacterial materials that fit the optimized
parameters is very important as a strategy to prepare for new pathogens in near future.
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In particular, among many metal oxide nanomaterials, ZnO is the most widely used and
promising antibacterial material [11,12].

Dyes containing methylene blue (MB) dye can cause serious health and environmental
hazards, and they are toxic, carcinogenic, and non-biodegradable [13,14].A number of
health risks are associated with MB, including respiratory distress, abdominal disorders,
blindness, and digestive and mental disorders. In aquatic organisms, methylene blue
induces oxidative stress and damages DNA, causing growth inhibition, developmental
abnormalities, and even death [15]. For aesthetical and toxicological reasons, there is a
significant threat from MB discharge into the environment [16]. In addition, it reduces
light penetration as well as being a toxic source of food for organisms. As a result, metal
oxide nanomaterials such as ZnO can also be used for MB dye photodegradation studies in
current research for making water drinkable.

ZnO nanoplates are II-VI semiconductors with an equivalent band gap energy of
3.3 eV—similar to TiO2 [17], but it has lower production cost and higher biostability than
TiO2 [18]. Because of its unique optical properties, which can withstand high temperature
and high power operation while having a large electric field, it is used as an interesting
material in biology, medicine, and engineering such as solar cells, gas sensors, chemical
sensors, biosensors, LEDs, and photodetectors. The material ZnO is an extremely versatile
semiconductor material that has a wide range of applications in catalysis. Several reactions
have been catalyzed by ZnO, including photocatalytic degradation of organic pollutants,
CO2 reduction, and hydrogen production. A variety of organic compounds, including
pharmaceuticals and fine chemicals, can be synthesized with ZnO as a catalyst. Further-
more, ZnO can be used to treat wastewater by degrading various pollutants. Due to its
unique physicochemical properties, ZnO is attractive for catalytic applications due to its
high surface area and efficient charge transfer [19–21].

Nanostructured ZnO can have various shapes and characteristics, and antibacterial
and optical activities are different depending on the shape and size [22]. In general, gram-
negative bacteria are less sensitive to metal oxide nanoparticles than gram-positive bacteria
in antibacterial evaluation. This is due to the characteristics of the cell wall structure of gram-
negative bacteria. Unlike gram-positive bacteria, the cell wall of gram-negative bacteria
has an additional outer membrane containing lipopolysaccharide (LPS). LPS enhances the
barrier properties of the outer membrane, increasing resistance to bacteria. However, ZnO
nanoplates act effectively against both gram-negative and gram-positive bacteria, inhibiting
their growth [23]. Three mechanisms have been proposed for the antibacterial activity of
ZnO: (1) the release of antibacterial ions from nanoparticles, (2) the interaction between
nanoparticles and microorganisms, and (3) the generation of ROS by light irradiation [24].
However, the first mechanism of release of antibacterial ions such as Zn2+, Mn3+, and
Fe3+ and the second mechanism of electrostatic interaction between microorganisms and
NP have been also reported as antibacterial mechanisms in other nanoparticles [25,26].
However, ROS generation in ZnO is treated as a special major mechanism of antibacterial
activity. ROS are generated according to a stepwise mechanism such as bacterial surface
adsorption, electron/hole pair generation, oxygen/water reaction with the generated pair,
and formation of various intermediates [27]. In addition, direct (ROS generation inside
bacterial cells) and indirect (ROS generation outside bacterial cells) methods for ROS
generation have been reported [28].

In a previous study, we confirmed that various reactive oxygen species, ROS (·OH, ·O2−,
and H2O2), were generated from ZnO nanoplates, and it was revealed that ·O2−radicals
were more important to antibacterial performance than ·OH radicals [29]. Moreover, it was
also found that oxygen vacancies have an important effect on ROS generation. However,
it has not been clarified whether oxygen vacancies in ZnO nanoplates always have a posi-
tive effect on antibacterial performance, and what degree of oxygen vacancies is the most
ideal. It is very difficult to reveal this, but there is no doubt that it is very interesting and
meaningful. Therefore, this study attempted to synthesize ZnO nanoplates whose particle
shapes were constantly controlled by fixing the capping agent NaOH at 4.0 M and changing
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the crystallization temperature to 50, 100, 150, and 200 ◦C. Moreover, we wanted to find out
what effect the minute oxygen vacancies in these particles have on the antibacterial activity
against gram-negative and gram-positive bacteria. In addition, it was investigated how the
light-induced charge separation and photoluminescence characteristics change due to the
oxygen vacancies introduced into the ZnO nanoplates, and how the antibacterial performance
changes accordingly.

