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Abstract: In this study, Anacardium occidentale (A. occidentale) nut skin waste (cashew nut skin waste)
was used as a raw material to synthesize functionalized carbon nanodots (F-CNDs). A. occidentale
biomass-derived F-CNDs were synthesized at a low temperature (200 ◦C) using a facile, economical
hydrothermal method and subjected to XRD, FESEM, TEM, HRTEM, XPS, Raman Spectroscopy,
ATR-FTIR, and Ultraviolet-visible (UV–vis) absorption and fluorescence spectroscopy to determine
their structures, chemical compositions, and optical properties. The analysis revealed that dispersed,
hydrophilic F-CNDs had a mean diameter of 2.5 nm. XPS and ATR-FTIR showed F-CNDs had a
crystalline core and an amorphous surface decorated with –NH2, –COOH, and C=O. In addition,
F-CNDs had a quantum yield of 15.5% and exhibited fluorescence with maximum emission at 406 nm
when excited at 340 nm. Human colon cancer (HCT-116) cell assays showed that F-CNDs readily
penetrated into the cells, had outstanding biocompatibility, high photostability, and minimal toxicity.
An MTT assay showed that the viability of HCT-116 cells incubated for 24 h in the presence of F-CNDs
(200 µg mL–1) exceeded 95%. Furthermore, when stimulated by filters of three different wavelengths
(405, 488, and 555 nm) under a laser scanning confocal microscope, HCT-116 cells containing F-CNDs
emitted blue, red, and green, respectively, which suggests F-CNDs might be useful in the biomedical
field. Thus, we describe the production of a fluorescent nanoprobe from cashew nut waste potentially
suitable for bioimaging applications.

Keywords: cashew nut skin; carbon nanodot; human colon cancer cell; cell viability; bioimaging

1. Introduction

Carbon nanodots (CNDs) [1], carbonized polymer dots [2], carbon quantum dots [3],
graphene quantum dots [4], and other nanoscale carbon particles with dimensions of
~≤10 nm are all regarded as carbon dots (CDs) and are considered a new class of fluorescent
carbon-based nanomaterials. Xu et al. accidentally discovered CDs in 2004 while purifying
carbon nanotubes [5]. Ever since, a wide range of CDs with various chemical and optical
properties have been produced using a number of different techniques. The characteristic
features of CDs, which include tunable fluorescence emission [6], aqueous dispersibility [7],
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chemical inertness [8], biocompatibility [9], and ease of functionalization [10], make them
powerful alternative semiconducting nanomaterials. Various biomedical utilities, such
as nanoplatforms for biosensors [11], bioimaging [12], drug delivery vehicles [13], and
gene transfer [14], are made possible by the ability of CDs to coexist with biological tissues
without causing adverse effects. Because of their high fluorescence quantum yields, CDs are
used as fluorescent probes in biological samples [15], and can be easily functionalized with
biomolecules such as peptides or antibodies. In addition, they have a low photobleaching
characteristic nature [16]. CDs are particularly useful for in vivo bioimaging and can be
functionalized for targeted drug delivery. Worldwide, one in every six deaths is caused by
cancer, which is the second most frequent cause of death. Uncontrolled cell growth is a main
characteristic of cancer. For the effective treatment of cancer, early diagnosis is essential.
Early cancer detection can help choose the best course of treatment and increase patient
survival. Important information about a disease’s course and a patient’s response to therapy
is provided by a diagnosis, which aids in modifying the patient’s treatment plan while
they are undergoing it [17]. The intriguing physicochemical and optical characteristics of
CDs have great potential in the diagnosis and treatment of cancer. Furthermore, CDs can
increase the efficacy and delivery of molecules because they are readily absorbed by cells,
but more research is required to determine their safety and efficacy for in vivo applications.

