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Abstract: Vinyl chloride, the monomer of polyvinyl chloride, is produced primarily via acetylene
hydrochlorination catalyzed by environmentally toxic carbon-supported HgCl2. Recently, nitrogen-
doped carbon materials have been explored as metal-free catalysts to substitute toxic HgCl2. Herein,
we describe the development of a cationic covalent triazine network (cCTN, cCTN-700) that selectively
catalyzes acetylene hydrochlorination. cCTN-700 exhibited excellent catalytic activity with initial
acetylene conversion, reaching ~99% and a vinyl chloride selectivity of >98% at 200 ◦C during a 45 h
test. X-ray photoelectron spectroscopy, temperature programmed desorption, and charge calculation
results revealed that the active sites for the catalytic reaction were the carbon atoms bonded to
the pyridinic N and positively charged nitrogen atoms (viologenic N+) of the viologen moieties in
cCTN-700, similar to the active sites in Au-based catalysts but different from the those in previously
reported nitrogen-doped carbon materials. This research focuses on using cationic covalent triazine
polymers for selective acetylene hydrochlorination.

Keywords: cationic covalent triazine network; metal-free catalysts; acetylene hydrochlorination;
pyridinic N; viologenic N+

1. Introduction

Poly(vinyl chloride) (PVC) is the third most widely produced synthetic polymer
of plastic worldwide and has been processed to obtain various products owing to its
excellent properties and low cost. The total global production volume of PVC amounted
to 44.3 million metric tons in 2018, with a projected increase to ~60 million metric tons in
2025. Vinyl chloride monomer, the feedstock for PVC production, is synthesized mainly
via acetylene hydrochlorination using HgCl2 supported on activated carbon [1]. During
hydrochlorination, however, the catalyst is environmentally toxic with relatively short
lifetimes because the HgCl2 is apt to sublime during reaction [2]. Therefore, nonmercury
heterogeneous catalysts, including Au-based catalysts [3–9] and non-noble-metal-based
catalysts [10–15], have been widely investigated for acetylene hydrochlorination. Although
metal-based catalysts exhibit high catalytic activities, their high cost and poor durability
considerably restrict their commercialization [10,16,17]. Recently, nitrogen-doped carbon
materials have attracted the attention of many researchers owing to their good performance
in acetylene hydrochlorination [18–23]. For example, a nanocomposite of nitrogen-doped
silicon carbide material (SiC@N–C) reported by Bao and coworkers showed stable catalytic
activity and high conversion during acetylene hydrochlorination (~80% at 200 ◦C with a
space velocity of 0.8 mL g−1 min−1), and the carbon atoms adjacent to pyrrolic nitrogen
atoms were proposed to be the active sites in SiC@N-C [24]. Although other research groups
have developed nitrogen-doped carbon catalysts for acetylene hydrochlorination using
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pyridinic-N or quaternary-N active sites [2,18,21,22,25,26], challenges remain in designing
and constructing nitrogen-doped carbon catalysts with a precise number of N active sites
and prototypes for acetylene hydrochlorination. Triazine piqued our interest while we were
searching for potential monomers to build nitrogen-doped carbon materials as catalysts for
acetylene hydrochlorination. We envisioned that the basicity of triazine N in the carbon
matrix could promote hydrogen–chloride absorption, while acetylene, as a nucleophile,
is inclined to be attracted by the positively charged nitrogen atoms in viologen moieties.
Therefore, we focused on developing cationic covalent triazine networks (cCTNs) using
triazine and viologen as building blocks.

Herein, we report our cationic viologen-based covalent triazine networks fabricated
as a metal-free nitrogen-doped carbon catalyst for selective acetylene hydrochlorination.
cCTNs exhibited excellent catalytic activity, with initial acetylene conversion reaching
~99% and a vinyl chloride selectivity of >98% at 200 ◦C during a 45 h test. This catalytic
result reached the mercury chloride catalyst, exceeding the reported nitrogen-doped carbon
catalyst. cCTNs have a similar catalytic mechanism to mercury chloride. The positive
charge on the surface of the catalyst is similar to that of mercury ion, which can enhance
the adsorption of acetylene. Pyridine nitrogen is similar to chloride ion, which can adsorb
hydrogen chloride molecules. The catalytic mechanism of the nitrogen-doped carbon cata-
lysts is dependent mainly on pyridine nitrogen adsorption of hydrogen chloride molecules,
while the adsorption capacity of acetylene molecules is weak.

