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Abstract: In this research, catalytic cracking of low-density polyethylene (LDPE) has been carried
out in the presence of three kinds of typical molecular sieves, including ZSM-5, HY and MCM-41,
respectively. The effects of different catalysts on the composition and quantity of pyrolysis products
consisting of gas, oil and solid material were systematically investigated and summarized. Specially,
the three kinds of catalysts were added into LDPE for pyrolysis to obtain regulatable oil and gas prod-
ucts (H2, CH4 and a mixture of C2–C4

+ gaseous hydrocarbons). These catalysts were characterized
with BET, NH3-TPD, SEM and TEM. The results show that the addition of MCM-41 improved the oil
yield, indicating that the secondary cracking of intermediate species in primary pyrolysis decreased
with the case of the catalyst. The highest selectivity of MCM-41 to liquid oil (78.4% at 650 ◦C) may
be attributed to its moderate total acidity and relatively high BET surface area. The ZSM-5 and HY
were found to produce a great amount of gas products (61.4% and 67.1% at 650 ◦C). In particular, the
aromatic yield of oil production reached the maximum (65.9% at 500 ◦C) when the ZSM-5 was used.
Accordingly, with the three kinds of catalysts, a new environment-friendly and efficient recovery
approach may be developed to obtain regulatable and valuable products by pyrolysis of LDPE-type
plastic wastes.

Keywords: LDPE; ZSM-5; HY; MCM-41; catalytic pyrolysis

1. Introduction

Global demand for plastics is growing rapidly due to their widespread applications in
many fields [1–3]. Plastic production has increased 20-fold over the past half century and is
expected to exceed 500 million tons by 2050 [4]. There are many kinds of plastics, while
polyethylene (PE) ranks first with 32%. Low-density polyethylene (LDPE) is one of the
most widely applied plastic [5]. LDPE has a high degree of short- and long-chain branching,
which prevents the chains from entering the crystal structure [4,6]. The environment and
global ecosystems are negatively affected by the excessive use, improper management and
disposal of plastics [3]. Therefore, how to achieve a clean and efficient utilization of waste
plastics with high value, for example, regulatable oil and gas products, has become an
urgent problem to be solved.

Pyrolysis is considered an emerging recycling technology that has attracted wide atten-
tion. It is the process of breaking polymer molecular chains and converting them into liquid
oil, char and gases at a high temperature (300–900 ◦C) in an inert atmosphere [7,8]. Given
the feasibility of regulatable gas, recycling waste plastics using pyrolysis is considered a
promising treatment [9–11]. However, the factors influencing the pyrolysis process, such
as temperature, pressure, catalyst type, heating mode, etc., are complex and there is still a
great difference in the yield of gas products, restraining the application. At the same time,
pyrolysis suffers from a large variety of reaction products, high pyrolysis temperatures
and low yields of valuable chemicals. However, the introduction of catalysts can decrease
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the reaction temperature as well as the activation energy of pyrolysis and change the way
of plastic pyrolysis to achieve the selective collection of target products. At the same
time, catalytic pyrolysis can promote the fracture of long-chain molecules to achieve light
pyrolysis products [12] and reduce the viscosity of the liquid phase of pyrolysis, obtaining
valuable chemical production.

There are various catalysts applied in the process of plastic pyrolysis, but the most
widely employed catalysts are ZSM-5, Y-zeolite, FCC(fluid catalytic cracking) and MCM-41 [7].
Especially zeolites have found widespread applications in plastic cracking because of their
structural advantages such as diverse skeleton structure, highly ordered pores, sufficient
acid sites, large specific surface area as well as great stability [7,11].