Regardless of the synthetic process used to produce nanomaterials, the production
of CDs can be categorized as top-down, bottom-up, or physical or chemical. In general,
physical techniques involving arc discharge [18], laser ablation [19], and electrochemical
etching [20] are hazardous to the environment and difficult to manage. Hydrothermal
(HT) [21], ultrasonic [22], microwave-assisted [23], thermal decomposition [24], and electro-
chemical [25] processes are examples of chemical methods. The HT approach is usually
used to produce CDs because it uses mild chemicals and is inexpensive. This approach
has been widely employed to prepare a variety of carbon compounds because HT syn-
thesis has negligible toxicological impact. Furthermore, HT conditions can cause reagent
solubility, enhance chemical and physical reactions, and enable carbonaceous structures to
develop. Conventionally, developing materials with high carbon contents, such as carbon
nanotubes, mesoporous carbon, graphene, and graphitic carbon compounds, requires high
temperatures (300–800 ◦C), whereas those produced by dehydration and polymerization
are produced at lower temperatures (<300 ◦C), and often possess various surface functional
groups after carbonization. In general, CNDs can be functionalized and doped with het-
eroatoms to enhance their fluorescence characteristics and quantum yields. Particularly, the
HT method has become more popular for the synthesis of functionalized CNDs (F-CNDs)
because it is a one-step procedure without additional oxidation and passivation, has gentle
reaction parameters, and requires inexpensive equipment.

CDs are noted for their photophysical characteristics, particularly their fluorescence
properties [26], which, like structure, morphology, and composition, are sensitive to the pre-
cursors and preparation techniques used [27]. In general, CDs are composed of crystalline
carbon cores and decorated with carboxylic acid, alcohol, and amine functional groups [28].
Several biosources, such as lemon juice [29], leaf extract [30], grape juice [31], honey [32],
hair [33], carrot juice [34], garlic [35], egg [36], betel leaf [37], and food waste [38] are used
as CD precursors.

It is generally known that the transitions between intrinsic states cannot fully account
for CD optical properties. The emission of many CDs, however, appears to be primarily
influenced by surface-related extrinsic contributions, such as emissions from surface defects
and surface charge traps. A proper passivation procedure is essential to produce highly
fluorescent CDs, and solvents and pH significantly impact CD fluorescence. Research goals
in the engineering area include tuning the photophysical and electrochemical properties of
CDs by altering ground and excited state properties [39] and modifying the form, chirality,
composition, size, and surface chemistry of CDs [40]. In the present study, we sought to de-
velop non-toxic, <10 nm sized CDs compatible with aqueous environments using Anacardium
occidentale (A. occidentale) nut skin waste as a precursor for the synthesis of F-CNDs.
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Cashew is the popular name for A. occidentale (AO), a member of the Anacardiaceae
family, and it is commonly grown in tropical areas of India, Brazil, and Africa. An essential
by-product generated during the processing of cashews is the testa (skin) of the cashew
kernel. The resulting testa is a potential candidate for commercial exploitation given that
cashew kernels are consumed worldwide on an annual basis in excess of 1,000,000 tonnes. It
is said to be an excellent source of hydrolyzable tannins. The cashew nut is a significant cash
crop worldwide. India produces and exports the most cashew kernels worldwide, making
up nearly 50% of all exports. A brown skin, known as testa, completely envelops cashew
nuts, and this skin is one of the best sources of hydrolyzable tannins such as catechin, epicat-
echin, and epigallocatechin [41,42]. The seed testa has the greatest proportion of phenolic
compounds that serve as a barrier of protection for the cotyledon in seeds. Furthermore,
it also contains high levels of three phenolic acids, viz. syringic, gallic, and p-coumaric
acids [43], which confer significant antioxidant activity [44]. In order to understand the
possible mechanisms behind the formation of F-CNDs, it is presumed that the testa of
cashew nuts consists of hydrolyzable tannins, phenolic acids, and various other molecules.
These constituents undergo the process of dehydration, polymerization, and carbonization
to form F-CNDs. We investigated AO biomass-derived F-CNDs synthesized using the
HT approach at a lower temperature of 200 ◦C. The best quality F-CNDs with significant
fluorescence properties were subjected to cellular imaging of human colon cancer cells.

