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Abstract: Perovskite-type LaCo1−xNixO3−δ (x = 0, 0.2, 0.4, 0.6, and 0.8) powders were synthesized
by solution combustion synthesis. The crystal structure, morphology, texture, and surface were
characterized by X-ray powder diffraction combined with Rietveld refinement, scanning electron
microscopy, N2-adsorption, X-ray photoelectron spectroscopy, and zeta-potential analysis. The
thermocatalytic properties of the perovskites were investigated by UV–Vis spectroscopy through
degradation of rhodamine B in the temperature range 25–60 ◦C. For the first time, this perovskite
system was proven to catalyze the degradation of a water pollutant, as the degradation of rhodamine
B occurred within 60 min at 25 ◦C. It was found that undoped LaCoO3−δ is the fastest to degrade
rhodamine B, despite exhibiting the largest energy band gap (1.90 eV) and very small surface area
(3.31 m2 g−1). Among the Ni-doped samples, the catalytic performance is balanced between two main
contrasting factors, the positive effect of the increase in the surface area (maximum of 12.87 m2 g−1

for 80 mol% Ni) and the negative effect of the Co(III) stabilization in the structure (78% in LaCoO3

and 89–90% in the Ni-containing ones). Thus, the Co(II)/Co(III) redox couple is the key parameter in
the dark ambient degradation of rhodamine B using cobaltite perovskites.

Keywords: perovskite; Rietveld refinement; energy band gap; thermocatalyst; catalytic degradation

1. Introduction

Perovskite oxides are a class of metal oxide compounds with the general formula
ABO3 and similar structure to the original CaTiO3. The A-site is often occupied by alkaline
earth or lanthanide metals, and the B-site by transition metals [1]. Their crystal structure
and properties can be tailored by tuning the composition and synthesis route., Tanaka and
Misono [2] have set up five main strategies for the optimization of the design of perovskites
with catalytic properties: (1) select of the B-site, (2) control valency and vacancies by tuning
A-site, (3) favor synergistic effects among B-site elements, (4) enhance the surface area, and
(5) add precious metals. The ability of transition metals to change oxidation state makes
B-site as the main catalytic site [3], and this can be greatly manipulated by changing the
A-site or B-site composition [4,5].

The best overpotential values in oxygen reduction and oxygen evolution reactions
were found for B-site cations with 3.5 or 7 d-electrons [6] and 1.3 eg-electrons [7], and this
makes lanthanum perovskites with either cobalt, nickel, or manganese at B-site interesting
compositions. Lanthanum perovskites have been used in activation of peroxymonosulphate
for degradation of organic pollutants [8–10]. Here, LaCoO3 has been found to perform
better than LaNiO3 in decolorization of rhodamine B [8], while the LaNiO3 has been found
superior to LaMnO3, LaZnO3, and LaFeO3 in degradation of ofloxacin [11]. This might
be caused by the easiness of Ni and Co to change oxidation state [12]. In photocatalytic
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degradation of rhodamine B, yttrium-cobalt-doped LaNiO3 performs better than undoped
LaNiO3 [13].

The properties of perovskites can be tailored by controlling the energy band structure
and oxygen vacancies that are both of importance in catalysis. The band gap can be tuned
by processing and thereby enhancing purity of the crystal structures or by doping [14].
The doping of perovskites has shown to favor a minimum in band gap compared to their
undoped counterparts [15]. Another study has shown that the band gap is not linearly
correlated with the degree of doping [16]. Similartly, oxygen vacancies have been found to
enhance the catalytic properties of LaCoO3 in oxygen evolution reactions [17].