2. Results
2.1. Catalytic Performance of cCTN-700

In a fixed-bed reactor, acetylene hydrochlorination was conducted at various reaction
temperatures using cCTN-700 as a catalyst to determine its catalytic performance. As
shown in Figure 1, acetylene conversion considerably increased with increasing reaction
temperature and the initial acetylene conversion at 200 ◦C surprisingly reached 99.3% with
a vinyl chloride selectivity of 98% (Figure 1a,b), outperforming the previously reported
N-doped catalysts [24,27,28]. By contrast, the CTF-700 catalyst exhibited a rather low
activity, with an initial acetylene conversion of 81.6% (Figure 1c), which quickly dropped to
25.2% after a 10 h test. cCTN-700 demonstrated stable acetylene hydrochlorination during
a 45 h test (Figure 1d), showing the superiority of cCTN-700 over CTF-700 in terms of
catalytic stability. cCTN-700 showed a great potential for use as a metal-free catalyst to
replace the mercury catalyst in the poly(vinyl chloride) industry.

2.2. Structure–Activity Relationship

The elemental analysis of CTF-700 and cCTN-700 indicated that CTF-700 exhibited a
slightly higher nitrogen content than cCTN-700. Previous studies indicated that increasing
the nitrogen content of N-doped carbon catalysts improved their catalytic performance
in acetylene hydrochlorination [3,26]. Thus, the nitrogen content could not explain the
catalytic performance of cCTN-700, which appeared to be attributed to the viologen units
in its structure. The surface morphologies and textures of cCTN:Cl, CTF, cCTN-700, and
CTF-700 were studied using SEM (Figure 2). The SEM images of cCTN-700 (Figure 2a,b)
show that it retained the intrinsic morphology of cCTN:Cl, indicating that cCTN-700 was
perfectly fabricated via pyrolysis of cCTN:Cl. However, the texture of the cCTN-700
appears much looser and more porous than those of cCTN:Cl and CTF-700, implying that
the increased special surface in cCTN-700 benefitted its catalytic performance (Figure 2).

According to the IUPAC classification, the N2 adsorption/desorption of cCTN-700
showed a type IV isotherm (Figure 2e,f). The total adsorption capacity at the relative
pressure (0–1.0) was only ~28 cm3 g−1, indicating a small number of pores and low specific
surface, consistent with the specific surface area data (17.0 m2 g−1) shown in Table 1. A
type-H3 hysteresis loop was obtained owing to capillary condensation at relative pressure
P/P0, widely ranging from 0.05 to 1.0, and no obvious saturated adsorption platform was
observed, indicating abundant mesopores in the structure together with a small proportion
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of micropores and macropores. Thus, the pore morphology of cCTN-700 was highly
irregular. The isotherm also demonstrated that the pore-size distribution of the cCTN-700
was considerably wide, consistent with the pore-size distribution (PSD) plot (the inset
presented in Figure 2e). The N2 adsorption/desorption isotherm and PSD plot of the
precursor cCTN:Cl showed a thermal deformation at 700 ◦C, resulting in an irregular
morphology and space structure of cCTN-700. The low molecular weight of cCTN-700 was
attributed to the depolymerization of cCTN:Cl at a high temperature (700 ◦C), consistent
with SEM images (Figure 2a,b). By contrast, the precursor CTF seemed to exhibit a different
thermal deformation, resulting in a small number of pores and low specific surface area
of CTF-700 (Figure 2f and Table 1). The N2 isotherms and PSD plots of CTF and CTF-700
were consistent with the SEM images presented in Figure 2c,d. cCTN-700 exhibited a
higher specific surface area than the CTF-700, indicating its excellent catalytic performance
in acetylene hydrochlorination. Nonetheless, the specific surface area of cCTN-700 was
considerably lower than that of an activated carbon-based catalyst. Thus, it is speculated
that the excellent superior catalytic performance of cCTN-700 could be attributed to its
intrinsic highly active sites.
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Figure 1. (a) Acetylene conversion under various reaction temperatures (160–200 ◦C). (b) Selectivity
of vinyl chloride. (c) Comparison of the catalytic performance of cCTN-700 and CTF-700 at 200 ◦C.
(d) Stability test of cCTN-700. Reaction conditions: T = 160–200 ◦C, 1 atm, feed mole ratio hydrogen
chloride/C2H2 = 1.2, and C2H2 space velocity = 1.0 mL min−1 g−1 (gas hourly space velocity
(GHSV) = 40 h−1).

