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Abstract: Three-dimensionally printed materials show great performance and reliable stability in
the removal of refractory organic pollutants in Fenton-like reactions. In this work, hierarchically
porous zero-valent copper (3DHP-ZVC) was designed and fabricated via 3D printing and applied as a
catalyst for the degradation of tetracycline (TC) through heterogeneous Fenton-like processes. It was
found that the 3DHP-ZVC/H2O2 system could decompose over 93.2% of TC within 60 min, which
is much superior to the homogeneous Cu2+/H2O2 system under similar conditions. The leaching
concentration of Cu2+ ions in the 3DHP-ZVC/H2O2 system is 2.14 times lower than that in the Cu
powder/H2O2 system in a neutral environment, which could be ascribed to the unique hierarchically
porous structure of 3DHP-ZVC. Furthermore, 3DHP-ZVC exhibited compelling stability in 20 con-
secutive cycles. The effects of co-existing inorganic anions, adaptability, and pH resistance on the
degradation of TC were also investigated. A series of experiments and characterizations revealed
that Cu0 and superoxide radicals as reducing agents could facilitate the cycling of Cu(II)/Cu(I), thus
enhancing the generation of hydroxyl radicals to degrade TC. This study provides new insights into
employing promising 3D printing technology to develop high-reactivity, stable, and recycling-friendly
components for wastewater treatment.

Keywords: 3D print; Fenton; tetracycline; zero valent copper; pollutant degradation

1. Introduction

Antibiotics are chemical medicines that possess antibacterial activity and are widely
employed for the treatment of bacterial infections [1–5]. Recently, antibiotics have been
extensively detected in aquatic systems owing to the overuse of antibiotics and the in-
complete metabolism of humans and animals [6,7]. The long-term accumulation of antibi-
otics in water bodies may increase antibiotic resistance, which seriously threatens human
health [8–10]. Conventional techniques such as adsorption, biological treatment, and
membrane separation are limited by their low and insufficient removal efficiency [11].
Therefore, the development of an economic and efficient route for antibiotic elimination is
urgently needed.

Fenton processes are frequently applied to decompose hazardous organic pollutants,
which can produce highly oxidized hydroxyl radicals (•OH) (1.9–2.7 V vs. NHE) through
the catalytic decomposition of hydrogen peroxide (H2O2) by Fe2+ or other transition
metals [12–15]. However, the practical application of the conventional Fenton reaction
is hindered by iron-sludge generation, the impossibility of recycling, and a narrow op-
erational pH range [16]. Heterogeneous Fenton or Fenton-like catalysts have received
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increasing attention, which greatly overcome the above drawbacks of conventional Fenton
reactions [17–20]. Among various developed heterogeneous catalysts, zero-valent copper
(ZVC) arouses ever-growing interest due to its unique merits of excellent electrical conduc-
tivity and high stability. As reported, ZVC frequently serves as an intermediate of electronic
transmission, which is responsible for the better activation of H2O2 [21]. In addition, ZVC
demonstrates more reliable stability than zero-valent iron (ZVI) owing to the drawbacks of
easy agglomeration and oxidation nature [22]. To date, a series of ZVC catalysts have been
synthesized due to these advantages, but they are generally in the form of nanoparticles,
which is inconvenient in separation and recovery from an aqueous environment, raising
the risk of secondary contamination [23]. It is desired to break through the rigid concepts
of nanoparticles to manufacture stable, high-reactivity, and recycling-friendly catalysts via
a feasible method for practical application.

Three-dimensional (3D) printing technology is an additive manufacturing process
used to manufacture specialized functional structures directly guided by a 3D model,
which greatly optimizes structural properties and simplifies manufacturing processes,
further minimizing production costs [24]. Three-dimensional printing technology is highly
appropriate in the field of catalysis owing to its distinctive functional structures and
favorable control of the target catalysts, which is of vital significance for the performance
of catalytic materials [25]. Among the multifarious 3D printing techniques, selective laser
melting (SLM) is a preferred technology to fabricate metallic components with sufficient
accuracy to lattice structures from powder [26]. Recent studies have indicated that SLM-
produced catalysts act as effective and stable activators for H2O2. For example, Yang
et al. designed a hierarchical porous metallic glass/copper composite to activate H2O2 for
wastewater treatment, with a rate constant of removing rhodamine B (RhB) 620 times higher
than commercial zero-valent iron particles [27]. In our previous work, hierarchically micro-
and nanoporous Cu catalysts were prepared for H2O2 activation through the combination
of SLM and chemical dealloying techniques [28]. However, the obtained Cu catalysts
encounter the dilemmas of having a complicated process, high dissolution, and excessive
oxidant consumption.