ZSM-5 has been generally employed in the thermal cracking of waste plastic and
gas adsorption-separation industry because of its strong acidity and shape selectivity.
Ding et al. [13] and Du et al. [14] found that ZSM-5 is a kind of crystalline aluminosilicate
material with a unique two-dimensional pore structure. The pores intersect each other with
a diameter of 0.55 nm, which is conducive to the generation of hydrocarbons with a carbon
number of less than 10. It also has excellent thermal stability and hydrothermal stability,
strong acid resistance and anti-carbon deposition, adjustable acidity, great shape selectivity,
isomerization capacity and other catalytic properties. Wei et al. [15] found that HY zeolite
shows good catalytic performance with the advantages of regular pore structure, high
stability as well as reactivity. At the same time, Ding et al. [16] found that HY is used as a
catalyst for co-pyrolysis with LDPE, increasing from 23.5% to 80.4% as the ratio of HY to
LDPE rose from 0 to 1:5. It is known that oil production and quality achieve the best balance
at the HY to LDPE ratio of 1:10. Zhang et al. [2] reported that MCM-41 is a mesoporous
material with a high surface area, which can enhance the yield of hydrocarbons and the
quality of pyrolytic oil. Chi et al. [17] found MCM-41 has a unique advantage because
its larger pore size makes macromolecular catalysis, adsorption and separation possible,
reducing the diffusion resistance of molecules in the channel. Furthermore, MCM-41
has a high specific surface (about 1000 m2/g), which provides adequate surface sites for
adsorption and catalytic reactions of active ingredients. It also gets relatively fewer coke
products. However, there have been few studies on the co-pyrolysis of different molecular
sieves with LDPE [10,18–20] and the systematic analysis of the catalytic mechanism has not
been perfected, lacking systematic analysis and summary of the pyrolysis characteristics of
different molecular sieves and waste plastics.

In this paper, we aimed to make clean and efficient utilization of waste plastics with
high value, obtaining regulatable gaseous products or liquids. Using ZSM-5, HY and
MCM-41 as catalysts, catalytic pyrolysis of LDPE was performed in a fixed-bed reactor to
achieve the three-phase products. The effect of pyrolysis temperature and type of catalysts
on the product yield was explored. Furthermore, the characteristic and distribution of
the pyrolysis products catalyzed by three kinds of catalysts were compared to obtain the
interaction path and scheme of the catalytic pyrolysis. It provides the theoretical basis
for the clean application of waste plastics, selectivity of valuable chemicals and selection
of catalysts.

2. Results and Discussion
2.1. BET Results

Table 1 shows the structural properties of the three kinds of catalysts. MCM-41 has
the largest BET-specific surface area caused by mesopores, facilitating multiple contacts of
plastics with catalytic active centers and favoring the passage of large pyrolysis products
(like olefins and aromatics) [21,22]. Compared to ZSM-5 and HY, MCM-41 obtains a larger
average pore size (3.653 nm), specific surface area (962 m2/g) and the total pore volume
(0.718 cm3/g), which is mainly manifested in the catalytic activity of MCM-41. ZSM-5
obtains the minimum average pore size of 0.411 nm, allowing the heavy chemicals to
crack further.
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Table 1. Textural properties of different catalysts.

Catalysts BET Surface Area
(m2/g)

Total Pore Volume
(cm3/g)

Average Pore Diameter
(nm)

ZSM-5 361 0.206 0.411
HY 701 0.392 0.811

MCM-41 962 0.718 3.653

2.2. Acid Properties of Zeolites

Figure 1 shows the NH3-TPD results of the three kinds of catalysts. The weak, medium
and strong acid sites of the catalysts correspond to the characteristic peaks at 155 ◦C, 275 ◦C
and 505 ◦C, respectively. The results present that most of the acid sites of ZSM-5 are as the
same as that of the HY, achieving uniform acid strength, while the MCM-41 zeolite-based
catalyst with a SiO2/Al2O3 ratio of 30 has low acid strength and no strong acid. The acidity
shown in Table 2 further confirms the results obtained.
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Figure 1. NH3 adsorption/desorption isotherm distribution of samples.

Table 2. Acidity distribution of three kinds of catalysts.

Catalysts
Acid Content (µmol/g)

Weak Acidity Medium Acidity Strong Acidity Total Acidity

ZSM-5 368 838 549 1755
HY 366 748 652 1766

MCM-41 138 221 - 359

In addition, the acid distribution of the catalyst was estimated by Gaussian fitting.
As presented in Table 2, HY has the highest total acid contents and a strong acid site,
which were 1766 µmol/g and 652 µmol/g, respectively. The MCM-41 has the lowest
total acid content (359 µmol/g). The acidity of the catalysts has a great influence on the
catalytic performance of the final product of plastic pyrolysis, which is covered in detail in
Sections 2.4–2.6.

