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Abstract: Photocatalysis, as an inexpensive and safe technology to convert solar energy, is essential
for the efficient utilization of sustainable renewable energy sources. Earth-abundant cobalt sulfide-
based composites have generated great interest in the field of solar fuel conversion because of their
cheap, diverse structures and facile preparation. Over the past 10 years, the number of reports on
cobalt sulfide-based photocatalysts has increased year by year, and more than 500 publications on
the application of cobalt sulfide groups in photocatalysis can be found in the last three years. In
this review, we initially summarize the four common strategies for preparing cobalt sulfide-based
composite materials. Then, the multiple roles of cobalt sulfide-based cocatalysts in photocatalysis
have been discussed. After that, we present the latest progress of cobalt sulfide in four fields of
photocatalysis application, including photocatalytic hydrogen production, carbon dioxide reduction,
nitrogen fixation, and photocatalytic degradation of pollutants. Finally, the development prospects
and challenges of cobalt sulfide-based photocatalysts are discussed. This review is expected to
provide useful reference for the construction of high-performance cobalt sulfide-based composite
photocatalytic materials for sustainable solar-chemical energy conversion.

Keywords: photocatalysis; cobalt sulfide; synthesis strategies; multiple roles; energy conversion

1. Introduction

Energy has been the primary driving force behind civilization throughout human
history. At the moment, the heavy reliance on fossil fuels has led to severe global problems
such as an energy crisis and pollution of the environment [1,2]. Photocatalytic technology
is an effective approach for the photochemical conversion and storage of solar energy [3–7].
Over the past 20 years, exploring new photocatalyst materials and their reaction mecha-
nisms has been a top priority [8,9]. A complete photocatalytic reaction includes the follow-
ing three steps: (i) light absorption; (ii) separation and migration of the photogenerated
charges; and (iii) surface reduction and oxidation reactions [10,11]. Various photocatalysts,
such as metal-free [12], metal oxides [13], metal sulfides [14], metal phosphides [15], and
metal selenides [16], have been extensively studied in previous reports. However, most
single-component photocatalysts have shown unsatisfactory photocatalytic activity due to
weak spectral absorption, fast recombination of the photogenerated charge carrier, and an
insufficient active site.

To address these problems, loading suitable cocatalysts is considered an effective
way to facilitate photocatalytic reactions. Nowadays, many precious metals have been
developed as cocatalysts, such as gold, platinum, and palladium [17,18]. In spite of this,
the scarcity and expensiveness of these noble metals severely restrict their use on a large
scale. In recent years, transition metal cocatalysts have received much attention in the
field of photocatalysis due to their advantages of low cost, an abundance resources, good
stability, and high catalytic activity. Especially, noble-metal-free cobalt sulfide (CoxSy)
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has been widely explored for substituting the noble metal cocatalyst due to its sufficient
catalytic sites, multivalent states, and diverse structures [19–22]. Furthermore, several
excellent papers have discussed the work of cobalt sulfide-based cocatalysts in enhancing
the photocatalytic properties. For example, Zhu et al. have reported a novel study on the
application of cobalt sulfide-modified graphite carbon nitride for photocatalytic hydrogen
evolution [23]. Cobalt sulfide acts as a cocatalyst to promote the migration of excited
electrons from graphite carbon nitride to cobalt sulfide. In addition, Xu et al. also investi-
gated the photocatalytic properties of Co3S4/Ag2S nanocomposite, and the photocatalytic
performance of binary nanomaterials was higher than that of a single catalyst structure [24].
In addition, Kokilavani et al. have proposed a facile chemical precipitation method for the
synthesis of CoS/Ag2WO4 photocatalyst, and the composites show excellent performance
for photocatalytic degradation and antibacterial activity [25].

Although the application of cobalt-based photocatalysts has been reviewed in the
previous literature [26], there are few specific reviews that systematically summarize the
synthesis, multifaceted roles, and various applications of cobalt sulfide-based composite
photocatalytic materials. Therefore, it is necessary to conduct a comprehensive review of
the current research progress of cobalt sulfide-based composite photocatalysts to expand
their practical applications. As shown in Figure 1, in this review, we have elaborated on the
synthesis methods of the cobalt sulfide-based composites. Then, the roles of cobalt sulfide-
based cocatalysts in photocatalysis have been discussed. Furthermore, recent advances of
the cobalt sulfide-based composite photocatalysts in photocatalytic H2 production, CO2
reduction, nitrogen fixation, and pollutant degradation are also reviewed. Finally, we
put forward the unsolved problems and possible future development directions of cobalt
sulfide-based composites in a variety of photocatalytic applications. It is hoped that this
review could provide useful information for rationally designing high-performance cobalt
sulfide-based composite photocatalysts.
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Figure 1. Schematic illustration of multifarious roles and applications of CoxSy in heterogeneous
photocatalysis.