In this work, ZVC with hierarchically porous structures (3DHP-ZVC) was fabricated
as an efficient Fenton-like catalyst to decompose multiple organic pollutants via 3D printing
technology, which displayed excellent reactivity for H2O2 activation. The morphology,
catalytic performance, stability, and universality of the printed 3DHP-ZVC were thoroughly
illustrated. The influence of essential factors such as initial pH, H2O2 concentration, and
co-existing inorganic anions was evaluated. Finally, a possible activation mechanism was
proposed and confirmed by experiments and characterization analysis. Our study provides
a novel strategy to develop stable and recycling-friendly catalysts in Fenton-like systems
for wastewater purification.

2. Results and Discussion
2.1. Characterization

The X-ray diffraction (XRD) patterns of the printed 3DHP-ZVC are presented in
Figure 1a. The characteristic peaks at 2θ of 43.3◦, 50.4◦, 74.1◦, 89.9◦, and 95.1◦ could be
ascribed to the (111), (200), (220), (311), and (222) lattice planes of Cu0 (PDF#04–0836),
respectively [29]. This result indicated that the developed 3DHP-ZVC samples were
composed of Cu0. X-ray photoelectron spectroscopy (XPS) provides available element
information on the surface of 3DHP-ZVC. As depicted in Figure 1b, Cu 2p peaks located at
931.8 and 951.6 eV were consistent with the binding energies of Cu0 [30,31]. Meanwhile, the
relatively weak peaks at 934.2, 954.2, and 941.6 eV were ascribed to the appearance of a trace
amount of Cu2+ due to the inevitable surface oxidation during the XPS determination [31].
Similar phenomena that the characteristic peaks of Cu2+ were also detected on the surface
of Cu0 in XPS measurements were observed in previous studies [32]. The surface images
of the 3DHP-ZVC samples were revealed using a scanning electron microscopy (SEM)
instrument (Figure 1c–f). 3HDP-ZVC possesses hierarchically porous structures and a
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coarse surface, which is beneficial to the exposure of more active sites (Figure 1c) [33].
Moreover, Brunauer–Emmett–Teller (BET) analysis was applied to measure the specific
surface area of the samples. The surface area of 3DHP-ZVC (2.5 m2/g) is comparable to that
of Cu powder (3.1 m2/g), suggesting that the specific surface area characteristic undergoes
no significant change during the printing process.
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Figure 1. (a) XRD patterns of 3DHP-ZVC, (b) Cu 2p XPS spectra of 3DHP-ZVC before and after
reactions, and SEM images of (c,d) 3DHP-ZVC, and (e,f) used 3DHP-ZVC.

2.2. Catalytic Performance of 3DHP-ZVC

The Fenton-like performance of the developed 3DHP-ZVC samples was evaluated
using tetracycline (TC, a typical antibiotic) as a target pollutant. As presented in Figure 2a,b,
H2O2 decomposed a negligible amount of TC, while 40.8% of TC was removed by sole
3DHP-ZVC within 60 min. Nevertheless, the removal efficiency of TC was remarkably
improved to 93.2% in the 3DHP-ZVC/H2O2 system. Furthermore, the concentration of
Cu2+ ions was determined to be 0.7 mg/L during the reaction process under a neutral
condition, which was much lower than the permissible limit of the World Health Orga-
nization (2 mg/L) [34]. The homogeneous leaching copper ions contributed only 13.5%
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of TC degradation with the addition of H2O2, suggesting the removal of TC was mainly
invoked via a heterogeneous catalytic reaction of 3DHP-ZVC. Figure 2b presents the com-
parison of different catalyst-H2O2 systems under neutral conditions. Although the form
of powder was easily dispersed in the solution, the aggregation of Cu powder would in-
evitably prevent contact among H2O2 and TC molecules, resulting in comparable catalytic
performance to 3DHP-ZVC. However, the leaching concentration of Cu2+ ions in the Cu
powder/H2O2 system (1.5 mg/L) was 2.14 times that in the 3DHP-ZVC/H2O2 system
(0.7 mg/L), implying the merit of the hierarchically porous structures.