2. Results and Discussion

FESEM images of F-CNDs at different magnifications are provided in Figure 1a–c.
F-CNDs formed a thin layer over the surface of the sample holder. EDX revealed the
elements present on the surface of F-CNDs (Figure 1d–g). Elements were identified by
color, e.g., green, red, and yellow indicated carbon (C), oxygen (O), and nitrogen (N),
respectively. O and N were distributed evenly over carbon substrates. EDX peaks shown
in Figure 1h confirmed the presence of carbon, nitrogen, oxygen, silicon, and platinum.
Silicon and platinum were attributed to sample preparation. For FESEM analysis, F-CNDs
were spin-coated on silicon wafers and sputtered with platinum.

HRTEM was used to determine F-CND morphology and sizes. The morphological
features of F-CNDs are well demonstrated by the micrographs in Figure 2a–c. F-CNDs
were observed as spherical, well-dispersed dark dots with a few aggregations. In the high
magnification, it is clear that F-CNDs were composed of graphitic layers with an interlayer
spacing of 0.21 nm (inset in Figure 2c). The particle size distribution of F-CNDs is shown as
a histogram in Figure 2d, which was derived via Gaussian particle-size-distribution fitting
and by measuring the sizes of 100 randomly selected particles in HRTEM images (Figure 2a.
F-CND sizes ranged from 1.5 to 4 nm with a mean particle size of ~2.5 nm).

X-ray powder diffraction was used to determine the crystal phases in F-CNDs.
Figure 3a shows that the XRD spectrum of F-CNDs contained a broad peak at 2θ = 23◦,
corresponding to the (0 0 2) carbon lattice [45]. The shoulder peak at 2θ = 43◦ was ascribed
to the (1 0 0) plane, and the corresponding d-spacing value was 0.21 nm, which agreed
well with TEM results. The absence of a sharp peak, corresponding to the formation of
an amorphous layer on F-CNDs, suggested the presence of surface functional groups.
F-CNDs were also subjected to Raman spectroscopy to determine the purity and degree
of graphitization of samples. The Raman spectrum of F-CNDs is shown in Figure 3b.
Two prominent peaks corresponding to carbon D and G bands were observed at 1360 and
1585 cm–1, respectively [46]. These bands correspond to the disorder (vibration of sp3