2. Synthesis of Cobalt Sulfide-Based Composite Material

The photocatalytic activity of cobalt sulfide-based photocatalysts mainly depends
upon their size, morphology, specific surface area, and crystal structure [27,28]. Up to now,
various phase and morphological cobalt sulfide-based species have been synthesized for
photocatalysts. Here, in this section, we focus on the strategies for the synthesis of cobalt
sulfide-based hybrid materials.

2.1. Wet Chemistry Method

For the synthesis of cobalt sulfide-based composite photocatalysts, wet chemistry
has proven to be an effective technique with thioacetamide (TAA) and thiourea (TU)
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as S sources [29,30]. Briefly, the vulcanization of different cobalt precursors (such as
cobalt chloride or cobalt nitrate) could be achieved by using thioacetamide or thiourea
in hot organic solvents at inert temperatures. In most cases, this method can be used to
synthesize uniformly sized cobalt sulfide-based composite photocatalysts. As mentioned
in the previously reported literatures, cobalt sulfide-based catalysis topography is mainly
controlled by the S/Co ratio, solvent selection, and reaction conditions. For example,
Qian et al. have synthesized Co3S4 by using cobalt nitrate and thioacetamide as cobalt
and sulfur sources [31]. As shown in Figure 2a, Co3S4 showed a hollow dodecahedral
structure with an average particle size of about 800 nm. In addition, the temperature has
an obvious effect on the catalyst morphology. For instance, Qiu et al. have used the same
cobalt-based precursor material and thiourea but different heating temperature. However,
as shown in Figure 2b, a flower-like morphology of Co3S4 has been obtained [32]. As
shown in Figure 2c,d, the flower-like morphology of Co3S4 can also package MoS2 to build
a nuclear-shell heterojunction photocatalyst, which shows excellent performance in the
photocatalytic degradation pollutant. When constructing cobalt sulfide-based composites
with specific morphology, structure, and size, it is advantageous to use wet chemistry
methods, and thus wet chemistry synthesis is more common than gas-solid synthesis in the
syntheses of cobalt sulfide-based composite photocatalysts [33].
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(b) SEM image of Co3S4. (c,d) Active species trapping experiments for (c) reduction of Cr(VI) and
(d) degradation of SMZ. Reprinted with permission from ref. [32]. Copyright 2020 Elsevier.

2.2. Gas-Solid Method

Although wet chemistry techniques can produce cobalt sulfide with well-defined
nanostructures, the complicated processes and low yields prevent their widespread appli-
cations [34]. Recently, the gas-solid synthesis of cobalt sulfide has attracted a wide range
of attention. For the gas-solid method, sulfur powder and the cobalt-based precursor are
placed in two boats of porcelain, respectively, with sulfur powder located upstream of the
furnace. Following that, the samples are heated in a static atmosphere at a prescribed tem-
perature. At temperatures over 450 ◦C, sulfur powder decomposes to release H2S, which
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reacts with cobalt-based precursors to form cobalt sulfide. Under certain temperatures,
this surfactant-free method allows the morphology of the precursors to be preserved well,
which makes it more applicable for developing different 3D self-standing cobalt sulfides
with different structures [35]. For example, Xie and his collaborators synthesized the
Graphdiyne-CoS2 heterojunction nanocomposites by placing the Co(OH)F/CC composite
in the tubular furnace at 500 ◦C [36]. Moreover, as shown in Figure 3b, Wang et al. have
reported the synthesis of cobalt sulfide with multi-shell nanobox morphology by annealing
the cobalt-based MOF precursor at 350 ◦C [37]. Cobalt sulfide with different shell numbers
can be obtained by adjusting the number of shells in the cobalt-based MOF precursor, and
the performance of three-layer shells is the best.
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Figure 3. (a) A schematic diagram of the phase synthesis of GDY/CoS2/CC catalyst. Reprinted with
permission from ref. [36]. Copyright 2021, Elsevier. (b) A schematic illustration of the formation
process of cobalt sulfide MSNB. Reprinted with permission from ref. [37]. Copyright 2019, Wiley.