2.3. SEM and TEM Results

The SEM and TEM images of ZSM-5, MCM-41 and HY are exhibited in Figure 2. The
ZSM-5 is constituted by clear quadrangular prism-like crystallites [23], which is consistent
with the study reported by Haswin Kaur Gurdeep Singh et al. [24], with sizes ranging
from 250–450 nm (Figure 2(a1)). And the image for ZSM-5 shows a relatively irregular
sheet structure (Figure 2(a2)). It is worth noting that, in the presence of MCM-41, various
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particles are uniformly distributed on the surface of the carrier (Figure 2(b2)), ranging from
20 nm to 90 nm, which might be conducive to its relatively higher specific surface area
among three kinds of catalysts. As seen from the SEM image (Figure 2(c1)), the hierarchical
HY zeolite retains its intact crystal structures [25,26], ranging from 50 nm to 80 nm and the
regular sheet structure is observed in the HY (Figure 2(c2)).
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2.4. Effects of Temperature on Gas–Liquid–Solid Three-Phase Yield of LDPE Pyrolysis

As depicted in Figure 3, the performance on catalytic conversion of LDPE over differ-
ent catalysts from 450 ◦C to 650 ◦C was contrasted. It is obvious that the yield distribution
was significantly affected by pyrolysis temperature. With the increase of pyrolysis tem-
perature, the total yield of gas and oil enhanced largely while the yield of solid decreased
greatly, which may be due to the decomposition and secondary reaction of LDPE pyrolysis
volatiles [27]. As the temperature continued to rise, it provided more heat to the polymer,
weakening the chain structure and causing more polymer chains to break [28] and the
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trend is consistent with most research on polymer pyrolysis [29,30]. As can be seen from
Figure 3a, the liquid phase yield was lower at 450 ◦C (31.3%) and at 500 ◦C (55.6%), with
the increase in temperature, the conversion of the polymer improved [28], so the liquid
yield rose to 82.0% at 550 ◦C. This is due to further increases in temperature causing further
cracking of the oligomer to form smaller hydrocarbons in the form of gaseous compounds,
while liquid production does not change significantly.
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Figure 3. Three-phase yield diagram of LDPE (a): no catalyst; (b): ZSM-5 catalyst; (c): HY catalyst;
(d): MCM-41 catalyst.

Compared to the case without catalysts, the pyrolysis gas yield of LDPE increased,
indicating that the catalyst has a moderate acidity, leading to obvious secondary cracking
of liquid oil [21,28]. As illustrated in Figure 3a, the liquid phase yield of non-catalytic
pyrolysis at 500 ◦C occupied about 55.6%, which is similar to that of catalytic pyrolysis at
450 ◦C in Figure 3b. It can be concluded that the catalysts could significantly decrease the
reaction temperature.

Furthermore, it can be observed that the ZSM-5 and HY catalysts resulted in much
higher gas yields with increasing temperature while the MCM-41 obtained more oil yield.
As seen from Figure 3b,c, there was no significant difference in gas yield between ZSM-5
and HY, both of which had higher gas yield than MCM-41. The yield of gas on the ZSM-5
catalyst increased from 29.7% to 61.4% as the temperature increased from 450 ◦C to 650 ◦C;
however, the yield of oil on MCM-41 increased from 51.1% to 78.4%.

For ZSM-5, the main cause of such phenomenon comes from the function of the
acidic sites and framework structure of ZSM-5 [31]. It was found that the interaction
during catalytic pyrolysis could promote the formation of light molecular gases from
chain-breaking volatiles [32]. At the same time, ZSM-5 has a smaller pore size and a larger
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intracrystalline pore structure, allowing further cracking of heavy chemicals. Since the
initial decomposition sample on the outer surface of the ZSM-5 can diffuse into the inner
cavity of the ZSM-5, further decomposition into gaseous products resulted in very high gas
yields [33]. Compared with MCM-41, the HY catalyst clearly provided a higher gas yield
as a result of the strong acid sites and high acid density of the HY zeolite, which provided
higher cracking activity than MCM-41 with only weak acid sites [34]. Additionally, the
difference in gas yield among the three kinds of catalysts is due to the difference in carbon
deposition [20,34,35], resulting in the difference in strong acid sites.

For MCM-41, it exhibited the greatest amounts of oil yield (78.4%) and the lowest
amounts of gas yield (20.0%) at 650 ◦C. HY showed the second-highest oil yield (60.9%) and
ZSM-5 presented a slightly lower oil yield (59.9%). This manifested that, in the case of these
catalysts, secondary cracking was slightly enhanced and the difference in pyrolysis yields
was largely as a result of the differences in acidity and structural properties discussed earlier.
In addition, MCM-41 with uniform morphology was easy to produce the pyrolysis product
with similar carbon distribution, leading to more oil products produced by MCM-41 than
other catalysts [21].