The main objective of this study is to investigate the potential of oxygen-defective ZnO
nanoplates as a photocatalyst for the enhanced degradation of MB and as an antibacterial
agent. Specifically, the study seeks to evaluate the performance of this photocatalyst in com-
parison to conventional systems that are currently used for dye wastewater treatment and
antibacterial applications in various industries. The study aims to provide a comprehensive
understanding of the mechanisms underlying the enhanced photocatalytic and antibacterial
activity of the oxygen-defective ZnO nanoplates, which will be achieved through a series
of experiments and analyses. The results of these experiments will be used to evaluate
the potential of the photocatalyst for real-world applications, such as in the treatment of
industrial dye wastewater and in the development of novel antibacterial agents. The study
will also aim to identify the optimal conditions for the synthesis of oxygen-defective ZnO
nanoplates and to determine the factors that influence their performance, such as the size
and morphology of the nanoplates, the concentration of the photocatalyst, and the intensity
and wavelength of the light source used for the photocatalytic reaction. Overall, this study
aims to contribute to the development of more efficient and sustainable systems for the
treatment of dye wastewater and the prevention of bacterial infections by investigating
the potential of oxygen-defective ZnO nanoplates as a promising alternative to current
conventional systems.

2. Results and Discussion
2.1. Physical and Chemical Properties of ZnO Nanoplates

An XRD pattern of ZnO prepared using a hydrothermal process is shown in Figure 1a.
All crystals were found to have hexagonal wurtzite structures in the XRD pattern [30], and
no other crystalline phases were observed. Furthermore, as crystallization temperature
increased, the position of peaks did not change but their intensity did, especially that of the
(101) plane [31]. In the TEM image of ZnO-50 synthesized at 50 ◦C in Figure 1b, a mixture
of sheet and thin rod shapes was seen. In particular, it is seen that the rod particles are
aggregated like leaves toward the center. Perhaps, after the sheet particles are wound and
turned into thin rod particles, these rod particles stick to each other sideways and grow into
plate particles. All of the ZnO crystals obtained at temperatures above 100 ◦C exhibited
a plate shape. As the crystallization temperature increased, the particles agglomerated
with each other and slightly increased in size. This phenomenon was also seen in the SEM
image of Figure 1c, and larger and distinct rhombic plates are aggregated in the ZnO-200
nanoplates than in the ZnO-100 nanoplates.

Furthermore, the ZnO nanoplate structures were confirmed by the HR-TEM analysis
presented in Figure 2a. A SAED pattern and corresponding identified lattice fringes
associated with ZnO from Figure 2b–d appeared with the interplanar distances of 0.260,
0.162, and 0.141 nm, which are ascribed to the (001), (110), and (200) plane of the ZnO
phases. ZnO found a pure type of nanoplates clearly represented by elemental mapping.
Figure 2e shows the elements used in the synthesis of ZnO, which are zinc and oxygen.

In Figure 3a, high-resolution XPS Zn2p and O1s spectra from ZnO-50 and ZnO-200
nanoplates are compared. The Zn2p spectrum in the ZnO particle was separated into
two peaks attributed to Zn2p1/2 and Zn2p3/2, located at about 1044 and 1021 eV [32].
In the ZnO-200 nanoplates, the Zn 2p peak was slightly shifted toward higher binding
energies. This means that the ZnO-200 nanoplates are coordinated with more oxygen
than the ZnO-50 nanoplates, indicating that more oxygen vacancies exist in the ZnO-50
nanoplates [33]. Perhaps because of the low crystallization temperature, the wurtzite
structure of ZnO was not completely formed in the ZnO-50 nanoplates, resulting in large
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O deficiency. Observations indicate that the O 1s spectra are asymmetric; therefore, each
spectrum comprises three peaks located at 529.93 eV, 531.32 eV, and 531.9 eV [34,35]. It was
observed from the XPS spectra that OL peak at 529.93 eV corresponds to O2− ions on the
wurtzite structure of the Zn2+ ion array, which are bonded with either Zn atoms [36].The OV
peak centered at 531.32 eV is usually assigned to O2− in oxygen-deficient sites within the
ZnO matrix, which is indicative of the corresponding oxygen vacancy concentration [37].
The OC peak located at 531.9 eV is ascribed to some chemisorbed oxygen components in
the form of H2O, –CO3, and OH− groups [38]. As a result, the oxygen defect was found to
be much greater in ZnO-50, while in ZnO-200, the oxygen defect decreased and the area
of Oc increased. This confirms that the oxygen defect decreased in ZnO-200 compared to
ZnO-50.The peaks in the ZnO-50 nanoplates shifted slightly toward lower energy, and the
peak area of Zn-OH in particular increased slightly. This is related to OH groups adsorbed
on the surface of ZnO-50 nanoplates, or to O vacancies in the Zn-O lattice [39]. As a result of
quantitative analysis, it was confirmed that the Zn:O abundance ratio in ZnO-50 nanoplates
was 52.08(1):47.92 (0.92), indicating about 8% of O vacancies, and the Zn:O abundance ratio
in ZnO-200 nanoplates was 51.76(1):48.24 (0.93), indicating the presence of about 7% of O
vacancies.
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Figure 3b shows the FT-IR spectrum of the ZnOnanoplates. The bands located at 450
and 560 cm−1 seen in all samples correspond to the Zn-O-stretching vibration mode in the
ZnO crystal [40] and became sharper as the crystallization temperature increased. On the
other hand, the OH-bending and stretching vibration modes appeared cleanly at 1620 and
3420 cm−1 [41]. As the crystallization temperature increased, the OH-bending mode had no
tendency, but the OH-stretching mode became smaller. This means that a lot of Zn(OH)2 or
Zn(OH)4