2.3. Photo-Deposition Method

In many reports, the photo-deposition-assisted cocatalysts have higher catalytic perfor-
mance than conventional methods because photo-deposition can promote the deposition
of cocatalysts on semiconductors with well-matched positions and provide greater contact
area and more active sites, thereby accelerating interfacial charge separation between the
semiconductor and the co-catalysts [38,39]. The photo-deposition method was applied
to deposit CoS2 nanoparticles on g-C3N4 as reported by Yang et al. [38]. Appropriately
sized CoS2 nanoparticles have high adsorption and photocatalytic hydrogen production
performances. The experimental results further show that the electron aggregation ability
of the cocatalyst is based on the size effect of CoS2, and the appropriate size of the cocatalyst
can effectively promote the separation of photogenerated electron-hole pairs. Due to its
simple and time-saving operation and good photocatalytic activity, the photo-deposition
method can be used to realize the development of new non-noble metal photocatalytic
materials. Moreover, amorphous cobalt sulfide obtained by the photo-deposition method
has been used as an effective cocatalyst for photocatalytic water decomposition properties.
For example, as exhibited in Figure 4a, Chen et al. have successfully loaded amorphous
CoSx nanodot cocatalyst onto rGO nanosheets through the photo-deposition strategies [40].
Incorporation of amorphous cobalt sulfide nanodot can significantly improve the catalytic
activity of rGO/TiO2 photocatalysts based on the formation of new active sites (Figure 4b,c).
Compared to the crystalline phase, the amorphous CoSx structure can effectively inhibit
electron-hole recombination and provide a large number of active sites, exhibiting higher
hydrogen production activity, thus accelerating the transfer of electrons and improving the
surface H2 precipitation rate.
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of CoSx on rGO surface. (c) H2-production rate of TiO2, rGO/TiO2, CoSx-rGO/TiO2 (1%), CoSx-
rGO/TiO2 (5%), CoSx-rGO/TiO2 (10%), CoSx-rGO/TiO2 (25%), and CoSx/TiO2 (10%). Reprinted
with permission from ref. [40]. Copyright, 2021 Springer Nature.

2.4. Electrochemical Reaction Method

Several electrochemical methods, including pulse electrochemical reduction and an-
odic oxidation, have been reported for the synthesis of cobalt sulfide-based cocatalysts.
As demonstrated in Figure 5, a facile and inexpensive one-step anodization method has
been developed by Bian et al. to synthesize cobalt sulfide (CoSx) nanosheets with meso-
porous structures [41]. This porous, reverse-porous, self-grown nanostructure provides
high surface-active sites for catalytic reactions and facilitates electron transfer between ac-
tive materials, exhibiting excellent hydrogen evolution (HER) and oxygen evolution (OER)
performances. In addition, Kubendhiran et al. synthesized the cobalt sulfide/reduced
graphene oxide (CoS/rGO) nanohybrid using a single-step electrochemical method. The
obtained CoS/rGO nanocomplexes show excellent selectivity and catalytic activity for
H2O2 [42].

Catalysts 2023, 13, 544 6 of 18 
 

 

 

Figure 5. Schematic illustration of the anodization process of CoSx on the metal substrate. Reprinted 

with permission from ref. [41]. Copyright, 2021 Elsevier. 

2.5. Other Methods 

In addition to the several most commonly used methods mentioned above, chemical 

vapor deposition (CVD) [43], microwave-assisted methods [44,45], and template-assisted 

methods [46] have also been used to prepare cobalt sulfide-based hybrid materials. The 

CVD method often requires a cumbersome manufacturing process or expensive equip-

ment, and the prepared cobalt sulfide-based composites have poor water solubility. 

Therefore, CVD methods are rarely used to synthesize cobalt sulfide-based composite 

photocatalysts. In addition, compared with the traditional hydrothermal method, the mi-

crowave method can significantly shorten the reaction time. For instance, Souleymen et 

al. have synthesized graphene-based cobalt sulfide freestanding sheets with microwave 

assistance [45]. The CoSx non-layered and freestanding nanosheets were formed and ex-

hibited higher catalytic activity due to their thin thickness, large surface area, and abun-

dant pores compared with layered nanosheets. In addition, although the template method 

can prepare a cobalt sulfide-based composite photocatalyst with uniform morphology, 

this method requires additional removal of the template, which will increase the time and 

cost of the synthesis required. 

3. Roles of Cobalt Sulfide-Based Cocatalysts in Photocatalysis 

In general, the overall activity of photocatalytic reactions depends on the kinetic and ther-

modynamic synergy among strong light absorption capacity, charge separation rate, and sur-

face reactivity. The interfacial chemical reaction is a key step in the process of photocatalytic 

reaction, which mainly involves charge transfer and redox reactions at the interface, which 

directly affect the efficiency of photocatalytic reaction [3,41]. Obviously, it is necessary to en-

sure that a large number of long-lived carriers participate in the surface reaction in order to 

increase the reaction rate [5]. Therefore, loading highly efficient co-catalysts on the semicon-

ductor surface is an effective strategy to delay the recombination reaction and prolong the 

carrier lifetime. Cobalt sulfide-based cocatalysts, as one of the most important cocatalysts, 

have four critical roles in promoting the efficiency of photocatalytic reactions. 

First of all, the incorporation of cobalt sulfide-based cocatalysts can facilitate the efficient 

separation of photoinduced carriers [6,47]. Once the cobalt sulfide-based cocatalysts are 

loaded on photocatalysts, numerous junctions will form due to the distinction in work func-

tion. These junctions are highly efficient contact forms between cobalt sulfide-based cocata-

lysts and host semiconductors, which can transfer photoexcited charges from photocatalysts 

to cocatalysts, thereby enabling the smooth completion of photocatalytic reactions. 