Developing catalysts that form reactive oxygen species (ROS) on their own, rather
than splitting peroxymonosulphate or hydrogen peroxide as in Fenton-like processes, is of
great interest, as this will reduce the amount of chemicals needed, and minimize hazardous
substances. Perovskites such as (Ba/Ca/Mg)0.5Sr0.5CoO3 [18], Ca0.5Sr0.5NiO3−δ [19],
Sr0.9Ce0.1CoO3/SrCoO2.77 [20], Sr0.85Ce0.15FeO3−δ [21], LaxSr1−xCoO3−δ [22], and
LaNiO3−δ [23] have been found to be able to degrade organic pollutant dissolved in
water under dark ambient conditions via a thermocatalytic process [24]. Among organic
pollutants, rhodamine B is an interesting model pollutant. It is a dye used in the textile
industry [25], and if not removed, it represents an environmental and health issue. For
example, rhodamine B is mutagenic and carcinogenic [26], and it is of utmost importance
to remove from wastewaters to avoid pollution of receiving waters.

In this study, a systematic investigation of the effect of Ni in LaCo1−xNixO3−δ per-
ovskites was carried out. These chemical compositions were chosen since mixed Co-Ni
oxides have been found to exceed the catalytic activity of the pure metal oxides in other
systems [27,28]. The perovskites were synthesized through solution combustion synthesis
using citric acid as a fuel [29]. Due to the difficulty in producing LaNiO3 using solu-
tion combustion synthesis, this end member was not part of the study, as it contained
byproducts, such as the La2NiO4 spinel phase and NiO phase [30]. In fact, LaNiO3 can be
prepared using high oxygen pressure during calcination [31,32]. The calcined perovskite
oxide powders were characterized for their structural differences in the bulk and surface
using X-ray diffraction and X-ray photoelectron spectroscopy, respectively. Their surface
charge was determined by zeta-potential measurements, their energy band gap was de-
termined from diffuse reflectance spectra, and their textural properties were investigated
by N2-adsorption with Brunauer–Emmett–Teller methodology. Finally, their morphology
was observed by Scanning Electron Microscopy and their catalytic activity was evaluated
through the thermocatalytic degradation of rhodamine B under dark conditions using
UV–Vis detection.

2. Results
2.1. Structural and Compositional Characterization

The structure of the synthesized perovskites after calcination at 1000 ◦C was deter-
mined by XRD. The XRD patterns are shown in Figure 1, including a graphical Rietveld
refinement performed to investigate the impact of nickel addition on the lattice parameters,
crystallite size, and microstrain of LaCoO3−δ-based perovskites. The Rietveld results are
summarized in Table S1. All perovskites showed the rhombohedral structure as previ-
ously shown for LaCoO3 [33], and Ni-doped LaCoO3 perovskites [34,35]. As previously
noted, the LaNiO3 perovskite could not be synthesized as single-phase under the given
conditions even though both pH and reducers-to-oxidizers ratio were changed. As LaNiO3
was previously obtained by calcination under oxygen pressure [31,32], it is assumed that
the smaller amount of oxygen in normal atmosphere favors the formation of Ni2+. The
diffractogram of LaNiO3−δ is reported in Supplementary Materials (Figure S1) showing
the formation of three different phases, namely LaNiO3, NiO, and La2NiO4. Considering
the Co-containing perovskites, the Ni-rich compositions, 60 and 80 mol% Ni, have minor
percentage of NiO as secondary phase, below 1 wt%. We suppose that this low amount
of NiO, which does not have thermocatalytic properties itself, cannot have any important
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influence on the thermocatalytic performance of the Ni-rich samples. The cell volume
of the perovskites increases for all samples with increasing Ni content due to the larger
size of Ni-ions compared to Co-ions [36], however, the volume is constant in the nickelate
area (Figure 2a). This is based on the assumption that both cobalt and nickel are mainly
in low spin states, as previously reported [35]. However, the unit cell parameters change
differently in the cobaltite and nickelate compositions. The a/b parameter increases with
Ni-content in the cobaltite area and decreases with Co-content in the nickelate composition
(Figure 2b). Thus, it could be suggested that the increasing Ni-content overall ensured a
larger parameter, although the a/b ratio is slightly lower in the nickelate range compared
to the cobaltite range. The c-parameter (Figure 2b) seems to reach a maximum around
50 mol% doping as it increases with doping of both Ni and Co in the cobaltite and nickelate
range, respectively. The microstrain (Figure 2c) shows a similar trend as the c-parameter.
The crystallite size decreases with increasing nickel doping (Figure 2d) in agreement with
a previous study [37]. Here, we find a significant change in crystal size when changing
from Ni-doped cobaltite to Co-doped nickelate. The comparison of atomic coordinates of
LaCoO3−δ and LaCo0.2Ni0.8O3−δ from the Rietveld refinement and the ICDD database is
found in Table S2.
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Figure 1. XRD pattern and graphical Rietveld refinement of perovskites, (a) LaCoO3-δ, (b) 
LaCo0.8Ni0.2O3-δ, and (c) LaCo0.2Ni0.8O3-δ. Insets show a zoom of the main perovskite peaks. (d) shows 
the atomic arrangement of the LaCo0.2Ni0.8O3-δ structure using VESTA software [38], where the at-
oms are colored as follow: green = La, blue = Co, gray = Ni, and red = O. 