2- phases on the crystal surface disappeared, indicating that as the crystallization
temperature increased, the number of ZnO surface defects decreased. Figure 3c shows the
Raman spectra of ZnO-50 and ZnO-200 nanoplates. Raman spectroscopy is a powerful
tool for analyzing structural defects. The space group P63mc of wurtzite ZnO has six
Raman-active optical phonon modes in the center of the Brillouin zone with Γopt = 2A1
+ 2E1 + 2E2 [42]. Here, E1, E2 and A1 are the first-order Raman active modes, the E1 and
A1 polar modes are divided into longitudinal optical (LO) and transverse optical (TO)
components, and finally there are low and high E2 non-polar modes. For both ZnO, peaks
appeared in the low-frequency region of 334, 386, and 443 cm−1 [43]. The peak at 334 cm−1

is related to multiphoton processes and is assigned E2(high)-E2(Low) arising from zone
boundary phonons. The peaks at 386 and 542 cm−1 correspond to the A1(TO) mode and
are caused by some defects such as Zn interstitials and oxygen vacancies. A sharp and
noteworthy peak at 443 cm−1 is assigned to the high mode of E2. This is the strongest
mode in the wurtzite crystal structure and is due to the motion of oxygen atoms in the ZnO
lattice. Peaks at 588, 676, and 690 cm−1 are characteristic of the E1(LO) mode caused by
lattice defects or metal doping, and are also interpreted as signs of oxygen deficiency [44].
From these results, it was confirmed that large Zn interstitial defects and small oxygen
vacancies exist in the Zn-200 nanoplates, whereas large Zn interstitial defects and large
oxygen vacancies exist in the Zn-50 nanoplates.
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2.2. Spectroscopic Characteristics of Synthesized ZnO Nanoplates

In Figure 4a, the DRS-UV-visible absorbance peaks of the ZnO nanoplates show a
maximum at about 380 nm. The optical bandgap energy (Eg) of ZnO was estimated from
the Tauc plot [45], as shown in Figure 4b. The calculated band gaps of the ZnO-50, ZnO-100,
ZnO-150, and ZnO-200 nanoplates were 3.23, 3.22, 3.21, and 3.19 eV, respectively, and the
band gap narrowed as the crystallization temperature increased. In the XPS-VB curve
of Figure 4c, the VBM (VB maximum) of the ZnO-50 and ZnO-200 nanoplates was 2.65
and 2.50 eV, respectively. Subtracting the band gap obtained in Figure 4b from these
values, the location of the CB minimum (CBM) is determined to be −1.58 and −0.69 eV
for ZnO-50 and ZnO-200 particles, respectively. From these results, the band potential
energy positions of ZnO-50 and ZnO-200 nanoplates can be drawn as shown in Figure 4d.
Although the band gap decreased slightly in the ZnO-200 nanoplates compared to the
ZnO-50 nanoplates, it could be negligible. However, the VBM energy level shifted further
downward by the oxygen deficiency (Vo) in ZnO-50 nanoplates [46]. At the same time,
the CBM energy position also moved downward. However, since the energy bands in the



Catalysts 2023, 13, 567 7 of 20

two oxygen-deficient ZnO nanoplates contained oxidation-reduction potentials for water
decomposition, it seems reasonable to generate ROS in the photoactive reaction.
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In the PL spectrum of Figure 5a, the ZnO nanoplates exhibited large near UV emis-
sion and broad long-wavelength emission bands. In general, the intensity, location, and
proportion of PL imply the presence of major defects such as zinc vacancies, single and
double ionized oxygen vacancies, and lattice oxygen vacancies [47]. It has recently been
shown that changes in oxygen sites in ZnO nanoplates lead to changes in antibacterial
properties [48]. In this work, peaks appearing at 450 and 470 nm are related to oxygen
vacancies or defects of interstitial zinc ions, and emission at 490 nm is due to the transition
between photoexcited holes and single ionized oxygen vacancies [49]. As the crystal-
lization temperature was lowered, the intensity of the overall peaks increased, and the
oxygen vacancies became larger. On the other hand, to describe the exciton lifetime in ZnO
nanoplates, time-resolved photoluminescence (TRPL) is measured as shown in Figure 5b.
The difference in decay constant value between the two particles was 2527 ns, indicating
a longer decay rate in the ZnO-200 nanoplates. This means that fast recombination of
photo-generated carriers occurs in ZnO-50 nanoplates with fast decay constants, and slow
recombination of photo-generated carriers in ZnO-200 nanoplates with slow decay. The
slow recombination may be due to oxygen vacancy acting as an electron trapping center
for carrier relaxation. However, excessive oxygen vacancy seems to have the opposite
effect [50]. Meanwhile, in Figure 5c, the intensity of the photocurrent density increased
in the order of ZnO-50 < ZnO-100 = ZnO-150 < ZnO-200 nanoplates. When irradiated
with visible light, the photocurrent density is the highest and most stable in ZnO-200
nanoplates, which means that ZnO-200 nanoplates have a better visible light response and
more efficient charge separation than other particles. Moreover, the time-dependent decay
rate of the photocurrent density, shown in Figure 5d, remained stable for all particles up
to 330 s. The ZnO-200 nanoplates, in particular, increased slightly with time. In the end,
it was found that excessive oxygen vacancies that were not compensated could become
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stronger carrier recombination centers under light irradiation and hinder the separation of
photocharges [51].
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In order to exhibit photoactivity, ROS release during photoreaction is required, and
in particular, the generation of ·OH and ·O2− radicals induced by water adsorption is
very important. Therefore, as shown in Figure 6, the water desorption according to the
temperature change in the obtained ZnO nanoplates was observed through the TGA curve.
At this time, the activation energy for water desorption was calculated using the Ozawa
method [52]. In Figure 6a, as the crystallization temperature increased, the TGA curves on
ZnO nanoplates became more widely distributed forward high temperatures. In Figure 6b,
high water desorption activation energy means good water adsorption capacity on the ZnO
crystal surface. The water desorption activation energy in ZnO-200 nanoplates was about
15 kJ/mol higher than that in ZnO-50 nanoplates. Therefore, it was predicted that more
water would be adsorbed on the surface of ZnO-200 nanoplates, and more ROS would be
generated during the photocatalytic reaction.
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2.3. Photocatalytic and Bactericidal Activity in Synthesized ZnO Nanoplates