Secondly, cobalt sulfide-based cocatalysts can offer adequate active sites for semicon-

ductor photocatalysts, thereby enhancing the photocatalytic reaction potency [36]. The ac-

tive sites are where the catalytic reaction proceeds and usually have low overpotential 

and an energy barrier for the catalytic reaction. These positions are more favorable to the 

catalytic reaction than other positions on the catalyst. 

Thirdly, cobalt sulfide-based cocatalysts are helpful to improve the optical absorp-

tion performance of semiconductor photocatalysts [30,47]. The adsorption and activation 

of protons are the crucial links for enhancing the potency of the photocatalyst in the 

Figure 5. Schematic illustration of the anodization process of CoSx on the metal substrate. Reprinted
with permission from ref. [41]. Copyright, 2021 Elsevier.

2.5. Other Methods

In addition to the several most commonly used methods mentioned above, chemical
vapor deposition (CVD) [43], microwave-assisted methods [44,45], and template-assisted
methods [46] have also been used to prepare cobalt sulfide-based hybrid materials. The
CVD method often requires a cumbersome manufacturing process or expensive equipment,
and the prepared cobalt sulfide-based composites have poor water solubility. Therefore,
CVD methods are rarely used to synthesize cobalt sulfide-based composite photocatalysts.
In addition, compared with the traditional hydrothermal method, the microwave method
can significantly shorten the reaction time. For instance, Souleymen et al. have synthesized
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graphene-based cobalt sulfide freestanding sheets with microwave assistance [45]. The
CoSx non-layered and freestanding nanosheets were formed and exhibited higher catalytic
activity due to their thin thickness, large surface area, and abundant pores compared with
layered nanosheets. In addition, although the template method can prepare a cobalt sulfide-
based composite photocatalyst with uniform morphology, this method requires additional
removal of the template, which will increase the time and cost of the synthesis required.

3. Roles of Cobalt Sulfide-Based Cocatalysts in Photocatalysis

In general, the overall activity of photocatalytic reactions depends on the kinetic and
thermodynamic synergy among strong light absorption capacity, charge separation rate,
and surface reactivity. The interfacial chemical reaction is a key step in the process of
photocatalytic reaction, which mainly involves charge transfer and redox reactions at the
interface, which directly affect the efficiency of photocatalytic reaction [3,41]. Obviously,
it is necessary to ensure that a large number of long-lived carriers participate in the sur-
face reaction in order to increase the reaction rate [5]. Therefore, loading highly efficient
co-catalysts on the semiconductor surface is an effective strategy to delay the recombi-
nation reaction and prolong the carrier lifetime. Cobalt sulfide-based cocatalysts, as one
of the most important cocatalysts, have four critical roles in promoting the efficiency of
photocatalytic reactions.

First of all, the incorporation of cobalt sulfide-based cocatalysts can facilitate the effi-
cient separation of photoinduced carriers [6,47]. Once the cobalt sulfide-based cocatalysts
are loaded on photocatalysts, numerous junctions will form due to the distinction in work
function. These junctions are highly efficient contact forms between cobalt sulfide-based
cocatalysts and host semiconductors, which can transfer photoexcited charges from photo-
catalysts to cocatalysts, thereby enabling the smooth completion of photocatalytic reactions.

Secondly, cobalt sulfide-based cocatalysts can offer adequate active sites for semicon-
ductor photocatalysts, thereby enhancing the photocatalytic reaction potency [36]. The
active sites are where the catalytic reaction proceeds and usually have low overpotential
and an energy barrier for the catalytic reaction. These positions are more favorable to the
catalytic reaction than other positions on the catalyst.

Thirdly, cobalt sulfide-based cocatalysts are helpful to improve the optical absorption
performance of semiconductor photocatalysts [30,47]. The adsorption and activation of
protons are the crucial links for enhancing the potency of the photocatalyst in the process
of photocatalytic hydrogen production [30]. Cobalt sulfide with a narrow bandgap can
enhance the optical absorption ability of photocatalysts by stimulating the absorption of
light with a wide wavelength. In addition, cobalt sulfide can also be directly formed into
a hollow structure or nanosheet array structure, which increases the specific surface area
of the photocatalyst and reduces the diffusion distance of the photogenerated carrier to
improve the absorption efficiency of the semiconductor.

Fourthly, the loading of cobalt sulfide-based cocatalysts can inhibit the photocorrosion
of some semiconductors and enhance the stability of the photocatalysts [48]. When the
cobalt sulfide-based cocatalyst with good photocatalytic activity and stability is anchored to
the semiconductor, the surface reaction will be carried out on the cobalt sulfide cocatalyst,
thus improving the efficiency of the photocatalytic reaction [49].