Catalysts 2023, 13, x  4 of 13 
 

 

remarkably improved to 93.2% in the 3DHP-ZVC/H2O2 system. Furthermore, the concen-

tration of Cu2+ ions was determined to be 0.7 mg/L during the reaction process under a 

neutral condition, which was much lower than the permissible limit of the World Health 

Organization (2 mg/L) [34]. The homogeneous leaching copper ions contributed only 

13.5% of TC degradation with the addition of H2O2, suggesting the removal of TC was 

mainly invoked via a heterogeneous catalytic reaction of 3DHP-ZVC. Figure 2b presents 

the comparison of different catalyst-H2O2 systems under neutral conditions. Although the 

form of powder was easily dispersed in the solution, the aggregation of Cu powder would 

inevitably prevent contact among H2O2 and TC molecules, resulting in comparable cata-

lytic performance to 3DHP-ZVC. However, the leaching concentration of Cu2+ ions in the 

Cu powder/H2O2 system (1.5 mg/L) was 2.14 times that in the 3DHP-ZVC/H2O2 system 

(0.7 mg/L), implying the merit of the hierarchically porous structures.  

 

Figure 2. TC degradation (a) in different systems under optimal conditions, (b) by different catalyst-

H2O2 systems at pH = 7.23, effects of (c) H2O2 dosage, and (d) initial pH value on the degradation of 

TC. 

The concentration of the leaching metal ions was measured to be approximately 10 

mg/L in the ZVI/H2O2 system under identical conditions, which was 14.3 times higher 

than that of the 3DHP-ZVC/H2O2 system. These results indicate the excellent catalytic ac-

tivity and reliable stability of 3DHP-ZVC in activating H2O2. Furthermore, 3DHP-ZVC 

exhibits comparable catalytic performance in activating H2O2 and demonstrates better re-

cycling performance compared to those of many other Cu-based catalysts (Table 1). 

  

Figure 2. TC degradation (a) in different systems under optimal conditions, (b) by different catalyst-
H2O2 systems at pH = 7.23, effects of (c) H2O2 dosage, and (d) initial pH value on the degradation
of TC.

The concentration of the leaching metal ions was measured to be approximately
10 mg/L in the ZVI/H2O2 system under identical conditions, which was 14.3 times higher
than that of the 3DHP-ZVC/H2O2 system. These results indicate the excellent catalytic
activity and reliable stability of 3DHP-ZVC in activating H2O2. Furthermore, 3DHP-ZVC
exhibits comparable catalytic performance in activating H2O2 and demonstrates better
recycling performance compared to those of many other Cu-based catalysts (Table 1).
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Table 1. Comparison of catalytic activity of various Cu-based catalysts in references.

Catalyst H2O2 Concentration
(mM)

Pollutant Concentration
(mg/L)

Removal
Efficiency Cycle Number Reference

CuNx 80 TC
20

93.6%
(60 min) 5 [35]

CuxNiyCo-LDH/GO 10 TC
20

96.5%
(40 min) 5 [36]

CuFeO QDs/CNNSs 100 TC
50

99.8%
(25 min) 5 [37]

CuS@GCS ENFC 67 TC
10

81.3
(120 min) 4 [38]

ZVC 10 Norfloxacin
5

46.7%
(30 min) Not available [39]

NPC@DCS (Cu) 500 RhB
10

100%
(60 min) 5 [28]

nZVC-Cu(II)-rGO 10 2-chlorophenol
10

91.8%
(60 min) 8 [40]

3DHP-ZVC 50 TC
10

93.2 %
(60 min) 20 This work

2.3. Influence of Experimental Conditions
2.3.1. Effect of H2O2 Concentration

The concentration of H2O2 can significantly affect the degradation of TC in the 3DHP-
ZVC/H2O2 system. As illustrated in Figure 2c, the decomposition of TC was enhanced by
raising the H2O2 concentration from 20 to 50 mM, which was attributed to the generation
of more active radicals [41]. Nevertheless, further increasing the H2O2 amount to 80 mM
did not significantly improve the TC removal owing to the radical scavenging effect of
excessive H2O2 [42]. Thus, the optimal H2O2 dosage was fixed at 50 mM.