In order to compare the photocatalytic activity of ZnO nanoplates, methyl blue
(MB) decomposition experiments were performed per hour for each particle as shown in
Figure 7a-1. The initial concentration of MB was fixed at 100 mg/L, and the decomposition
of MB over time was confirmed as a peak decrease in the absorption region of 600–700 nm.
In the ZnO-50 nanoplates, the absorption peak of MB was still large even after 5 h, indicat-
ing that the decomposition was still less. However, in ZnO-100 nanoplates, the absorption
peak of MB rapidly decreased with time. Moreover, in the case of ZnO-200 nanoplates,
the rate of elimination was faster, and the MB absorption peak almost disappeared after
5 h, and MB color was hardly seen. The change in MB removal concentration per hour
for the 5 h reaction is shown in Figure 7a-2. The results indicate that synthesized ZnO
nanoparticles demonstrated good photocatalytic activity against MB dye under visible light
and the results are compared with earlier reports (Table 1).When ZnO nanoplates have too
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many oxygen vacancies, the shallow trapping effect that enhances photocatalytic activity
is diminished, and the deeper trapping states become more prominent. This can result in
increased recombination of photo-generated electron-hole pairs, leading to reduced photo-
catalytic activity. Furthermore, too many oxygen vacancies can create more mid-gap states,
which can trap both electrons and holes and can increase the rate of charge recombination.
This results in decreased photocatalytic activity and poor efficiency. In addition, excessive
oxygen vacancies can also lead to a reduction in the surface area available for photocatalytic
reactions. This is because the formation of oxygen vacancies can cause the nanoplates to
aggregate, leading to a decrease in surface area and a reduction in the number of active
sites available for catalytic reactions.
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In summary, while oxygen vacancies can be beneficial for photocatalytic activity,
excessive amounts of oxygen vacancies can have negative impacts on the photocatalytic
activity. The optimal amount of oxygen vacancies may depend on the specific morphology
and size of the ZnO nanoplates, as well as other factors such as the reaction conditions and
the nature of the reactants [53,54]. Therefore, it is important to carefully control the oxygen
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vacancies and to optimize the conditions for photocatalytic reactions to achieve the best
possible activity.

It can be seen that MB is decomposed more quickly in ZnO-200 nanoplates with
fewer oxygen vacancies. MB is ionized into Na+ and C14H14N3O3S anions in aqueous
solution. In the end, during the photoreaction, when Na+ is adsorbed on the CB of ZnO as
an electron scavenger, more activated ·OH radicals in ZnO-VB are generated to decompose
the C14H14N3O3S anion. The ZnO photocatalyst produces hydroxyl radicals (•OH) when
the water molecules are exposed to UV light and ZnO photocatalyst. In a process known as
oxidation, these hydroxyl radicals react with MB to lead to its decomposition. The reaction
involves the transfer of an electron from MB dye to the hydroxyl radical, forming a MB
radical cation and a hydroxide ion. Further oxidation of the methylene blue radical cation
occurs when it reacts with another hydroxyl radical, decomposing it into smaller, less
colored molecules. Similar mechanisms are reported by other researchers [55,56]. Overall,
the reaction can be represented as:

Methylene Blue + •OH→Methylene Blue•+ + OH−

Methylene Blue•+ + •OH→ Decomposition products

Table 1. Comparative study of photocatalytic degradation of MB under visible light.

Catalyst Condition Light Source Degradation Ref.