4. Cobalt Sulfide-Based Composite Material for Photocatalysis
4.1. Photocatalytic H2 Production

Recently, semiconductor photocatalytic water decomposition has been improved by
integrating appropriate co-catalysts. Due to the sufficient catalytic site and easy prepara-
tion, cobalt sulfide-based cocatalysts have been widely applied as co-catalysts for various
semiconductors toward photocatalytic hydrogen evolution [50–53]. Fu et al. have illus-
trated that combining a hollow cobalt sulfide (CoSx) polyhedral cocatalyst with g-C3N4 can
effectively accelerate the separation of photoinduced charges in g-C3N4 and provide an
abundant active site to promote redox reactions (Figure 6a) [54]. In addition, as shown in
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Figure 6b, the hollow structure of the CoSx polyhedron can also allow multiple reflections
of light to enhance the light collection of g-C3N4. Thus, the photocatalytic performance
of the 2% CoSx/g-C3N4 hybrids was significantly better than that of the blank g-C3N4.
Obviously, the incorporation of cobalt sulfide could act as a cocatalyst to accelerate the
separation and transfer of photo-generated electron-hole pairs and reduce the overpotential
of the hydrogen production reaction. Qiu et al. reported that CdS nanorods loaded with
CoS2 nanoparticles exhibited excellent photocatalytic hydrogen production activity, which
was 13 times higher than that of pristine CdS NRs samples, and the optimized CoS2/CdS
NRs photocatalyst had high stability and recyclability [55].

In addition to the cobalt sulfide single component cocatalyst, multicomponent co-
catalysts exhibit superior co-catalytic activity than single component cocatalysts. For
example, Li et al. have reported an excellent composite photocatalyst by combining CoS
with Co(OH)2 on g-C3N4 to construct a dual cocatalyst [56]. The photocatalytic hydrogen
production rate of the CoS/Co (OH)2/g-C3N4 composite photocatalyst is 311 times higher
than that of pure g-C3N4, which is due to the synergistic effect of the dual cocatalysts.
In the dual cocatalyst system, CoS cocatalyst acts as an electron acceptor to facilitate the
separation of photogenerated carriers, and Co(OH)2 can also act as a conductor to diffuse
photon-generated electrons. Moreover, in addition to acting as a co-catalyst, cobalt sulfide
has also been reported as a semiconductor for H2 production. For example, Zhang et al.
used a simple hydrothermal synthesis method to in situ grow two-dimensional ZnIn2S4 on
one-dimensional hollow Co9S8 nanotubes to form a Co9S8/ZnIn2S4 heterostructure [57].
As shown in Figure 6c, type-I heterostructures are constructed when the Co9S8 nanotubes
are covered with ZnIn2S4 nanosheets. When the Co9S8/ZnIn2S4 composites are excited to
generate electron-hole pairs, the photogenerated electrons can migrate rapidly from the CB
of ZnIn2S4 to that of Co9S8. Consequently, the Co9S8/ZnIn2S4 heterostructure achieves a
higher photocatalytic activity than pure ZnIn2S4. Apart from the aforementioned research,
Table 1 summarizes other studies that have employed cobalt sulfide-based semiconductor
composites for photocatalytic H2 production.

Table 1. Cobalt sulfide-based semiconductor composites for photocatalytic H2 production.

Cocatalysts Semiconductor Light Source
(Sacrificial Reagent)

Photocatalytic
Activity

(µmol·g−1·h−1)
Ref.

CoS2 CdS
λ ≥ 400 nm

(Lactic acid or
Na2S/Na2SO3)

58,100 [58]

Co3S4/Co@C CdS λ > 420 nm
(Na2S and Na2SO3) 15,170 [30]

Co4S3 CdS λ ≥ 420 nm
(Lactic acid) 12,360 [59]

CdS/Co9S8 RGO λ > 420 nm
(Na2S and Na2SO3) 4820 [49]

Co9S8 ZnIn2S4
λ > 420 nm

(TEOA) 6250 [60]

CoS2 Zn0.5Cd0.5S λ ≥ 420 nm
(L-lactic acid) 25,150 [48]

CoS2 ZnS λ > 420 nm
(Na2S and Na2SO3) 8001 [35]

Co3S4 g-C3N4
λ ≥ 400 nm

(TEOA) 20,536.4 [61]

CoS TiO2
λ ≥ 400 nm
(Lactic acid) 1945 [47]

Co4S3/CNFs CdIn2S4
λ > 420 nm

(Lactic acid) 25,870 [62]

Co3S4 g-C3N4
λ > 420 nm

(TEOA) 2120 [63]
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Reprinted with permission from ref. [54]. Copyright 2018, American Chemical Society. (c) Schematic
illustration of the fabrication process of hierarchical Co9S8/ZnIn2S4 tubular photocatalysts. Reprinted
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4.2. Photocatalytic CO2 Reduction