2.3.2. Effect of Initial pH

The initial pH of the solution plays an essential role during Fenton-like processes [43].
Therefore, various experiments were performed over a pH range from 3.16 to 9.45 to
investigate the catalytic activity of the 3DHP-ZVC/H2O2 system. As illustrated in Figure 2d,
the highest degradation efficiency of TC reached 93.2% at pH = 3.16 and slightly decreased
to 83.5% and 82.4% with increasing pH to 5.25 and 7.23, respectively. Such an observation
might be ascribed to the fact that more active intermediates were released under acidic
conditions [44]. However, when the solution pH was further raised to 9.45, the degradation
activity significantly decreased, which was assigned to a decreased redox potential of •OH
and the appearance of Cu(OH)2 [45,46]. Moreover, an alkaline environment favors the
existence of more carbonate and bicarbonate, which are typical •OH quenches [45]. It is
noted that the efficient degradation efficiency was maintained at over 82% under acidic
and neutral pH conditions (3.16–7.23), implying its great potential for practical application.

2.4. Environmental Applications

Inorganic anions, widespread in actual water environments, are capable of competing
for possible reactive oxygen species with target pollutants, which shows their significant
impact on the oxidation process [47,48]. As revealed in Figure 3a, the addition of HCO3

−

and HPO4
2− to the reaction drastically delayed the removal efficiency of TC from 93.2% to

75.3% and 72.4%, respectively, which was attributed to the scavenging effect of HCO3
− and

HPO4
2− for •OH [49]. Comparatively, SO4

2− and NO3
− exhibited a negligible inhibitory

effect in the process owing to the slow reaction with reactive oxygen species, which was
consistent with previous reports [50]. In contrast, adding 10 mM of Cl− to the reaction
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solution significantly promoted the decomposition of TC due to the formation of various
chlorine active species in the reaction, such as Cl•−, ClOH•−, and Cl2−• [51].
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samples, (c) various water systems on the TC removal, and (d) degradation of different organic
pollutants including RhB, CIP, and ARG.

The stability of the obtained 3DHP-ZVC samples was also evaluated. As displayed
in Figure 3b, the catalytic activity of 3DHP-ZVC for TC degradation had no significant
decay during 20 continuous cycles, which exceeds most of the conventional Cu-based
nanoparticle catalysts. This result may be due to the advantages of hierarchically porous
structures of 3DHP-ZVC, which facilitate separation and recovery from water bodies and
reduce the dissolution of ions, decreasing the risk of secondary pollution. In addition, no
change had been observed in the XRD spectra of the 3DHP-ZVC sample after the reaction
process, indicating its excellent structural stability (Figure 1a).

To explore the adaptation of 3DHP-ZVC for further practical applications, the reactions
in different actual water matrixes were conducted and the catalytic performance toward
various organic contaminants was investigated. The removal efficiency of TC achieved
85.3% and 84.7% in the Yangtze River and East Lake water, respectively, implying the great
application potential of 3DHP-ZVC in actual water treatment (Figure 3c). In addition, RhB
(a cationic dye), ciprofloxacin (CIP, an antibiotic), and acid red G (ARG, an azo dye) were
selected to prove the applicability of the 3DHP-ZVC/H2O2 system. Figure 3d demonstrates
that all the selected contaminants could be decomposed by over 82% in 90 min, indicating
that 3DHP-ZVC is potentially effective in Fenton-like systems for wastewater purification.

2.5. Activation Mechanism

Numerous studies have confirmed that •OH and superoxide radicals (O2
•−) play

essential roles in heterogeneous Fenton systems [52–54]. Therefore, tert-butanol (TBA, a
typical scavenger for •OH) and chloroform (CHCl3, an effective scavenger of O2

•−) were
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used to investigate the contribution of •OH and O2
•− radicals in the 3DHP-ZVC/H2O2

system [41,55]. As shown in Figure 4a, adding 1 M of TBA to the reaction solution dropped
the degradation efficiency of TC from 93.2% to 32.9% within 60 min and significantly
suppressed it to 21.4% with the TBA concentration further increasing to 3 M. Meanwhile,
the reaction rate in the existence of TBA (3 M) was dramatically decreased over 13 times
compared to the control groups (Figure 4c). These results indicated the dominant role of
•OH in the 3DHP-ZVC/H2O2 system. The introduction of 0.1–0.3 M of CHCl3 resulted in
a significant inhibition effect on the TC removal, suggesting that O2