Figure 1. XRD pattern and graphical Rietveld refinement of perovskites, (a) LaCoO3−δ,
(b) LaCo0.8Ni0.2O3−δ, and (c) LaCo0.2Ni0.8O3−δ. Insets show a zoom of the main perovskite peaks.
(d) shows the atomic arrangement of the LaCo0.2Ni0.8O3−δ structure using VESTA software [38],
where the atoms are colored as follow: green = La, blue = Co, gray = Ni, and red = O.
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Figure 2. Structural information based on Rietveld refinement of the perovskite structures, (a) cell 
volume change, (b) a/b and c parameter changes, (c) microstrain, and (d) crystallite size. The dashed 
lines are guides for the eye, and the dotted line indicate the change from cobaltite (white area) to 
nickelate (grey area) structures. 

The XPS analyses of LaCo1-xNixO3-δ samples are summarized in Figure 3 and Table 1. 
Co 2p emission region shown in Figure 3a is typical of Co(III) as evidenced by the position 
at 779.3–779.8 eV of the Co 2p 3/2 component and the weak satellites with a shift, with 
respect to the main Co 2p peaks, of 9–10 eV [39,40]. The asymmetry of the peaks indicate 
the presence of a small component at 781.7 eV which is attributed to Co(II). A typical de-
convolution is shown in Figure S2. In Table 1, the binding energy of the two Co 2p 3/2 
components and the relative percentage of each component are indicated. The presence 
of nickel stabilizes the Co(III) form reaching a maximum of 90% of Co(III) in the structure 
for Ni = 0.6. The Co 2p region of LaCo0.2Ni0.8O3-δ is not due to the low intensity of the cobalt 
peaks fitted, and the value reported is the position of the most intense peak. 

  

Figure 2. Structural information based on Rietveld refinement of the perovskite structures, (a) cell
volume change, (b) a/b and c parameter changes, (c) microstrain, and (d) crystallite size. The dashed
lines are guides for the eye, and the dotted line indicate the change from cobaltite (white area) to
nickelate (grey area) structures.

The XPS analyses of LaCo1−xNixO3−δ samples are summarized in Figure 3 and Table 1.
Co 2p emission region shown in Figure 3a is typical of Co(III) as evidenced by the position
at 779.3–779.8 eV of the Co 2p 3/2 component and the weak satellites with a shift, with
respect to the main Co 2p peaks, of 9–10 eV [39,40]. The asymmetry of the peaks indicate
the presence of a small component at 781.7 eV which is attributed to Co(II). A typical
deconvolution is shown in Figure S2. In Table 1, the binding energy of the two Co 2p 3/2
components and the relative percentage of each component are indicated. The presence of
nickel stabilizes the Co(III) form reaching a maximum of 90% of Co(III) in the structure for
Ni = 0.6. The Co 2p region of LaCo0.2Ni0.8O3−δ is not due to the low intensity of the cobalt
peaks fitted, and the value reported is the position of the most intense peak.