In addition to being used as a cocatalyst for photocatalytic H2 production, cobalt
sulfide can also be used as efficient photocatalytic for CO2 reduction [64,65]. For example,
Zhang et al. have composited the hollow Co9S8 nanocages with ZnIn2S4 nanosheets
and CdS quantum dots to construct a ternary composite photocatalyst [29]. As shown in
Figure 7a, the hollow structure of Co9S8 nanocages promotes multiple reflections of sunlight
in the cavity, which enhanced the light absorption of ZnIn2S4 nanosheets and CdS quantum
dots. In addition, as shown in Figure 7b, the ternary composite photocatalyst form a double
Z-type heterojunction, which facilitates the separation and migration of photogenic electron
hole pairs. Therefore, the photocatalytic performance of the Co9S8@ZnIn2S4/CdS hybrid is
obviously better than that of blank CdS and ZnIn2S4, as described in Figure 7c.
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Moreover, photocatalytic reduction of CO2 to methanol is another ideal approach
for solar energy conversion. Ma et al. have prepared carbon nitride (CN) loaded with
cobalt sulfide (CS) as a cocatalyst. The optimized CS/CN photocatalyst was 2.3 times
more selective for CH3OH than CN [66]. It was confirmed that the introduction of cobalt
sulfide can improve the selectivity of CH3OH. The cobalt sulfide not only provides the H2O
oxidation center but also can significantly weaken the overpotential of the H2O oxidation
half reaction, thus effectively avoiding the formation of strongly oxidized radicals.

Furthermore, Wang et al. have reported hierarchical FeCoS2-CoS2 double-shelled
nanotubes as a composite photocatalyst for CO2 reduction [67]. As shown in Figure 8a,
FeCoS2-CoS2 composites can be obtained after ion-exchange reactions and sulfidation
reactions with MIL-88A as precursors. As shown in Figure 8b, FeCoS2-CoS2 composites
present a uniform hierarchical nanosheet structure. When the Ru(bpy)3

2+ is used as the
photosensitizer, the optimal FeCoS2-CoS2 composite shows excellent photocatalytic activity
with a CO generation rate of 28.1 µmol h−1, which is better than the individuals of FeCoS2
and CoS2 and their physical mixtures sample (Figure 8c). As illustrated in Figure 8d, the
unique hierarchical nanosheet structure reduces diffusion length and enhances scattering
in the cavity, which inhibits electron-hole recombination and exposes active sites for redox
reactions, thus improving the photocatalytic activity of the FeCoS2-CoS2 composite.



Catalysts 2023, 13, 544 10 of 17Catalysts 2023, 13, 544 11 of 18 
 

 

 

Figure 8. (a) Illustration of the synthetic process for hierarchical FeCoS2−CoS2. (b) FESEM images of 

one FeCoS2−CoS2. (c) Photoreduction of CO2 under different reaction conditions. (d) Schematic dia-

gram of CO2 photoreduction over FeCoS2-CoS2. Reprinted with permission from ref. [67]. Copyright 

2020, Wiley. 

4.3. Photocatalytic Nitrogen Fixation 

Neither humans nor the earth’s ecosystem can survive without the ability to synthe-

size ammonia [68]. The production of this foundation sustaining life on earth is based on 

both industrial and biological fixation levels of 200×106 tons per year [69]. At present, ni-

trogen fixation is principally carried out in three ways: (i) biological nitrogen fixation. 

Some micro-organisms, such as nitrogen-fixing bacteria, use their own nitrogenase to fix 

N2 molecules for biological nitrogen fixation; (ii) high-energy nitrogen fixation in geo-

chemical processes, such as lightning; (iii) the energy-intensive Haber–Bosch method for 

industrial nitrogen fixation. However, biological and geochemical nitrogen fixation solely 

account for a tiny fraction of the fixed nitrogen supply. The Haber–Bosch process, which 

uses N2 and H2 as sources and iron-based compounds as the main material, is currently 

the main route for the synthesis of industrial ammonia. Nevertheless, this process requires 

a great deal of energy input while generating large emissions of by-products (such as car-

bon dioxide), which may cause environmental hazards. Hence, developing high-selectiv-

ity photocatalysts for nitrogen-reducing ammonia is challenging and interesting research 

[69]. Recently, Yuan et al. have demonstrated that loading Ru/CoSx to g-C3N4 nanosheets 

can effectively activate N2 molecules and facilitate the separation of light-induced elec-

tron-hole pairs in g-C3N4 [70]. As shown in Figure 9a, in comparison with pure CN, Ru-

Vs-CoS/CN shows obviously enhanced photocatalytic activity, reaching 1.28% apparent 

quantum efficiency at 400 nm and 0.042% solar-to-ammonia efficiency. The excellent ni-

trogen reduction reaction performance is attributed to the fact that the sulfur vacancies in 

CoSx can effectively promote the selective chemisorption of N2 molecules. In addition, an 

N2 molecule is bridged against the side-on Ru-Co center by the undercoordination of Ru 

and Co atoms at the Ru/CoSx interface. Furthermore, as shown in Figure 9b, the plasmonic 

Ru/CoSx interface enhances light absorption to generate energetic charge-carriers, acceler-

ates charge separation and transfer, and therefore kinetically facilitates the fixation of N2. 
This confirms that the presence of vacancies on the surface of cobalt sulfide-based nano-

materials exhibits excellent photocatalytic NRR performance, as it can modify the elec-

tronic structure, decrease the coordination number of surface atoms, facilitate the 

Figure 8. (a) Illustration of the synthetic process for hierarchical FeCoS2−CoS2. (b) FESEM images of
one FeCoS2−CoS2. (c) Photoreduction of CO2 under different reaction conditions. (d) Schematic dia-
gram of CO2 photoreduction over FeCoS2-CoS2. Reprinted with permission from ref. [67]. Copyright
2020, Wiley.