carbon atom) and graphitic nature (vibration of sp2 carbon atom) of carbon materials and
had an intensity ratio (ID/IG) of 0.63 [47,48], which confirmed a graphitic nature and a
few surface defects [48,49]. The deconvoluted Raman spectrum shown in Figure 3c was
used to assess the degree of graphitization in F-CNDs. Areas of the D and G bands (AD
and AG, respectively) were used to calculate the areal D to G ratio (AD/AG), which was
0.65. This value indicates the formation of graphitized F-CNDs with minimal surface disor-
der or few defects. Surface disorder could be due to functional groups or edge effects. An
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ATR-FTIR (attenuated total reflectance-Fourier transform infrared) spectrum of F-CNDs
provided information about surface functional groups (Figure 3d). The hydrophilic nature
of the F-CNDs was confirmed by the presence of N–H and O–H stretching vibrations at
3500–3100 cm–1 [50,51]. Peaks between 2870 and 2962 cm–1 were assigned to the C–H
asymmetric and symmetric stretch [52]. The presence of carboxyl/carbonyl groups was
confirmed by C=O and C=C stretching vibration peaks at 1670 and 1575 cm–1, respec-
tively [53]. The peaks between 1021 and 1120 cm–1 indicated the presence of the C–O–C
group, and peaks at 1445, 1260, and 1397 cm–1 were ascribed to–C–N, C–OH and bending
vibrations of N–H and O–H, respectively [54]. Out-of-plane stretching vibrations of C–H
were confirmed by an absorption band at 665 cm–1 and were attributed to the carboxylic
groups on F-CNDs [55]. These findings show that F-CNDs were composed of C, N, and O
and decorated with–COOH, –OH, and –C–N groups.
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X-ray photoelectron spectroscopy (XPS) was used to determine the elemental compo-
sition, type of bonding, and nature of functional groups. An XPS spectrum of F-CNDs is
provided in Figure 4a. The peaks observed at the binding energies (BEs) of 285, 400, and
532 eV indicated the presence of C 1 s, N 1 s, and O 1 s, respectively. Interestingly, the
atomic ratio of carbon to other elements was 3:1, and the atomic weight percentages of
carbon, nitrogen, and oxygen were 75, 4, and 21%, respectively. Furthermore, the high-
resolution XPS spectrum of C 1 s (Figure 4b) was deconvoluted into five distinct peaks.
The binding energy (BE) of the peak at 284.5 eV corresponded to the C=C/C–C bond of
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the sp2 and sp3 graphitic structure of F-CNDs [56,57]. The binding energy peak at 285.1 eV
corresponded to the pyridinic C–N–C bonds of F-CNDs. The presence of C–OH/C–O–C
was confirmed by the peak at 286.1 eV, corresponding to hydroxyl bound to carbon [58].
The peak at 287.0 eV corresponded to C=N/C=O bonds representing pyrrolic nitrogen
and carbonyl groups (–C=O) [58], whereas the presence of carboxyl groups (O=C–OH)
was confirmed by the peak at 288.5 eV [57]. Figure 4c depicts the XPS spectrum of N 1 s,
which exhibited three deconvoluted peaks signifying the presence of pyridinic nitrogen
(C–N–C), pyrrolic nitrogen (C–N–H), and graphitic nitrogen (C3–N bonds) with Bes of
399.2, 400.2, and 401.7 eV, respectively [59,60], and showing that F-CND carbon had been
doped with nitrogen. Notably, fluorescence results from the ability of excited nitrogen-
doped carbon to emit light. The chemical type and concentration of nitrogen, carbon
structure, and the conditions used for material synthesis can all affect the mechanism of
nitrogen-doped carbon fluorescence. However, in most cases, movements of nitrogen
electrons to lower energy levels are responsible. The XPS spectrum of O 1 s (Figure 4d)
had two deconvoluted peaks at BE 531.5 and 533.1 eV corresponding to C=O/C–OH and
C–O–C/O–C=OH, respectively [61]. These findings imply that the surfaces of F-CNDs
had –OH, –C–N, and –COOH groups, which provide hydrophilicity and dispersibility in
water. Furthermore, ATR-FTIR results were in line with XPS results.
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The optical properties of F-CNDs were evaluated using Ultraviolet-visible (UV–vis)
absorption and fluorescence spectroscopy. The UV–vis absorption spectrum of F-CNDs
(Figure 5a) exhibited two prominent peaks at 217 and 275 corresponding to π–π* transitions
of C–C/C=C and C=C, respectively. In addition, a shoulder was observed at 323, corre-
sponding to the n–π* transition of C=O or C=N [62]. The inset in Figure 5a demonstrates
the dispersion of F-CNDs in water and the difference between exposure to daylight or
365 nm UV light. F-CNDs were dispersed thoroughly in aqueous solvents, and UV expo-
sure resulted in a color change from pale yellow to cyan. This phenomenon was ascribed
to the different functional groups on F-CNDs.