Ni 2p emission overlaps with the region of La 3d 3/2 (see Figure 3c) and for this
reason, nickel assessment has been done by means of Ni 3p emission. In this region, also
Co 3p emissions are present and the direct comparison of the two peaks allows to estimate
well the relative percentage of the two species. The region was fitted with two doublets (Ni
3p 3/2-Ni 3p 1

2 and Co 3p 3/2 and Co 3p 1
2 ) and a peak at higher binding energy due to Co

satellite. An example of the fitting of this region is shown in Figure S3 and a comparison of
all samples is shown in Figure 1b. The position of Ni 3p 3/2 at 67.1 eV is in accordance with
the value found by Gao [41] for LaNi0.8Co0.2O3−δ. With the decreasing of the Ni content
in the samples, the position of Co 3p 3/2 shifts to lower energy indicating a transfer of
electrons from Co to Ni and thus an increase in Co oxidation state and a decrease in the Ni
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oxidation state. This is in accordance with what has been discussed in literature about the
increase of the oxidized cobalt with the increase of Nickel in the structure [41,42].
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Figure 3. The XPS regions of: (a) Co 2p; (b) Ni 3p and Co 3p; (c) La 3d and Ni 2p; (d) O 1s of
LaCo1−xNixO3−δ samples.

Table 1. Co 2p 3/2, Ni 3p 3/2, O 1s binding energy (eV) (in parenthesis the relative percentage of
each component is given) and surface Ni/Co, Co/La and Ni/La atomic ratio.

Co 2p 3/2 (eV) Ni 3p 3/2 (eV) O 1s
(eV) Ni/Co a Co/La a Ni/La a

LaCo0.2Ni0.8O3−δ 779.8 b 67.1 528.3 (34%)
530.9 (66%) 10 (4.0) 0.1 (0.2) 0.9 (0.8)

LaCo0.4Ni0.6O3−δ
779.3 (90%)
781.7 (10%) 66.5 528.1 (40%)

530.7 (60%) 1.5 (1.5) 0.3 (0.4) 0.7 (0.6)

LaCo0.6Ni0.4O3−δ
779.2 (89%)
781.4 (11%) 66.5 528.2 (43%)

530.7 (57%) 1.25 (0.67) 0.5 (0.6) 0.6 (0.4)

LaCo0.8Ni0.2O3−δ
779.2 (89%)
781.4 (11%) 65.8 528.0 (40%)

530.6 (60%) 0.42 (0.25) 0.6 (0.8) 0.2 (0.2)

LaCoO3−δ
779.2 (78%)
780.9 (22%) - 528.1 (38%)

530.7 (62%) - 0.7 (1.0) -

a In parenthesis the nominal ratio are reported. b Spectrum not fitted.

O1s region (Figure 1d) shows the typical shape found in perovskite oxides. Two com-
ponents are clearly distinguishable at 528.2 eV (due to oxygen from the lattice) and at
530.8 eV (due to surface OH− species). No appreciable differences are found with the
changes in composition.
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The surface atomic ratio (compiled in Table 1) indicates an uneven distribution of
metals. For all samples, the surface is enriched in nickel, while cobalt is concentrated more
in the bulk of the material.

Additionally, FT-IR shows only three signals, around 420, 527, and 580 cm−1 corre-
sponding to La-O stretching vibrations, Co-O stretching vibrations, and Co-O bending
vibrations, respectively [43]. An example of a LaCoO3−δ spectrum is found in Figure S4 in
Supplementary Materials.