4.3. Photocatalytic Nitrogen Fixation

Neither humans nor the earth’s ecosystem can survive without the ability to synthesize
ammonia [68]. The production of this foundation sustaining life on earth is based on both
industrial and biological fixation levels of 200 × 106 tons per year [69]. At present, nitrogen
fixation is principally carried out in three ways: (i) biological nitrogen fixation. Some
micro-organisms, such as nitrogen-fixing bacteria, use their own nitrogenase to fix N2
molecules for biological nitrogen fixation; (ii) high-energy nitrogen fixation in geochemical
processes, such as lightning; (iii) the energy-intensive Haber–Bosch method for industrial
nitrogen fixation. However, biological and geochemical nitrogen fixation solely account
for a tiny fraction of the fixed nitrogen supply. The Haber–Bosch process, which uses
N2 and H2 as sources and iron-based compounds as the main material, is currently the
main route for the synthesis of industrial ammonia. Nevertheless, this process requires a
great deal of energy input while generating large emissions of by-products (such as carbon
dioxide), which may cause environmental hazards. Hence, developing high-selectivity
photocatalysts for nitrogen-reducing ammonia is challenging and interesting research [69].
Recently, Yuan et al. have demonstrated that loading Ru/CoSx to g-C3N4 nanosheets can
effectively activate N2 molecules and facilitate the separation of light-induced electron-
hole pairs in g-C3N4 [70]. As shown in Figure 9a, in comparison with pure CN, Ru-
Vs-CoS/CN shows obviously enhanced photocatalytic activity, reaching 1.28% apparent
quantum efficiency at 400 nm and 0.042% solar-to-ammonia efficiency. The excellent
nitrogen reduction reaction performance is attributed to the fact that the sulfur vacancies
in CoSx can effectively promote the selective chemisorption of N2 molecules. In addition,
an N2 molecule is bridged against the side-on Ru-Co center by the undercoordination
of Ru and Co atoms at the Ru/CoSx interface. Furthermore, as shown in Figure 9b,
the plasmonic Ru/CoSx interface enhances light absorption to generate energetic charge-
carriers, accelerates charge separation and transfer, and therefore kinetically facilitates the
fixation of N2. This confirms that the presence of vacancies on the surface of cobalt sulfide-
based nanomaterials exhibits excellent photocatalytic NRR performance, as it can modify
the electronic structure, decrease the coordination number of surface atoms, facilitate the
formation of dangling bonds, and greatly promote the formation of N2 chemisorption
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and activation. The N2-fixation mechanism outlined in Figure 9c indicates the hydrogen
evolution reaction (HER) on Ru occurs easily due to its good free energy of hydrogen
production (−0.07 eV). Meanwhile, the active hydrogen adsorption on Co and desorption
on S limit the hydrogen evolution reaction (HER) on Ru.

Figure 9. (a) Photocatalytic NH3 production rates over different samples (b) FDTD electric field
distribution observed from the z-axis (parallel to incident light) at Ru/CoSx nanoparticles (800 nm
irradiation). (c) Proposed photocatalytic N2RR pathway on Ru−Vs−CoS/CN. Reprinted with
permission from ref. [70]. Copyright 2020, Wiley.

4.4. Photocatalytic Degradation

Recent research shows that cobalt sulfide-based materials, such as CoS, CoS2, and
Co3S4, are important candidate catalysts for photocatalytic organic pollutants degrada-
tion [71–74]. For instance, Co2.67S4 shows excellent photocatalytic degradation efficiency
of methylene blue (MB) under UV, visible, and near-infrared irradiation [75]. As shown
in Figure 10a, the valence state change of cobalt ions effectively separates electrons from
holes and accelerates electron transfer, thus enhancing the activity of photocatalytic degra-
dation. In addition to single cobalt-based sulfide materials, cobalt sulfide, as a co-catalyst,
can be combined with host semiconductors for photocatalytic degradation. For example,
Tang et al. have designed a two-dimensional CoS/BiOBr heterojunction, which shows a
5.3-fold higher degradation rate as compared to pure BiOBr (Figure 10b) [76]. As shown in
Figure 10c,d, when the BiOBr and the CoS combine to construct the CoS/BiOBr heterojunc-
tion photocatalyst, the electrons on the CB of the CoS can be easily transferred to the CB of
the BiOBr. In addition, the VB of BiOBr can oxidize glyphosate directly, producing small
molecules or ions (PO4