F-CNDs exhibited maximum fluorescence at 406 nm when excited at 340 nm (Figure 5b);
that is, a Stokes shift of 66 nm occurred. The magnitude of a Stokes shift can significantly
impact the practical use of fluorescence. For instance, a significant Stokes shift can improve
biological imaging by lowering background noise and increasing the signal-to-noise ratio.
However, in some situations, such as in fluorescence resonance energy transfer, a slight
spectral overlap between excitation and emission spectra is required to enable energy
transfer between fluorescent molecules. The effects of fluorescence excitation wavelengths
in the range of 330–420 nm on the emission spectrum of F-CNDs are shown in Figure 5c.
Interestingly, the intensity of the emission spectrum increased upon increasing the excitation
wavelength from 330 to 340 nm but reduced upon increasing it from 340 to 420 nm, and
maximum emission intensity was observed at 340 nm. A normalized excitation-dependent
emission spectrum (Figure S1) implies a redshift in the 395 to 495 nm wavelength range.
The shift primarily results from electron transfer from the conjugated surface functional
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groups narrowing the energy gap. Presumably, if an emitting molecule or fluorophore
is in a different environment than the absorbing molecule, a redshift in emission could
also occur. In addition, some types of fluorescence, such as two-photon fluorescence, in
which two photons of lower energy are simultaneously absorbed, can also cause a redshift.
The photostability of F-CNDs was studied by continuously irradiating them with 365 nm
UV light at a power of 4 W for 0–120 min (Figure 5d). The intensities of the emission
spectra obtained were unchanged without any decay in emission, which confirmed the
photostability of F-CNDs. Furthermore, prolonged UV exposure for 120 min caused no
color change or precipitate formation (inset of Figure 5d). In addition, the quantum yield
of F-CNDs was calculated to be 15.5%. These characteristics of F-CNDs might be due to a
wide range of particle sizes, interactions caused by quantum confinement, and the presence
of different functional groups.
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In the carbon core of CDs, sp2-conjugated frameworks are typically accompanied by a
number of imperfect sp2 domains. These areas will generate or induce surface energy traps
that can serve as exciton capture sites, leading to fluorescence associated with the surface
defect state. Therefore, surface flaws are responsible for visible light multicolor emissions
from CDs. The band gap primarily controls the emission wavelength and is influenced
by a wide range of variables, including CD surface chemistry, synthesis techniques, and
edge configuration. Due to the epoxy, carboxyl, and hydroxyl groups present in the sp2
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clusters, which encompass an extensive spectrum of size distribution, various band gap
energies exhibit a variety of emission spectra. Two main types of mechanisms underlie
luminescence, namely, quantum confinement in nanometric structures and those involving
radiative relaxation of excited states attained by different functional groups within CDs [63].
Furthermore, pyrolytic processing and partial thermal decomposition of precursors cause
the formation of intermediate organic fluorophores [64]. Based on our results, we suggest
the emission properties of F-CDs are probably due to radiative transitions within or between
functional groups on the surfaces of F-CNDs.
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cantly impact the practical use of fluorescence. For instance, a significant Stokes shift can 
improve biological imaging by lowering background noise and increasing the signal-to-
noise ratio. However, in some situations, such as in fluorescence resonance energy trans-
fer, a slight spectral overlap between excitation and emission spectra is required to enable 
energy transfer between fluorescent molecules. The effects of fluorescence excitation 
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Figure 5. (a) UV-vis absorption spectrum (inset: photographic images of synthesized F-CNDs in
aqueous solution under daylight (left) and 365 nm UV light (right)); (b) fluorescence excitation and
emission spectra, and (c) fluorescence excitation-dependent emission spectra of synthesized F-CNDs.
(d) Fluorescence emission spectra of synthesized F-CNDs before and after continuous irradiation
with 365 nm UV light (inset: photographic images of synthesized F-CNDs in aqueous suspension
under 365 nm UV light before (0 min) and after (120 min) continuous irradiation with 365 nm UV).