The band gap decreases with Ni-doping in the cobaltite-type composition, while it
increases with Co-doping in the nickelate-type composition, showing an overall minimum
among our samples at 40 mol% Ni-doping (Figure 4). The Kubelka–Munk plots are found
in Figure S5. This trend and these values are similar to what is found in literature [44].
The non-linear change is possibly a result of a competition between the relaxation of the
pure perovskites (LaCoO3−δ and LaNiO3−δ) and their alloys (LaCo1−xNixO3−δ) as found
for halide perovskites [45,46]. Thus, the non-linearity throughout the system might be
caused by a change in structure from a cobalt-rich to nickel-rich composition. Within the
given compositional ranges (cobaltite and nickelate), the band gap is linear, supporting
the hypothesis that a change in main structure is the main reason for a lack of overall
linearity. The change in band gap is small (<0.25 eV) compared to that found of Co-doped
LaCrO3, where 30 mol% Co-doping results in an approximately 0.8 eV band decrease in
band gap [47]. The small variation of band gap in these samples is like that of transition
metal-doped (Cr and Co) BiFeO3 perovskite, that shows a discontinuous change with
doping, while a significant change occurs for Mn-doped BiFeO3 [48]. It is worth noticing
that measuring the band gap of Ni-doped LaCoO3 perovskite powders using the diffuse
reflectance spectroscopy method is difficult, due to the black color of the samples, resulting
in a reflectance in the range 0–10%, which causes a significant effect in the determination of
the band gap.
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The morphology of the investigated samples is reasonably similar and all images
showed agglomerated nanoparticles (Figure 5). The smallest particles are in the range of
200–300 nm for all compositions, similarly to what has previously been found for nickel-
doped LaCoO3 [49]. However, the average particle size seems to decrease with increasing
nickel doping (Figure 5), in agreement with the change in crystallite size observed from
the Rietveld refinement results (Table S1). The decrease in particle size of the powders
by Ni-doping is also observed in the literature with aluminum doping [50]. The smaller
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particles result in larger surface area (as seen in Figure 6), which is ideal for heterogeneous
catalytic reactions.
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Figure 6. (a) BET surface area (SBET) and (b) cumulative pore volume for LaCo1−xNixO3−δ per-
ovskites. Dashed lines are guides for the eye, and the dotted line illustrate the transition from
cobaltite (white area) to nickelate (gray area).

The surface area increases with increasing Ni-content in the LaCo1−xNixO3−δ per-
ovskites (Figure 6), based on N2 adsorption-desorption isotherms (Figure S6 in Supplemen-
tary Materials). At highest Ni-content, the surface area is approximately four times larger
than for the pure LaCoO3−δ perovskite. The reason for the significantly larger surface
area at highest Ni-content and the smallest surface area at 60 mol% Ni is that the samples
doped with 60–80 mol% Ni are no longer cobaltite-type, but instead Co-doped nickelates.
Thus, a discontinuity is found in the trend of surface area, that increases with Ni-doping
in the cobaltite area, while it decreases with Co-doping in the nickelate area, showing an
overall minimum at 40 mol% Co-doping. This indicates that Ni is beneficial for obtaining a
higher surface area compared to Co. The increase in surface area upon doping is expected
from literature [49] where the surface area was doubled upon a 30 mol% Ni-doping of
LaCoO3. The minimum surface area is found for 60 mol% Ni-doping. Similarly, lanthanide
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perovskites have shown minima or maxima in surface area trends for 5–30 mol% doping in
the LaNi1−xFexO3 [51], LaCo1−xZnxO3 [52], and LaCo1−xCuxO3 systems [53].

The zeta potential values of the different perovskite suspensions in water are mea-
sured in the 2–10 pH range (Figure 7). In acidic environment, the perovskites exhibit a
positively charged surface, with zeta potential ranging from 17–55 mV at pH of 2. The
isoelectric point of the different suspensions is in the 4.35–6.10 pH range, with LaCoO3−δ