2.5. Effects of Catalyst on the Composition and Quality of Gaseous Products

The gaseous product composition for non-catalytic and catalytic experiments from
450 ◦C to 650 ◦C are depicted in Figure 4. The pyrolysis gas consists of H2, CH4 and C2–C4

+

gaseous hydrocarbon mixtures. The contents of H2, CH4, C2 and C3 increased by 2.35%,
1.45%, 19.21% and 19.72% as the temperature rose from 450 ◦C to 650 ◦C, while C4

+ gas
reduced by 35.59%, which was mainly due to the C4

+ gaseous products being further
cleaved to CH4 and other small molecule gases as temperature increased [27,28].
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Figure 4. Comparison of gas−phase composition during LDPE pyrolysis with three kinds of catalysts
(a) no catalysts; (b) ZSM-5; (c) HY; (d) MCM−41.
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In the non-catalytic run, a considerable amount of C2 and C3 were observed. After
adding the catalysts into pyrolysis, the number of C4

+ gaseous products raised significantly.
It is interesting that all the gaseous products of the catalyzed reactions showed a percentage
of C4

+ around 95% and MCM-41 at 500 ◦C. Additionally, the wider pore size distribution
observed in HY and MCM-41 zeolite resulted in the diffusion of the reactant and product,
which was more favorable for macromolecular hydrocarbons to enter the pore size of the
molecular sieve to react with the recombinant gas [36]. As illustrated in Figure 4d, at
temperatures of 450–500 ◦C, the gas phase products of MCM-41 had a higher content of
H2 and lower content of C4

+ compared to both ZSM-5 and HY catalysts. This is because
MCM-41 has a larger pore size and higher selectivity to heavier components. However,
due to its weaker acidity, fewer active sites, lower catalytic activity and selectivity at lower
temperatures, the content of hydrogen and methane was higher. However, as temperatures
rose further, rapid product formation did not allow more cracking gas to occur in the
reactor, so the heavier hydrocarbon component of the product increased, resulting in the
formation of heavy hydrocarbons and low hydrogen [37]. Therefore, the main component
of the gas phase product was C4

+. The difference in the pyrolysis yield can be directly
related to changes in the structural and acid properties of the catalysts.

2.6. Effects of Catalyst on Oil Distribution and Quantity

The carbon number distribution of oil is exhibited in Figure 5 and the major constituents
of the oil product as well as relative content are presented in the Supplementary Material. As
shown in Figure 5, in the experiment without catalysts, the oil products comprised four
comparable fractions (<C11, C12–C18, C19–C30 and aromatics), indicating that the carbon
number distribution was relatively uniform compared to the catalytic experiment. As
the temperature increased from 500 ◦C to 650 ◦C, the yield of light hydrocarbon fractions
improved and the yield of heavy hydrocarbon fractions decreased in the non-catalytic run
(Figure 5a). The liquid fractions are mainly composed of linear paraffins (C10~C30) and
produced almost no aromatic hydrocarbons [3] (Tables S1 and S2). The pyrolysis of LDPE
was the result of its characteristic long-carbon chain structure, converting the feedstock
into wax rather than liquid oil [3].
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Figure 5. Distribution of the oil products in terms of carbon number (a) Liquid product composition
of LDPE at different temperatures; (b) Liquid product composition of LDPE at different catalysts.

Moreover, it is obvious that the representative of diesel products is C12–C18 hydrocar-
bons and the MCM-41 catalyst has a potential application value in the use of plastic waste
to produce diesel. Among the three kinds of catalysts, ZSM-5 presented the especially high
selectivity for the aromatics and low selectivity for the C12–C18 fraction. Because ZSM-5
exhibited the second-highest total acid site, it is not difficult to infer that high diesel pro-
duction was due, in part, to the mild acidity as well as excessive cracking of hydrocarbons.
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Compared to the pyrolysis of LDPE without catalysts, the contents of mono-aromatics
and polycyclic aromatic hydrocarbons (PAHs) in ZSM-5 catalytic pyrolysis were higher by
65.9% (Figure 5b). The pore size and structure of ZSM-5 played an important role in the
formation of aromatic hydrocarbons, owing to its shape selectivity [20,38]. It is well-known
that ZSM-5 has acid sites, a suitable pore size and shape selectivity, which is beneficial for
the formation of aromatics [39] and the conversion of aliphatics to aromatic production
using the Diels–Alder reaction [40]. It is worth noting that MCM-41 displayed the lowest
selectivity for the aromatic compounds due to its weak aromatizing ability [19].