ZnO MB 100 ppm
100 mW/cm2 xenon

lamp (One-sun
region)

5 h 95% This study

ZnO MB 1.25 ppm UV lamp 7 h 100% [57]
Ag-ZnO MB 20 ppm 100 W Xenon lamp 4 h 96% [58]
Fe-ZnO MB 20 ppm 150 W mercury light 3 h 92% [59]

Cd-ZnO MB 6 ppm Visible light
irradiation 2 h 95% [60]

N-doped ZnO MB 10 ppm AM 1.5 simulated
solar light 2 h 99% [61]

Meanwhile, the antibacterial activity of ZnO nanoplates against the pathogen Micro-
coccus luteus and the marine bacterium Bacillus manliponensis was measured. Figure 7b
shows the inhibition diameter, which means antibacterial performance, and summarized
in the table. Antibacterial array disks show zones of inhibition for all ZnO samples. The
inhibition diameters for the Micrococcus luteus pathogen were 18.2, 20.7, 22.4, and 24.6 mm
for the ZnO-50, ZnO-100, ZnO-150, and ZnO-200 nanoplates, respectively. The inhibition
diameters for the marine bacterium Bacillus manliponensis were 11.6, 12.5, 13.4, and 14.0
mm for the ZnO-50, ZnO-100, ZnO-150, and ZnO-200 nanoplates, respectively. This result
suggests that ZnO nanoplates exhibit stronger bactericidal activity against pathogens than
marine bacteria. Despite the fact that photocatalysts have a lower antibacterial activity
than standard drugs, their unique properties, including selectivity, stability, versatility, and
environmental friendliness, make them an attractive choice for antibacterial applications
across many fields.

The antibacterial and sterilizing effects were observed per hour according to the pres-
ence or absence of light (400 nm LED) for Staphylococcus aureus, a gram-positive bacterium,
and Escherichia coli, a gram-negative bacterium, for ZnO-200 nanoplates showing the best
photocatalytic performance. The results are presented in Figure 8a,b. First, for the control
group without a catalyst, it was confirmed that the bacteria tended to continually grow
both when light was irradiated and when light was not irradiated. In particular, it can be
seen that the bacteria are partially sterilized by the light, since the bacteria grow less in the
presence of light than when there is no light. In addition, the fertility of gram-negative bac-
teria, Escherichia coli, was stronger than that of gram-positive bacteria, Staphylococcus aureus.
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On the other hand, in the presence of ZnO-200 nanoplates, 86.67% of sterilization effect
was shown after 3 h when light was not irradiated on Staphylococcus aureus, a gram-positive
bacteria. On the other hand, when irradiated with light, a high bactericidal activity of
96.95% was shown. Regarding Escherichia coli, which is a gram-negative bacterium, 74.66%
of sterilization effect was obtained after 3 h when light was not irradiated, and 95.83% of
bactericidal activity was obtained after 3 h when light was irradiated. This result means that
gram-positive bacteria with thin cell walls are much easier to sterilize than gram-negative
bacteria with thick cell walls, and that when irradiated with light, the bactericidal effect is
higher than when light is not irradiated. As shown in Scheme 1, three mechanisms have
been proposed for the antibacterial activity of ZnO: (1) the release of antibacterial ions from
nanoparticles, (2) the interaction between nanoparticles and microorganisms, and (3) the
generation of ROS by light irradiation [24].The photocatalytic reaction and antibacterial
mechanism on ZnO nanoplates have already been reported in a previous study [29]. What
we want to emphasize in this study is that the generation of ROS was rather suppressed in
ZnO-50 nanoplates with excessive defects, and eventually the antibacterial performance
was reduced. Still, we propose that the antibacterial activity is related to ROS generation:
when there is a defect in the particle crystal, the defect can act as an electron trapper to
facilitate the flow of photoinduced charges and eventually generate more ROS, resulting
strong antibacterial properties. However, too many oxygen vacancies cause instability of
the crystal and there is a risk of decreasing activity over time, and too many vacancies can
act as exciton recombination sites and hinder ROS generation [62].

Catalysts 2023, 13, x FOR PEER REVIEW 13 of 22 
 

 