F-CNDs emit controllable fluorescence, have appropriate quantum yields, high water
dispersibility, low cytotoxicity, and excellent biocompatibility, and do not exhibit photo-
bleaching. The produced F-CNDs were used for cellular imaging without modification.
MTT cell viability test results for HCT-116 cells (a human colon cancer cell line) at F-CND
concentrations of 0 to 200 µg mL–1 are shown in Figure S2. The bar chart provides a com-
parison between the viabilities of F-CND treated and untreated cells (controls) and shows a
slight decrease (from 100 to 97%) in cell viabilities with increasing concentration of F-CNDs
from 0 to 200 µg mL–1. This observation indicated good compatibility and low cytotoxicity
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of F-CNDs with a human colon cancer cell line, and cytotoxicity does not lead to cell death
even at higher concentrations of 200 µg mL–1, which is an essential property required for
F-CNDs to make them suitable for bioimaging of cells. To comprehend the dynamics, one
must first understand how F-CNDs become internalized within cells, tissues, or cellular
cytoskeleton components. Actin filaments, Microtubules, and intermediate filaments are
intracellular components that actively collaborate with cancer cells. Confocal microscopy
was used to investigate the bioimaging characteristics of F-CNDs in human colon cancer
cells. Figure 6 contains confocal microscopy photographs of HCT-116 cells, treated or not
with F-CNDs, taken using different wavelength filters, viz. 405 (blue), 488 (green), and
555 nm (red) after exposure to bright field illumination for 12 or 24 h. No emission was
observed from untreated HCT-116 cells, whereas fluorescence was observed from human
colon cancer cells treated with F-CNDs when 405, 488, or 555 nm filters were used, which
produced blue, green, and red emissions, respectively. The overlapping image was multi-
colored (Figure 6), indicating excitation wavelength-dependent emission characteristics.
Upon increasing the exposure time from 12 h to 24 h, enhancement in the intensity of
fluorescence is well observed from the image. It has been well established that F-CNDs are
easily internalized and uniformly distributed in human colon cancer cells. Therefore, these
results show that F-CNDs are candidate fluorescent nanoprobes for imaging human colon
cancer cells.

Catalysts 2023, 13, x FOR PEER REVIEW 10 of 14 
 

 

characteristics. Upon increasing the exposure time from 12 h to 24 h, enhancement in the 
intensity of fluorescence is well observed from the image. It has been well established that 
F-CNDs are easily internalized and uniformly distributed in human colon cancer cells. 
Therefore, these results show that F-CNDs are candidate fluorescent nanoprobes for im-
aging human colon cancer cells.  

 
Figure 6. Confocal microscopy fluorescence images of human colon cancer cells treated with or 
without F-CNDs and the synthesized F-CNDs treated for 12 and 24 h with the concentration of 100 
μg mL−1 using different excitation filters 405, 488, and 555 nm (blue, green, and red, respectively) as 
well as bright-field illumination. 

3. Materials and Methods 
3.1. Materials 

Cashew nut skin waste was collected from Tamil Nadu, India. Aqueous ammonia 
(NH4OH, 25%) was purchased from Sigma-Aldrich, Republic of Korea. Phosphate buff-
ered saline (PBS), N-(2-hydroxyethyl)piperazine-N’-(2-ethane sulfonic acid) (HEPES), p-
formaldehyde, quinine sulfate, and dimethyl sulfoxide (DMSO) were purchased from 
Sigma-Aldrich, Republic of Korea. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide (MTT) was purchased from Generay Biotech, Shanghai, China. HCT-116 human 
colon cancer cells were purchased from ATCC, CCL-247, Manassas, VA, USA. All the 
chemicals were used as purchased and distilled water was used throughout this study. 

3.2. The Synthesis of Functionalized Carbon Nanodots 
F-CNDs were synthesized using washed, dried, and ground cashew nut skins. The 

whitish-brown powder obtained was added to 50 mL of water with 1 mL of 25% ammo-
nium hydroxide solution and placed in an autoclave at 200 °C for 24 h. Large carbon par-
ticles were eliminated via filtration, and the filtrate was passed through a mixed cellulose 
ester membrane filter with a pore size of 0.22 μm, frozen in liquid nitrogen, and dried at 
below −80 °C in a freeze dryer. The F-CNDs obtained were used in subsequent experi-
ments. Scheme 1 shows the synthesis procedure of F-CNDs from cashew nut skin waste 
using the hydrothermal-carbonization. 

Figure 6. Confocal microscopy fluorescence images of human colon cancer cells treated with or
without F-CNDs and the synthesized F-CNDs treated for 12 and 24 h with the concentration of
100 µg mL−1 using different excitation filters 405, 488, and 555 nm (blue, green, and red, respectively)
as well as bright-field illumination.