•− also participated in
the reaction. Recent reports indicate that the cycle of Cu(II)/Cu(I) is responsible for the
generation of •OH for TC degradation [56]. To ascertain this conclusion, neocuproine (NCP)
and ethylene diamine tetraacetic acid (EDTA) were employed to identify the role of Cu(I)
and Cu(II) during the reaction, respectively [57]. As shown in Figure 4b,d, the presence of
NCP and EDTA greatly prevented the removal of TC, strongly confirming the involvement
of Cu(I) and Cu(II) in the reaction. In addition, it is widely accepted that the reduction of
high-valent species is the rate-limiting step in the oxidation process. Hydroxylamine (HA)
served as a reducing agent that significantly accelerated the degradation of TC (Figure 4b,d),
indicating the cycle of Cu(II)/Cu(I) [58]. Besides, compared to fresh 3DHP-ZVC, the relative
ratio of Cu2+ and Cu0 (Figure 1b) increased significantly for the used 3DHP-ZVC samples,
and slight corrosion was observed after the oxidation process (Figure 1e,f), which elucidated
the transformation of Cu0 to Cu2+ in the TC degradation process.
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Figure 4. Effects of (a) different scavengers (TBA and CHCl3), (b) HA, NCP, and EDTA for TC
removal in the 3DHP-ZVC/H2O2 system, and (c,d) their corresponding reaction rate constant under
different conditions.

According to the above discussion, a feasible mechanism for TC removal in the 3DHP-
ZVC/H2O2 system was proposed. First, the surface of 3DHP-ZVC was corroded by H+

and H2O2 to release Cu(I) (Equation (1)) [59]. The released Cu(I) was responsible for the
H2O2 activation to generate •OH, as described by Equation (2) [60]. Subsequently, Cu(I)
was further oxidized by •OH to generate Cu(II), and O2

•− was produced with the reaction
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between Cu(II) and H2O2 (Equations (3) and (4)) [61,62]. Then, O2
•− and Cu0 could serve

as reducing agents for the regeneration of Cu(I) via Equations (5) and (6) [62,63]. Finally,
the removal of TC was achieved by the generation of •OH in the 3DHP-ZVC/H2O2 system.

2 Cu0 + 2 H+ + H2O2 → 2 Cu(I) + 2 H2O (1)

Cu(I) + H2O2 → Cu(II) + •OH + OH- (2)

Cu(I) + •OH→ Cu(II) + OH- (3)

Cu(II) + H2O2 → Cu(I) + O2
•− + 2 H+ (4)

Cu(II) + O2
•− → Cu(I) + O2 (5)

Cu(II) + Cu0 → 2 Cu(I) (6)

2.6. Analysis of TC Removal by 3D-EEMs

Three-dimensional excitation-emission matrix fluorescence spectroscopy (EEMS) tech-
nology was applied to explain the overall removal and mineralization of TC in the 3DHP-
ZVC/H2O2 system. As revealed in Figure 5a, no fluorescence peak was observed in the
initial TC solution due to the electron-withdrawing groups of TC, which was consistent
with previous reports [64]. Two maxima fluorescence peaks belonging to the areas of
fulvic acids-like (Ex/Em = 260–320/400–460) and humic acid (Ex/Em = 300–360/460–550)
were found after degradation for 30 min (Figure 5b) [65]. When the degradation time was
increased to 60 min, the intensities of the fluorescence signals were significantly weakened,
and the signals disappeared when increasing the reaction time to 24 h, implying that
the generated intermediate substances were finally mineralized into smaller fragments
(Figure 5c,d). The change in the intensity of fluorescence signals during the reaction reflects
the removal pathway of TC to some extent.
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3. Materials and Methods
3.1. Materials and Reagents

NaOH, HNO3, RhB, H2O2, HA, EDTA, Na2HPO4, NaCl, Na2SO4, NaHCO3, NaNO3,
and CHCl3 were purchased from China Sinopharm Chemical Reagent Co., Ltd. (Shanghai,
China). TBA, NCP, and TC were supplied by China Aladdin Chemistry Co., Ltd. (Shanghai,
China). ARG and CIP were obtained from China Macklin in Biochemical Reagent Co., Ltd.
(Shanghai, China). All reagents used in this experiment were analytical grade and used
without further purification. Pure copper powder was supplied from VilWory Advanced
Materials Technology Co., Ltd. (Jiangsu, China).