The antibacterial and sterilizing effects were observed per hour according to the 
presence or absence of light (400 nm LED) for Staphylococcus aureus, a gram-positive 
bacterium, and Escherichia coli, a gram-negative bacterium, for ZnO-200 nanoplates 
showing the best photocatalytic performance. The results are presented in Figure 8a,b. 
First, for the control group without a catalyst, it was confirmed that the bacteria tended to 
continually grow both when light was irradiated and when light was not irradiated. In 
particular, it can be seen that the bacteria are partially sterilized by the light, since the 
bacteria grow less in the presence of light than when there is no light. In addition, the 
fertility of gram-negative bacteria, Escherichia coli, was stronger than that of gram-positive 
bacteria, Staphylococcus aureus. On the other hand, in the presence of ZnO-200 nanoplates, 
86.67% of sterilization effect was shown after 3 h when light was not irradiated on 
Staphylococcus aureus, a gram-positive bacteria. On the other hand, when irradiated with 
light, a high bactericidal activity of 96.95% was shown. Regarding Escherichia coli, which 
is a gram-negative bacterium, 74.66% of sterilization effect was obtained after 3h when 
light was not irradiated, and 95.83% of bactericidal activity was obtained after 3h when 
light was irradiated. This result means that gram-positive bacteria with thin cell walls are 
much easier to sterilize than gram-negative bacteria with thick cell walls, and that when 
irradiated with light, the bactericidal effect is higher than when light is not irradiated. As 
shown in Scheme 1, three mechanisms have been proposed for the antibacterial activity 
of ZnO: (1) the release of antibacterial ions from nanoparticles, (2) the interaction between 
nanoparticles and microorganisms, and (3) the generation of ROS by light irradiation 
[24].The photocatalytic reaction and antibacterial mechanism on ZnO nanoplates have 
already been reported in a previous study [29]. What we want to emphasize in this study 
is that the generation of ROS was rather suppressed in ZnO-50 nanoplates with excessive 
defects, and eventually the antibacterial performance was reduced. Still, we propose that 
the antibacterial activity is related to ROS generation: when there is a defect in the parti-
cle crystal, the defect can act as an electron trapper to facilitate the flow of photoinduced 
charges and eventually generate more ROS, resulting strong antibacterial properties. 
However, too many oxygen vacancies cause instability of the crystal and there is a risk of 
decreasing activity over time, and too many vacancies can act as exciton recombination 
sites and hinder ROS generation [62]. 

 
Figure 8. Sterilization capacity of ZnO-200 catalyst against (a) Staphylococcus aureus; and (b) Esche-
richia coli. 

Figure 8. Sterilization capacity of ZnO-200 catalyst against (a) Staphylococcus aureus; and (b) Escherichia
coli.

Electrochemical Impedance Spectroscopy (EIS) is a powerful tool for investigating
charge carrier trapping, transport, and mobility in oxygen-deficient ZnO samples. The
impedance spectrum obtained from EIS can provide information about the resistance and
capacitance of the material related to charge transport characteristics. Analysis of the
impedance spectrum can identify the electrical properties related to charge carrier trapping,
such as the capacitance and resistance of charge trapping sites. In addition, impedance
spectrum analysis can reveal the mobility of charge carriers related to the charge transport
properties of the material.

To evaluate the charge transport dynamics of the sample, we performed an electro-
chemical impedance spectroscopy (EIS) test using a typical three-electrode system with a
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counter electrode Pt and a reference electrode RHE. The obtained Nyquist plot was fitted to
Randle’s equivalent circuit model, and the drawn semicircles represent the charge transfer
resistance.
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The smaller the radius of the Nyquist circle, the lower the charge transfer resistance,
and the size of the semicircle was smaller in the order of ZnO-50, ZnO-100, ZnO-150,
and ZnO-200 (Figure 9). As a result, the ZnO-200 sample showed the lowest resistance,
promoting the movement of surface electrons and facilitating the separation of photo-
generated electron-hole pairs, thereby enhancing photocatalytic activity. In other words,
an appropriate (not excessive) amount of oxygen vacancy on the surface acts as a charge
transport channel, improving the separation of electrons.

To estimate the charge transfer pathways on the surface of ZnO-50 and ZnO-200
nanoplates, spin-trapping ESR analysis using DMPO as a free radical trapping agent was
performed. ·OH and ·O2− radicals were detected over time (0, 10, 20, and 40 min), and
the results are shown in Figure 10a,b. In Figure 10a-1, a small signal corresponding to the
DMPO-·OH radical was observed as soon as the light was irradiated. The signal increased
significantly with increasing irradiation time. In the ZnO-200 nanoplates in Figure 10b-1,
the signal corresponding to the DMPO-·OH radical increased more significantly than in
the ZnO-50 nanoplates. This means that more OH radicals are generated on the surface
of ZnO-200 nanoplates than on the surface of ZnO-50 nanoplates. That is, when electrons
present in VB of ZnO-200 nanoplates are excited to CB in the presence of light, ·OH radicals
are generated in VB-holes, and the amount of radicals generated increases over time. In
Figure 10a-2, the DMPO-·O2− signal from ZnO-50 nanoplates was observed more clearly
than that from DMPO-·OH. Moreover, the signal intensity increased more significantly with
the irradiation time. Moreover, this tendency was more evident in the ZnO-200 nanoplates
in Figure 10b-2. This means that more electrons excited from VB of ZnO-200 nanoplates
were collected to CB under light irradiation. The fact that the DMPO-·O2− signal after
40 min in both particles was stronger than that of DMPO-·OH signal indicates that ·O2−

radicals are generated more effectively than ·OH radicals on the surface of ZnO. From
these results, we determined that more ROS were generated on ZnO-200 nanoplates with
appropriate defects than on the surface of ZnO-50 nanoplates with excessive defects, which
influenced the photocatalytic activity and antibacterial performance.
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3. Materials and Method
3.1. Materials

All chemicals used were of analytical grade. Zinc acetates (Zn(CH3COO)2•2H2O,
99.9%, 5,5-Dimethyl-1-pyrroline N-oxide (≥97%) were purchased from Sigma Aldrich
(Milan, Italy). Sodium hydroxide (98%) was purchased from Junsei Co., Tokyo, Japan).
Water of reagent grade was produced with a Millipore purification pack system (MilliQ
water, Sigma Aldrich, Mailan, Italy).