3−, etc.). Simultaneously, some holes also migrate from BiOBr to
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CoS, leading to effective photogenerated charge carrier separation and thereby boosting
the photocatalytic performance of the CoS/BiOBr composite.
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Moreover, Zhang et al. have covered uniformly MoS2 nanosheets on CoS2 nanoparti-
cles to construct CoS2/MoS2-nitrogen-doped graphene aerogels for photocatalytic organic
pollutants degradation [77]. When MoS2 is combined with CoS2, the band gap of MoS2 can
be narrowed and the optical response range can be expanded. At the same time, CoS2 can
effectively accelerate the charge separation and increase the surface-active sites. Taking ad-
vantage of these advantages, the optimized three-dimensional CoS2/MoS2-nitrogen-doped
graphene aerogel photocatalyst can degrade pollutants up to 97.1% within 60 minimums
and still maintain 95.1% after three cycles. Apart from the aforementioned research, Table 2
summarizes other studies that have employed cobalt sulfide-based composites for photo-
catalytic organic pollutant degradation.

Table 2. Cobalt sulfide-based semiconductor composites for photocatalytic degradation.

Catalysts Conditions Catalyst
Amount (mg) Dye/Concentration %Degradation/Time

(min) Ref.

Pg-C3N4
/Co3O4/CoS)

different pH
(pH = 3, 5, 7, 9, 11) 500 W

Xe lamp
5 BPF/30 mg·L−1 99/50 [72]

CoS-TEA 300 W Xe lamp 20 RhB/10 mg·L−1 97.34/80 [78]

CoS-rGO pH = 5, sunlight with light
intensity of ∼680 W/m 5 CR/10 mg·mL−1 88.03/40 [79]
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Table 2. Cont.

Catalysts Conditions Catalyst
Amount (mg) Dye/Concentration %Degradation/Time

(min) Ref.

CoS-rGO/PMS different operating conditions
at room temperature 25 RhB/14 mg·L−1 95/8 [80]

Co3S4-SnO2/PVPCS
25 W UV lamp (UV lamp:

5.5 cm, and light intensity: at
3.0 mW·cm−2)

10 LDC/10 mg·mL−1 98.72/30 [81]

CoS NS Neutral pH, 200 W
tungsten lamp 5

MB/20 mg·L−1

RhB/20 mg·L−1

CV/20 mg·L−1

NB/20 mg·L−1

99.8/10
99.5/45
99.4/3
99.8/5

[82]

CdS/N-CoSx 300 W Xe lamp 10 Cr(VI)/10
mg·mL−1 100/25 [83]

Graphite/Cobalt
Sulfide/PANI composite

Magnetic Agitation under
dark and Visible light

(15 watt)
25 CR/25 mg·mL−1 99.55/120 [84]

CoS2-CeO2/CSCS under UV light irradiation 20 4NP/10 mg·L−1 95.42/60 [85]

5. Conclusions and Perspectives

In this review, we have summarized recent progress in cobalt sulfide syntheses, espe-
cially morphological and temperature-dependent design guidelines, and their applications
in photocatalytic hydrogen production, CO2 reduction, nitrogen fixation, and degrada-
tion pollutant. In spite of the significant progress made to date, some challenges and
opportunities for further advancement in this research field are presented as follows:

(1) Nowadays, cobalt sulfide is regarded as an inexpensive, easily synthesized, and
efficient photocatalyst. However, cobalt sulfide is much less stable than the catalysts
required for practical applications. Therefore, more efforts need to be made to enhance
the stability of cobalt sulfide;

(2) To date, there are almost no practical synthetic methods for cobalt sulfide-based com-
posites that are available for mass production to meet real-life applications. Therefore,
the development of industrial-scale production methods with stable, efficient, and
low-cost cobalt sulfide-based composites is significant;

(3) Since sacrificial agents are inevitably used for current photocatalytic reactions, this
causes serious problem of increased reaction costs and waste of reaction energy. In
addition, the enhancement of photocatalytic activity is mainly determined by the
consumption degree and survival time of its photosynthetic holes or electrons. In
this regard, the combination of H2 production, the reduction of CO2, and N2 fixation
with oxidative organic synthesis in a photosynthetic reaction is a feasible method for
avoiding the use of sacrificial agents;

(4) Many problems still need to be addressed in further development. For example,
studies on the active sites, and charge carrier dynamics of cobalt sulfide catalysts are
still in their infancy. In addition, the mechanism of cobalt sulfide as a photocatalytic
catalyst also deserves further investigation. Therefore, it is very necessary to conduct
more thorough and systematic studies of these problems, both theoretically and
experimentally. Notably, in situ characterization techniques are capable of detecting
the change of structure within the cobalt sulfide group in real time, which requires
more effort to develop.
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