Furthermore, the results showed that the alkane content of heavy hydrocarbon frac-
tions obtained during the catalytic process was more than the olefin content (Tables S3–S5).
This is consistent with the conclusion in the study of Liu et al. [41], which may be caused
by alkylation of the primary intermediate.

2.7. Effect of Catalysts on Some Reaction Pathways

It is concluded that the pyrolysis of LDPE followed the random-chain-breaking
mechanism and the catalytic thermal decomposition of LDPE underwent the carboca-
tion theory [4,8,33]. The catalytic effect of the catalysts was primarily due to their acidity
during pyrolysis. The carbonate ion theory was based on the acid sites of the catalyst [33].

Thermal cracking of LDPE is often related to the free-radical mechanism [28]. The
thermal pyrolysis of LDPE was partly caused by the homolysis of C–C bonds in the polymer
chain under thermal action. As shown in Figure 6, LDPE formed free radical fragments
of different lengths through random fracture (Step 1 and Step 2). Then the terminal free
radical fragments generated alkenes through a hydrogen transfer reaction and further
bond-breaking reaction (Step 3) and alkanes and hydrogen gas were further generated
through a bimolecular reaction (Step 4).

As shown in Figure 7, the scheme of catalyst participation in LPDE pyrolysis reac-
tion pathways is proposed. When the ZSM-5 was introduced into the pyrolysis process,
the smaller pore size and larger pore structure of ZSM-5 allowed the initial decompo-
sition sample on the outer surface to diffuse into the interior of ZSM-5, favoring the
recombinant fraction to further decompose into gaseous products, resulting in higher gas
production. Additionally, there was a higher aromatic content in the liquid phase of the
ZSM-5 catalyst, probably due to its high acidity and shape selectivity. The acid sites could
facilitate the formation of aromatics by catalyzing hydrogen transfer reactions and the
Diels–Alder reactions [42] and the gas–liquid products underwent further aromatization.
The hydrogen transfer reaction is considered to be the main source of aromatics and alka-
nes. Dehydrogenation active sites can promote the Diels–Alder reactions and cyclization
intermediates. In addition, the heavy aromatic hydrocarbons were more easily decom-
posed into light aromatic hydrocarbons by hydrogenation than monocyclic and bicyclic
aromatic hydrocarbons.

The wider pore size distribution observed in HY zeolite contributed to the diffusion
of the reactant and product [36]. Therefore, the main component of the gas phase product
was C4

+, while the content of recombinant fraction (C19
+) in the liquid phase product was

seldom. Due to the strong acid site and high acid density of HY, it provided more pyrolysis
activity leading to a higher gas yield. Bimolecular pyrolysis and hydrogen transfer reaction
on HY can produce a large number of incondensable gas and a high yield of alkenes and
alkanes below C11.

When the MCM-41 was added to the pyrolysis, its mesoporous structure could greatly
promote the accessibility of macromolecules to zeolite, reduce residence time, inhibit the
secondary reaction and thus improve the yield of liquid [25]. Meanwhile, the mesoporous
catalyst has a large pore volume and pore size, which was conducive to the free diffusion
of the primary thermal decomposition molecules of LDPE and was easy to be converted
into liquid products [43]. Therefore, compared with ZSM-5 and HY, MCM-41 had a
greater promotion effect on crude oil fractions, which was less favorable for cracking and
aromatization reactions, resulting in a higher content of C12–C18. The lower proportion of
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aromatics obtained by MCM-41 may be related to its lower acid strength, lower catalytic
activity and poor selectivity.
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3. Materials and Methods
3.1. Materials

Powdered LDPE (100 mesh, Zhongyanshan Petrochemical Co., Ltd., Beijing, China)
was commercially available. ZSM-5 powder with a SiO2/Al2O3 ratio of 20, HY powder
with a SiO2/Al2O3 ratio of four and MCM-41 powder a with SiO2/Al2O3 ratio of 30 were
obtained from Zhongyanshan Petrochemical Co., Ltd. All of the molecular sieve cata-
lysts were about 60–100 mesh in size and were calcined in air at 550 ◦C for 3 h before
pyrolysis experiments.