Table 1. Elemental compositions and texture properties of the catalysts.

Sample C% a O% a H% a N% a SBET b(m2/g) D Average c (nm) Nitrogen–Carbon Ratio

cCTN:Cl 59.6 11.4 4.7 14.2 / / 0.24
CTF 65.5 9.5 4.1 18.7 / / 0.29

cCTN-
700 79.4 3.8 1.8 11.3 17.0 5–10 0.21

CTF-700 82.3 2.9 1.6 12.3 5.7 30–40 0.07
a Measured via combustion elemental analysis; b specific surface area; c adsorption average pore width.
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adsorption–desorption isotherms of (e) cCTN-700 and (f) CTF-700; insets: the corresponding PSD of
(e) cCTN-700 and (f) CTF-700.

In the Raman spectra of cCTN-700 and CTF-700 (Figure 3a), the appearance of diffrac-
tion peaks at 1595 cm−1 (the G band) and 1352 cm−1 (the D band) could be attributed
to the ordered carbon structure associated with the sp2 electronic configuration and the
disordered/defective structure of carbon, respectively. The intensity ratio of the D/G peaks
(ID/IG) was generally correlated with the defective degree of carbon materials. The doping
of nitrogen atoms led to the generation of defects and the difference of their catalytic activity.
cCTN-700 and CTF-700 showed approximately equivalent ID/IG values (Figure 3a), indi-
cating that these materials exhibited the close defective degree. Their XRD patterns were
obtained to further detect crystals and defects on the surface of the materials (Figure 3b).
The strong peaks located at ~24.5◦ and ~43.5◦ could be assigned to the (002) and (100)
crystal planes of graphite structure, respectively. The position (angle) of the (002) band was
believed to be related to the interlayer spacing between aromatic layers. The intensities
of the (002) crystal planes of cCTN-700 and CTF-700 were high, implying the formation
of ordered graphitized structures. The higher intensities of the (002) and (100) bands of
CTF-700, compared with those of cCTN-700, implied a higher graphitization degree of the
former than that of the latter. Such a difference in the graphitization degree of the two
materials could also be attributed to the viologen units present in cCTN-700. It is assumed
that the superior catalytic performance of cCTN-700 was attributed to the viologen units in
the carbon skeleton.
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(c) TGA patterns of the samples were recorded under nitrogen atmosphere. (d) FTIR spectra of
cCTN-700 and CTF-700.

The TGA of cCTN:Cl and CTF conducted under nitrogen atmosphere showed sub-
stantial weight loss from 100 ◦C to 700 ◦C (Figure 3c), indicating the poor thermal stability
of the two materials in this temperature range, but high thermal stabilities were observed
between 700 ◦C and 1000 ◦C (no obvious weight loss). Furthermore, on the basis of the
TGA curves, the precursor cCTN:Cl appeared to exhibit a higher thermal stability than CTF.
Therefore, calcination of both precursors, cCTN:Cl and CTF, was performed at 700 ◦C to
afford cCTN-700 and CTF-700, respectively, with high thermal stability.

The catalysts cCTN-700 and CTF-700 showed very similar patterns in their Fourier-
transform infrared (FTIR) spectra (Figure 3d), with the characteristic C=N, C–N and benzene
C–H stretching bands observed at 1550, 1360, and 3300 cm−1, respectively, implying the
presence of triazine and benzene moieties.