and LaCo0.2Ni0.8O3−δ having a non-charged surface at lowest and highest pH, respectively.
The isoelectric point seems to be higher for high content of nickel. In alkaline environment
above the isoelectric point, the surface charge of the perovskites is negative. The zeta po-
tential is important to have a stable suspension and to avoid agglomeration, as this would
challenge the catalytic activity, due to a reduced available surface area for catalytic reactions.
Furthermore, the surface charge of the perovskites in the suspension should be opposite to
the charge of the pollutant, in this study rhodamine B, to increase the electrostatic attraction
of the two compounds and thereby enhance the catalytic degradation [54]. As rhodamine
B has a pKa of 4.2 [55], low pH degradation experiments are of interest to increase the
attraction between the perovskites (positively charged at low pH) and rhodamine B (neg-
atively charged at low pH) to enhance the catalytic reaction. Therefore, the degradation
experiments presented in next section is carried out at pH of 2, as this is below both the
pKa of rhodamine B and the point of zero charge of the investigated perovskites.
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as the absorbance goes towards zero in the full range. The degradation mechanism plau-
sibly follows the same pathway as discussed by Yu et al. [56], with an initial deethylation 
which is visible from Figure 8. This is followed by chromophore cleavage which might be 
a result of hydroxyl radical (OH) attack of the central carbon, causing a decolorization of 
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formation of first organic acids due to oxidation followed by alcohols [56]. 

Figure 7. Effect of pH on Zeta potential of LaCo1−xNixO3−δ perovskites.

2.2. Thermocatalytic Activity

Full UV–Vvis spectra of rhodamine B (structure visualized in inset of Figure 8) during
degradation at pH of 2 and 25 ◦C are displayed in Figure 8. Rhodamine B was degraded
within 60 min using LaCoO3−δ at room temperature. The degradation of rhodamine
B is gradually visualized by the blueshift in maximum absorbance which is a result of
deethylation of the structure [56,57]. The deethylation is clearly evidence that rhodamine B
is degraded and not only adsorbed to the perovskite. Moreover, a degradation is found as
the absorbance goes towards zero in the full range. The degradation mechanism plausibly
follows the same pathway as discussed by Yu et al. [56], with an initial deethylation which
is visible from Figure 8. This is followed by chromophore cleavage which might be a
result of hydroxyl radical (OH) attack of the central carbon, causing a decolorization of
the solution. In this study, we did not investigate the type of ROS, however, previously
hydroxyl radicals and superoxide anions (O2

−) have been suggested [24], which would
agree well with the degradation of rhodamine B. The chromophore cleavage results in the
formation of first organic acids due to oxidation followed by alcohols [56].
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Figure 8. UV–Vis absorbance spectra of a rhodamine B solution during abatement with LaCoO3−δ at
25 ◦C. The chemical structure of rhodamine B is shown as inset.

The degradation of rhodamine B with the different perovskites follows a pseudo-first
order reaction as seen in Figure 9. As for the blueshift in Figure 8, the linear increase in -ln
(c/co) proves a degradation of rhodamine B, as this would not have been the case for an ad-
sorption process. The fastest degradation is found for the non-doped LaCoO3−δ followed
by highest Ni-doping and then decreasing with decreasing Ni-doping. All perovskite com-
positions degrade rhodamine B faster than LaCoO3 is found to degrade tetracycline when
used as photocatalyst [58]. The fastest degradation, found using LaCoO3−δ, agrees with
previous findings that LaCoO3 performs better than LaNiO3 [8]. However, generally no
specific trend in the optimum composition of Ni-doped LaCoO3−δ perovskites in different
catalytic processes has been found [43,59–61]. The better catalytic activity of LaCoO3−δ

might be a result of the Ni-enriched surface observed by XPS on the Ni-containing per-
ovskites. The trend changes slightly from 300 mg L−1 to a lower concentration (100 mg L−1)
and higher concentration (500 mg L−1) of perovskite, as can be found in Supplementary
Materials Figure S7. For example, the activity of the undoped LaCoO3−δ is smaller than
for the LaCo0.2Ni0.8O3−δ perovskite when using 100 mg L−1 of catalyst, whereas at higher
catalyst concentration the LaCoO3−δ is the best catalyst. This is possibly due to the fact that
an increase in catalyst concentration compensates for the smaller surface area of LaCoO3−δ.
On the other hand, the faster kinetics of the perovskite oxide catalyst with the highest
Ni-doping degree is plausibly caused by its larger surface area compared to the other
Ni-containing perovskites, as found in Figure 6. The difference in surface area is possibly
also the reason why the 60 mol% doped perovskite is a worse catalyst than the 40 mol%
doped one. Another reason could be the transition from cobaltite-type to nickelate-type
perovskites, which changes the chemistry of the perovskite when exceeding 50 mol%
Ni-doping, i.e., going from 40 mol% to 60 mol% Ni doping.