3.2. Synthesis of ZnO Nanoparticle

The synthesized ZnO nanoplates were synthesized by the hydrothermal method as
shown in Scheme 2a. A total of 1.0 M of zinc acetate (Zn(CH3COO)2·2H2O, 99.9%, Sigma
Aldrich, Mailan, Italy)was dissolved in deionized water and stirred at room temperature
for 1 h. To this, 4.0 M NaOH (98%, Junsei Co., Tokyo, Japan) was added and stirred for 1
h until uniform. After transferring these solutions to an autoclave, they were put into an
electric furnace set at 50, 100, 150, and 200 ◦C, respectively, and heat-treated for 4 h. Finally,
after cooling the electric furnace to room temperature, the autoclave lid was opened to
filter the powder particles. These filtered particles were washed three times with deionized
water to obtain four types of ZnO powders: ZnO-50, ZnO-100, ZnO-150, and ZnO-200.
These particle powders were used as catalysts after drying for 12 h in a drying oven set at
50 ◦C.
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The mechanism of oxygen vacancy formation in ZnO during thermal synthesis in
high-pH environments is a complex process that is not yet fully understood. However,
some studies suggest that the formation of oxygen vacancies in ZnO during the synthesis
process is closely related to the pH and temperature of the reaction solution. ZnO is
an ionically bonded crystal that can form oxygen deficiency structures called “oxygen
vacancies”. Oxygen vacancies are defect structures in which oxygen atoms are missing
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from the ZnO structure, and they have a significant impact on the material properties and
reactions.

In high-pH environments during hydrothermal synthesis, the concentration of hydrox-
ide ions in the reaction solution is high, which can react with ZnO to form zinc hydroxide
and promote the crystallization of ZnO. Additionally, at high temperatures, the crystallinity
of ZnO increases, while at low temperatures, the crystallinity decreases, which can lead
to the formation of oxygen vacancies at the grain boundaries. The mechanism of oxygen
vacancy formation in ZnO is still under investigation, but studies on the influence of
high-temperature oxygen atom mobility and defect formation in the crystal structure can
provide important theoretical knowledge for understanding the formation and properties
of these defects.

A hydrothermal reaction, as we are aware, is a chemical reaction using water to create
water in a reactivated pressure vessel, an operation that requires high temperatures and
high pressures currently. Suctioned pressure vessels exert different pressures depending on
their temperature: 0.12 atm for 50 ◦C, 1 atm for 100 ◦C, 4.13 atm for 150 ◦C, and 15 atm for
200 ◦C. With an increase in temperature, pressure increases in the closed vessel, and reaction
rates increase with increase in temperature in the vessel. High-temperature ZnO has a
much larger diameter than ZnO obtained at this degree of purity, which leads to enhanced
nucleation and growth, leading to rapid growth both lateral and axial. Moreover, high pH
environments usually contain many hydroxide ions, which can enhance crystallinity and
enhance crystallization. Radicals may form, however, if a hydroxide ion starts to lag after
arriving over a long time at high temperatures. ZnO crystallization can be improved with
these radicals by removing atoms from crisis [63].

3.3. Characterizations

The crystal structure of the synthesized ZnO was confirmed using X-ray diffrac-
tion (XRD, Miniflex 600, Rigaku, Tokyo, Japan, Cu Kα source), and the presence of or-
ganic molecules present on the ZnO surface was confirmed using Fourier Transform In-
frared (FT-IR) spectroscopy (Nicolet iS10 spectrometer, Thermo Fisher Scientific, Waltham,
Massachusetts, USA). Absorbance was determined by diffuse reflectance spectroscopy-
ultraviolet (DR)-UV-visible spectrophotometer (Neosys-2000, SCINCO, Daejeon, Korea)
Korea. Photoluminescence (PL) spectra were taken using a PerkinElmer fluorescence
spectrophotometer with a He-Cd laser source with an excitation wavelength of 320 nm.
Time-resolved photoluminescence (TRPL, Carl Zeiss, Oberkochen, Germany) measure-
ments were performed using a confocal microscope (MicroTime 200; PicoQuant GmbH,
Berlin, Germany) with an excitation wavelength of 360 nm. Photocurrent density was
confirmed using a Sun 2000 solar simulator (IviumStat, ABET Technologies, 400 nm LED).

In the photocatalytic process, the main reactive species (radicals and holes) were
detected through radical scavenging experiments. To detect OH and·O2− radicals, 5,5-
Dimethyl-1-pyrroline N-oxide (DMPO) was used as a free radical scavenger, and a spin
capture ESR assay was performed.