3.2. SLM Processing

Cu powder particles (15–40 µm) with spherical shapes were sieved out for SLM
processing. The samples were fabricated through a self-developed SLM-150 machine
(ZRapid Tech, Suzhou, China), where a 500 W fiber laser was equipped. The chamber was
full of high-purity argon to prevent oxygen. The laser scanning speed and power play
a vital role in the quality of the SLM-produced samples [66]. To minimize the possible
defects, the optimized parameters are listed in Table 2, and the SLM process is illustrated
in Figure 6.

Table 2. Optimized parameters in this work and the weight and dimension of 3DHP-ZVC.

Scanning Speed
(mm/s)

Laser Power
(W)

Layer Thickness
(mm)

Hatch Spacing
(mm)

Weight
(g)

Dimension
(mm ×mm ×mm)

600 300 0.03 0.10 2.1 10 × 10 × 10
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3.3. Characterization

The microstructure of the 3DHP-ZVC catalysts was characterized via X-ray diffrac-
tion (XRD, XRD 6100, Kratos, Kyoto, Japan), and the data were determined from 20◦ to
100◦. The surface morphology information was obtained via Scanning Electron Microscopy
(SEM, Gemini 300, ZEISS, Oberkochen, Germany). The chemical state of the fresh and used
3DHP-ZVC was determined using an X-ray photoelectron spectroscopy (XPS, ESCALAB
Xl+, Thermo, Waltham, MA, USA) instrument. Three-dimensional excitation-emission
matrix fluorescence spectra (3D EEMs, F-2700, HITACHI, Tokyo, Japan) were used to
investigate the degradation pathway of TC. The leached Cu2+ ions were obtained through
an SP−3520AA atomic absorption spectrometer (SP−3520AA, Shanghai Spectrum Instru-
ments, Shanghai, China). The specific surface area of the samples was measured through
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nitrogen adsorption on an ASAP2020 HD88 nitrogen adsorption apparatus (Micromeritics,
Shanghai, China).

3.4. Experimental Procedure

All the degradation reactions were performed in 250 mL glass beakers in a water bath
under continuous magnetic stirring. Firstly, 2.1 g of 3DHP-ZVC was sunk into 100 mL of TC
reaction solution (10 mg/L) for 30 min to achieve an adsorption equilibrium. The reaction
was initiated by the addition of a certain amount of H2O2. At fixed intervals, the reaction
solution (approximately 2 mL) was taken out for immediate measurement using a UV–vis
spectrophotometer (UV−1990PC, AOE Instruments, Shanghai, China). The maximum
detection wavelength of ARG, RhB, CIP, and TC was 505, 554, 275, and 356 nm, respectively.
In typical experiments, the dosage of H2O2 was 50 mM, and the solution of initial pH was
adjusted to 3 unless otherwise stated. NaOH or HNO3 solution (0.1 M) was applied to
adjust the pH of the TC solution. After each cycle, the 3DHP-ZVC catalyst was extracted
from the solution and rinsed using an ultrasonic cleaning instrument (KM-400KDE, Meimei
Ultrasonic Instrument Co., Ltd., Kunshan, China) with deionized water for 30 min.

4. Conclusions

In summary, a novel 3DHP-ZVC catalyst with hierarchically porous structures was
developed via 3D printing technology and served as an efficient H2O2 activator to decom-
pose various organic pollutants (e.g., TC, RhB, CIP, and ARG). The obtained hierarchically
porous 3DHP-ZVC samples not only facilitated recycling but reduced ionic leaching com-
pared to Cu powder particles for H2O2 activation to remove TC. Under optimal conditions,
the 3DHP-ZVC/H2O2 system could remove over 93.2% of TC, which is much superior
to the homogeneous Cu2+/H2O2 system. The catalyst presented excellent stability for
20 continuous cycles without significant decay. In addition, the 3DHP-ZVC/H2O2 system
demonstrated general applicability under a pH range from 3.16 to 7.23 and actual water
environments. Trapping experiments indicated that •OH radicals were the dominant active
species and O2

•− were involved in the 3DHP-ZVC/H2O2 system. The cycle of Cu(II)/Cu(I)
was proved to be responsible for the generation of •OH and O2

•−. This work paves a new
avenue to the development of stable and recycling-friendly catalysts in Fenton-like systems
for environmental remediation.
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