2.3. Active Sites and Mechanism of Catalytic Acetylene Hydrochlorination

XPS, TPD, and the calculations of total charges of molecules were performed to gain
an insight into the active sites of cCTN-700 for acetylene hydrochlorination and the relation
between the forms of nitrogen species and catalytic activity. In the XPS spectra (Figure 4a),
the peaks observed at ~284, ~400, and ~530 eV could be assigned to C1s, N1s, and O1s,
respectively. The peak observed at ~200 eV in the XPS spectrum of cCTN:Cl was assigned
to Cl2p. The disappearance of the Cl2p signal in the XPS spectrum of cCTN-700 indicated
disappearance of the positive charges after calcination of cCTN:Cl at 700 ◦C. To understand
the chemical state of the nitrogen species, the high-resolution N1s spectra of CTF-700
and cCTN-700 were collected (Figure 4b,c). As shown in Figure 4b, the deconvolution of
the high-resolution N1s spectrum of CTF-700 showed two peaks, corresponding to two
chemical states attributed to pyridinic N (~398.5 eV) and graphitic N (~401.2 eV). At an
elevated calcination temperature, the triazine nitrogen atoms of CTF, which were often
categorized as pyridinic N in catalyst chemistry, were partially converted into graphitic
N. By contrast, the high-resolution N1s spectrum of cCTN-700 was split into three peaks,
corresponding to pyridinic N (~398.5 eV), graphitic N (~401.2 eV), and viologenic N
(~402 eV), as pyridinic N and viologenic N could partially convert to graphitic N. On the
basis of the difference in the composition of the chemical state of N in these two catalysts,
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we propose that the viologen nitrogen species in cCTN-700 caused its excellent catalytic
activity in acetylene hydrochlorination, with initial acetylene conversion of >98%.
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TPD enables the determination of the binding strength of the adsorbed species on the
catalyst surface and the amounts of species adsorbed. As shown in Figure 4e, two acetylene-
desorption temperature peaks were observed for cCTN-700 at ~130 ◦C and ~300 ◦C, but
only one acetylene-desorption peak was observed for CTF-700 at ~130 ◦C. The desorption
peak observed at ~130 ◦C was assigned to the pyridinic N in CTF-700 or cCTN-700, and
the acetylene-desorption peak observed at ~300 ◦C for cCTN-700 was, thus, assigned to the
species of viologenic N.

The pyridinic N and carbons bonded to the pyridinic N in CTF-700 were the active
sites for adsorbing hydrogen chloride and acetylene, respectively [1,24]. The carbon site
(Site 1) in cCTN-700 showed the same adsorbing and activating ability for acetylene as that
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in CTF-700; however, the N+ site of the viologen moieties (Site 2) in cCTN-700 exhibited
higher adsorbing and activating ability. These results were consistent with the activity
data (Figure 4d). The result of TPD further demonstrated that the N+ sites of the viologen
moieties in cCTN-700 played a critical role in acetylene hydrochlorination in addition to
the carbons bonded to the pyridinic N.

The charge distributions of triazine, 4,4′-bipyridine, and the cCTN+ moiety were
calculated to better understand the active sites of cCTN-700 for acetylene hydrochlorination
(Figure 4f). Positive charges of ~0.6 and ~0.2 were found on the atomic orbitals of viologenic
N+ and a carbon atom bonded with pyridinic N, respectively. Owing to the difference in
positive charges, the adsorbing and activating ability of viologenic N+ for acetylene was
superior to that of a carbon atom bonded with pyridinic N, consistent with the results
presented in Figure 4d,e. The mechanism of acetylene hydrochlorination catalyzed by
cCTN-700 is shown in Figure 4g. According to the TPD results [21,23], adsorbing hydrogen
chloride is the rate-limiting step in this catalytic acetylene hydrochlorination because
the adsorption ability of pyridinic N for hydrogen chloride is similar to that of a carbon
atom bonded with pyridinic N for acetylene. Excess hydrogen chloride was fed and
adsorbed onto pyridinic N, whereas acetylene was fed and adsorbed onto carbon atoms
bonded with pyridinic N and viologenic N+ of cCTN-700. After being activated, hydrogen
chloride reacted with acetylene to form vinyl chloride, which was then released from the
cCTN-700 surface.

3. Materials and Methods
3.1. Catalyst Precursor Synthesis
3.1.1. Synthesis of Precursor Catalyst cCTN:Cl

According to our previous report, the precursor of the cCTN was prepared via Zincke
reaction [28,29]. 2,4,6-Tris(4-aminophenyl)-1,3,5-triazine (TAPT) (354.0 mg, 1.0 mmol) and
1,1′-bis(4-cyanophenyl)-[4,4′-bipyridine]-1,1′-diium dichloride (DNP2+-2Cl−) (841.5 mg,
1.5 mmol) were dispersed in a mixed solvent containing EtOH and H2O (50 mL, 10:1, v v−1)
within a sealed tube. The resulting mixture was sonicated for 30 min and then heated at
120 ◦C for 72 h. Subsequently, the reaction mixture was cooled to 25 ◦C, and the resulting
precipitate was collected via filtration; washed with THF, water, and EtOH; and dried
at 120 ◦C under reduced pressure to obtain the cationic viologen-based covalent triazine
networks cCTN:Cl (0.71 g, 59%) (Scheme 1).
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3.1.2. Synthesis of Precursor Covalent Triazine Networks (CTN) [30,31]

Trifluoromethanesulfonic acid (20 mL) was dropwise added to a round bottom flask
containing terephthalonitrile (2.56 g, 20 mmol) at room temperature under Ar atmosphere,
affording a red solution that was heated overnight at 100 ◦C. After being cooled to room
temperature, the reaction mixture was poured onto ice, and the resulting mixture was
neutralized to pH = 7 using a concentrated aqueous ammonia solution (28%). The formed
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yellow precipitate was collected via filtration, washed with water, and dried under reduced
pressure at 80 ◦C for 12 h to obtain CTN as a reddish-brown power.