3.2. Experimental Setup

The pyrolysis experiment of waste plastics was performed in a fixed bed reactor, as
pictured in Figure 8. Briefly, the device was composed of an electric heating tube furnace, a
temperature-controlled system, a quartz reactor (ID = 50 mm, L = 440 mm), as well as a
cooling system. In the typical pyrolysis run, the catalyst and the plastic sample were mixed
at a mass ratio of 1:2 (the proportion of catalyst to plastic remained constant throughout the
experiment). Each plastic sample weighed approximately 5 g, the exact catalyst and plastic
sample mixture were placed in the quartz tube between two sections of quartz wool. The
tubular furnace was first blown with nitrogen (100 mL/min) for about 30 min to remove
air and then the system was heated at a rate of 15 ◦C/min to the desired temperature (450,
500, 550, 600 or 650 ◦C) and held for 0 min.
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The gas and oil vapor generated from pyrolysis was blown into a condenser, which
was cooled by the ice–water mixture. The condensate oil products were collected in a
glass bottle and the mass of liquid oil was judged by the weight difference before and after
the glass bottle. During the pyrolysis process, a solid mass was obtained by calculating
the weight difference of the quartz tube before and after the reaction. The gas products
were collected by gas bags and the mass was calculated by the difference. The equations
involved were defined as follows:

Yp1 =
m1

m0
× 100% (1)

Yp2 =
m2

m0
× 100% (2)

Yp3 =
m0 − m1 − m2

m0
× 100% (3)

where YP1, YP2, YP3 were the yields of oil, solid products and gas after pyrolysis, respec-
tively. m0 was the mass of the LDPE sample, m1 and m2 were defined as the mass of the
liquid oil and solid product after pyrolysis.

Additionally, to ensure the accuracy of the experimental data, all experiments were
repeated three times.
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3.3. Characterization

The physicochemical properties of the three kinds of catalysts were determined by
scanning electron microscopy (SEM), N2 adsorption–desorption isotherms, temperature-
programmed desorption of ammonia (NH3-TPD) and high-resolution transmission electron
microscopy (HRTEM). The detailed characterization methods of the samples are presented
in the Supplementary Material.

3.4. Product Analysis

The determination of H2 and CH4 in cracking gas was done using GC-TCD (Ruihong,
SP-6800A, Zaozhuang, China), analysis of hydrocarbon gases such as CH4 and C2

+ was
done using GC-FID (Fuli, SP-6890, Nanjing, China). Each gas sample was measured
three times to obtain the average. An analysis of pyrolysis oil composition was done
using GC-MS (Agilent, 6890-5973, Santa Clara, CA, USA) with the HP-5MS capillary
column (30 m × 250 µm × 0.25 µm). The operating parameters of GC-MS were described
below: 60 ◦C for 3 min; 60 to 240 ◦C for 2 min at 12 ◦C/min; 240 to 300 ◦C for 10 min at
6 ◦C/min. The split ratio was kept at 100:1.

4. Conclusions

In this study, three different catalysts of ZSM-5, HY and MCM-41 were added, respec-
tively, into non-catalytic pyrolysis of LDPE for regulatable oil and gas products. On the
basis of analyzing the structure and characterization of the catalysts, the distribution of
the pyrolysis products and the reaction mechanism of LDPE on different catalysts were
discussed. The NH3-TPD and BET characterizations of these catalysts exhibited the dif-
ferences in pore size as well as acidity and their unique structural characteristics. The
results of NH3-TPD and BET presented that MCM-41 had the lowest acid strength and the
largest pore size. The morphologies of the different catalysts were characterized by SEM
and TEM. In the presence of MCM-41, a uniformly distributed granular structure could be
observed. Because of the proper combination of acidity and structural properties, MCM-41
has been observed to produce a great deal of oil products, while ZSM-5 and HY were found
to produce a great amount of gas products. Specially, ZSM-5 showed the greatest amounts
of the aromatic products. This facilitates the selection of catalysts for cleaning applications
of waste plastics and targeted access to valuable chemicals.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/catal13020382/s1. Table S1. Liquid product composition of LDPE
at different temperatures. Table S2. Liquid product composition of LDPE at different temperatures.
Table S3. Liquid phase GC-MS table of catalytic pyrolysis of LDPE by ZSM-5 molecular sieve at
500 ◦C. Table S4. Liquid phase GC-MS table of catalytic pyrolysis of LDPE by HY molecular sieve at
500 ◦C. Table S5. Liquid phase GC-MS table of catalytic pyrolysis of LDPE by MCM-41 molecular
sieve at 500 ◦C.
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