3. Materials and Methods
3.1. Materials

Cashew nut skin waste was collected from Tamil Nadu, India. Aqueous ammo-
nia (NH4OH, 25%) was purchased from Sigma-Aldrich, Republic of Korea. Phosphate
buffered saline (PBS), N-(2-hydroxyethyl)piperazine-N’-(2-ethane sulfonic acid) (HEPES),
p-formaldehyde, quinine sulfate, and dimethyl sulfoxide (DMSO) were purchased from
Sigma-Aldrich, Republic of Korea. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
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bromide (MTT) was purchased from Generay Biotech, Shanghai, China. HCT-116 human
colon cancer cells were purchased from ATCC, CCL-247, Manassas, VA, USA. All the
chemicals were used as purchased and distilled water was used throughout this study.

3.2. The Synthesis of Functionalized Carbon Nanodots

F-CNDs were synthesized using washed, dried, and ground cashew nut skins. The
whitish-brown powder obtained was added to 50 mL of water with 1 mL of 25% ammonium
hydroxide solution and placed in an autoclave at 200 ◦C for 24 h. Large carbon particles
were eliminated via filtration, and the filtrate was passed through a mixed cellulose ester
membrane filter with a pore size of 0.22 µm, frozen in liquid nitrogen, and dried at below
−80 ◦C in a freeze dryer. The F-CNDs obtained were used in subsequent experiments.
Scheme 1 shows the synthesis procedure of F-CNDs from cashew nut skin waste using the
hydrothermal-carbonization.
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Scheme 1. Hydrothermal synthesis of functionalized carbon nanodots from cashew nut skin waste.

4. Conclusions

Using a single-step method, cashew nut skin waste was used to synthesize F-CNDs
using a simple hydrothermal route at a very low temperature without any further modifica-
tions that were quite economical. The formations of F-CNDs were considered to be due to
the dehydration, polymerization, and carbonization of hydrolyzable tannins, and phenolic
acids present in the testa of cashew nuts. F-CNDs exhibited a graphitic structure at the
core with few surface defects as determined by XRD and Raman Spectroscopy. F-CNDs
had a mean particle size of 2.5 nm and were composed of carbon, nitrogen, and oxygen
decorated with functional groups (C=O, –OH, –NH2, and –COOH), as determined by XPS
and ATR-FTIR, which conferred F-CNDs with significant hydrophilicity and dispersibility.
F-CNDs had excellent fluorescent properties and exhibited maximum emission at 406 nm
when excited at 340 nm due to radiative transitions within or between functional groups
present on the surfaces of F-CNDs. F-CNDs were photostable, had a quantum yield of
15.5%, and at concentrations of 0–200 µg mL−1 returned MTT viability greater than 95% for
HCT-116 cells. F-CNDs thus proved to have remarkable biocompatibility and low cytotoxi-
city with the cancer cell line. Confocal microscopy of human colon cancer cells treated with
or without F-CNDs revealed blue, green, and red emissions when exposed to 405, 488, and
555 nm light, respectively, in addition to a bright field. After increasing the time of exposure
from 12 h to 24 h, significant enhancement in the intensity of fluorescence was observed.
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Our results show nano-sized, cashew-nut-skin-derived F-CNDs have a graphitized core
structure and are surface functionalized by organic moieties. They are suitable nanoprobes
for bioimaging, drug delivery, and cell labeling. In the near future, a material that is safe
for the delivery of anticancer drugs could be developed using the successful integration of
F-CNDs with anticancer drugs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/catal13030547/s1. Instrumentation methods, quantum yield measurements, photobleaching
measurements, cell culture, cell viability assay, and microscopy results. Figure S1. Fluorescence
excitation-dependent emission normalized-spectra of synthesized F-CNDs; Figure S2. Cell viability
MTT assay results. The bar chart provides a comparison of the viabilities of F-CND treated cells and
untreated controls.
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