3.1.3. Preparation of Catalyst cCTN-700

The as-synthesized cCTN:Cl (5.0 g) was carbonized at 700 ◦C for 2 h under nitrogen
atmosphere at a heating rate of 5 ◦C min−1. After being cooled to room temperature, the
obtained black powder was washed with an aqueous hydrogen chloride solution (2.0 M)
and water (pH = 7) and dried under reduced pressure at 80 ◦C for 12 h to obtain catalyst
cCTN-700 (2.5 g, 50%).

3.1.4. Preparation of Catalyst CTF-700

The covalent triazine framework CTF-700 was prepared using CTF by following a
similar procedure as that of the preparation of cCTN-700.

3.2. Catalyst Characterization

The stabilities of the as-synthesized catalysts were analyzed using thermogravimetric
analysis (TGA) on a SDT Q600 thermogravimetric analyzer (TA Instruments, New Cas-
tle, DE, USA) at a heating rate of 10 ◦C min−1 from room temperature to 1000 ◦C under
nitrogen atmosphere. The crystalline structures of the catalysts were determined using
power X-ray diffraction (PXRD) on a Bruker AXS D8 ADVANCE X-ray diffractometer with
Cu Kα radiation (Bruker D8, Bruker AXS, Bruker Company, Karlsruhe, Germany). The
microstructures of samples were obtained via scanning electron microscopy (SEM) using
a Hitachi S-4800 field-emission scanning electron microscope (S-4800, Hitachi Company,
Tokyo, Japan). X-ray photoelectron spectroscopy (XPS) was conducted using a Thermo
Scientific Kα X-ray photoelectron spectrometer fitted with a monochromatic Al Kα source
(EscaLab 250Xi, Thermo Fisher Scientific Company, Waltham, MA, USA). Elemental anal-
ysis (EA) was performed using a Perkin Elmer PE2400CHNS instrument (Perkin Elmer
Company, Waltham, MA, USA). The N2 adsorption/desorption isotherms were measured
using a JW-BK122W surface area and pore-size distribution analyzer at 77 K (JWGB Com-
pany, Beijing, China). The Raman spectra were recorded using a Raman spectrometer with
a 532 nm laser excitation (iuVia reflex, Ren-ishaw Company, London, UK). Temperature
programmed desorption (TPD) study of acetylene was performed using a Micromeritic
ASAP 2720 instrument with a temperature ramp of 50–600 ◦C at a ramp rate of 10 ◦C min−1

and a He flow of 45 mL min−1 (ASAP 2720, Micromeritics Company, Norcross, GA, USA).

3.3. Catalytic Performance

The catalytic performance regarding acetylene hydrochlorination was evaluated using
a fixed-bed quartz tube microreactor. After loading the catalyst into the tube, air and water
were removed by flowing high-purity N2 (10 mL min−1) at 150 ◦C. After activating the
catalysts using hydrogen chloride (10 mL min−1) for 1 h, acetylene (1.0 mL min−1) and
hydrogen chloride (1.2 mL min−1) were introduced into the reactor, and the reaction was
monitored every one hour.

4. Conclusions

We developed a new type of nanocomposite cCTN-700 that can selectively catalyze
acetylene hydrochlorination to afford vinyl chloride. cCTN-700 exhibited an excellent
catalytic activity, with acetylene conversion reaching ~99% and selectivity to vinyl chloride
as >98% at a space velocity of 1.0 mL min−1 g−1 at 200 ◦C. Furthermore, the catalyst
demonstrated good stability in a 45 h test. XPS analysis and catalytic activity data revealed
that the carbon atoms bonded to the pyridinic N and viologenic N+ at the sites that
adsorb and activate acetylene; these sites are obviously different from those in the other
reported nitrogen-doped carbon materials [2,16–19,23]. The present study demonstrates
that cCTN-700 can be used as a catalyst to substitute the toxic HgCl2 catalyst for acetylene
hydrochlorination.
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