3.4. Photocatalytic Activity and Antibacterial Assay

As shown in Scheme 2b, the photocatalytic activity of ZnO was evaluated in a photore-
action system using the decomposition of MB dye. Under a 100 mW/cm2 xenon lamp at
room temperature, 1 g/L of ZnOphotocatalyst was added to an aqueous solution contain-
ing MB dye at a concentration of 100 mg/L. Before light irradiation, the solution containing
the ZnO catalyst was left in the dark for 30 min to reach the dye adsorption–desorption
equilibrium on the ZnO surface. The suspension was then exposed to a xenon lamp at a
reactor-lamp distance of 5.0 cm to decompose the dye. During the dye removal reaction,
the solution was continuously stirred. For optical measurement of remaining MB dye, the
dye was diluted (1/10 times) with de-ionized water. Each sample was taken at regular time
intervals, and immediately centrifuged at 4000 rpm for 20 min to filter out photocatalyst
particles and analyzed. Finally, the absorbance of the dye in the photocatalyst-filtered



Catalysts 2023, 13, 567 17 of 20

supernatant was recorded at the maximum absorption wavelength of the dye using a
UV-5100 spectrophotometer. The concentration of MB was calculated based on a calibration
curve drawn before the experiment at a wavelength of 650 nm. The dye removal rate (η) is
calculated as [64]:

η = (C0 − Ct)/C0 × 100% (1)

where C0 and Ct are the dye concentrations after self-photolysis and the different irradiation
times, respectively.

Firstly, antibacterial activity was evaluated against the pathogen Micrococcus luteus
and the marine bacterium Bacillus manliponensis as in Scheme 2c-1. The antibacterial activity
of ZnOnanoplates was evaluated using Bauer Kirby’s agar disk diffusion method. Luria-
Bertani (LB) agar was weighed and dissolved in a warm water bath. Thereafter, it was
sterilized in an autoclave at 120 ◦C and a pressure of 15 lbs for 15 min. After cooling
the sterilized medium to 50 ◦C, 200 µL of the medium was poured into each petri dish,
sterilized under aseptic conditions, and allowed to solidify under laminar airflow. LB
broth was inoculated with pure cultures of Micrococcus luteus and Bacillus manliponensis and
stored for 24 h at 200 rpm on a rotary shaker at each 25◦C and 30 ◦C. The cell number was
adjusted to ~1 × 106 CFU/mL and plated onto LB agar plates. Discs of bacterial species
containing particles of ZnO (10 mg) dissolved in water were placed on each plate and
incubated at 37 ◦C. for 24 h. Antibacterial activity was evaluated by measuring the zone
of inhibitory (ZOI). The experiment was performed in triplicate and the ZOI diameter
values were averaged. Second, as in Scheme 2c-2, to quantitatively analyze the effect of
ZnO on overnight cultures on bacterial cells (typical gram-positive and gram-negative
bacteria, Staphylococcus aureus and Escherichia coli), bacteria were inoculated on LB medium
(~107 CFU) with or without ZnO nanoplates. The culture flasks were then placed in a
shaker incubator (200 rpm) for 0, 1, 2, or 3 h at 37 ◦C. In addition, the same operation was
performed while irradiating LED (400 nm) light. After a certain period of time, samples
were taken and serially diluted. Dilutions were spotted onto Muller Hinton Agar plates,
and colonies were counted as CFU after 24 h of incubation. Inoculation-free medium
containing no nanoparticles was used as a negative control. The bactericidal effect was
calculated using the following formula [65]:

C(%) = [(A − B)/A] × 100% (2)

Here, C is the antibacterial and bactericidal effect, A is the average number of colonies
formed in the control group (CFU/mL), and B is the average number of colonies formed in
the experiment (CFU/mL).

4. Conclusions

In this study, we examined the relationship between oxygen vacancies in ZnO crystals
and antibacterial performance. In order to express oxygen vacancies, four ZnOnanoplates
were prepared by a hydrothermal process at different synthesis temperatures. These
exhibited a nanoplate shape having a wurtzite crystal structure. As the crystallization
temperature increased, the XRD peaks became sharper. Based on XPS, Raman, and PL
spectra, it was predicted that the lower the crystallization temperature, the larger the defect
in the crystal. The oxygen deficiency between the ZnO-50 and ZnO-200 nanoplates was
small by about 1%, but the optical properties were significantly different. A ZnO-200
nanoplate with a few defects had the lowest PL intensity, but its photocurrent density
was the highest, and it remained stable for 330 s. As a result, ZnO-200 nanoplates with
a few vacancies show low electron recombination and easy charge transfer. Moreover,
·OH and ·O2− radicals generated on the surface of ZnO were generated more in ZnO-200
nanoplates with fewer vacancies than in ZnO-50 nanoplates with many vacancies. In the
end, this study concluded that oxygen vacancy in ZnO nanoplates with appropriate oxygen
vacancies acted as an electron capture role, favoring charge transfer, and suppressing
exciton recombination, resulting in excellent antibacterial and photoactive performance.
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However, even in this study, it was difficult to determine with certainty how much of the
oxygen vacancies in the crystal were appropriate and further research will be needed.
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