The concentration of perovskite used affects the kinetics of the rhodamine B degrada-
tion (Figure 10). By increasing the perovskite concentration from 100 mg L−1 to 500 mg L−1,
the kinetic constant increases by up to 600%, and the increase is more pronounced when
increasing the concentration from 300 mg L−1 to 500 mg L−1 than from 100 mg L−1

to 300 mg L−1. Interestingly, with increasing perovskite concentration, the difference
among the perovskites becomes larger. At low concentration (100 mg L−1), performance
of LaCoO3−δ and LaCo0.2Ni0.8O3−δ are almost similar, but the LaCoO3−δ perovskite is
significantly more effective at 500 mg L−1. This again might be a result of the compensation
of low surface area by increasing the amount of perovskite of the undoped LaCoO3−δ.
Another point worth commenting is that the reaction rate decreases with doping in both
the cobaltite and nickelate composition range when comparing the kinetic constants in
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Figure 10. This non-linear correlation between Ni-content and the reaction rate is possibly
caused by the competition between the preferably larger surface area with increasing Ni-
content, the difference in Co oxidation state, and the Ni-enrichment at the surface which
limits the catalytic activity.
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The stability of the perovskites as catalysts in the degradation of rhodamine B over con-
secutive cycles is investigated for LaCoO3−δ and LaCo0.2Ni0.8O3−δ (Figure S8). The activity
decreases as function of cycles, suggesting deactivation or degradation of the catalyst itself.
The second cycle for the LaCo0.2Ni0.8O3−δ seems faster than the first cycle, but we expect
that the decreasing activity as function of cycles is the most probable trend, given the signif-
icant decrease in activity at the third cycle. Previous studies showed leaching of elements
from the perovskites, and this might be the reason for the continuous deactivation of our
catalysts. For example, Hammouda et al. [10] showed leaching of both La and Co elements
from LaCoO3−δ perovskites, although the leaching stopped after 4–5 h. Manos et al. [62]
found leaching of Co and Ni from LaCoO3 and LaNiO3, respectively. Therefore, leaching is
at least one explanation for the observed deactivation. Other authors found that leaching of
elements can improve the catalytic stability by promoting a possible metal oxy(hydroxide)
during self-construction that might be tuned based on thermodynamics [63,64]. On the
other hand, we performed attenuated total reflectance (ATR)-FTIR to investigate possible
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adsorption of the pollutant on the perovskites, and no change in the spectra, prior to and
after catalytic used, is observed. The decreasing activity over time is a concern for an
industrial use of perovskites, and extended research is required to understand the stability
of perovskites in aqueous environments. Moreover, it needs to be investigated if the activity
reduction is continuous or if the activity is stabilized after a certain time.

The rate of degradation of rhodamine B using the LaCoO3−δ perovskite increases
by increasing temperature in the dark, proving the thermal activation of the perovskites
(Figure 11). This study is the first to prove the thermocatalytic behavior of the LaCo1−xNixO3−δ

system, although LaNiO3 was previously found to act as thermocatalyst in the degra-
dation of methyl orange [23]. The same trend is found for the Ni-doped LaCoO3−δ

and these are shown in Supplementary Materials (Figure S9). All the synthesized per-
ovskites, except LaCo0.4Ni0.6O3−δ, degrade rhodamine B in <15 min at 60 ◦C and <45 min
at 50 ◦C. Tummino et al. [65] showed approximately 40% degradation in 6 h under dark
conditions and approximately 60% under solar irradiation in 6 h using Sr0.85Ce0.15FeO3.
Sun and Lin [66] synthesized SrTi1−xMnxO3 perovskites and degraded up to 50% of rho-
damine B in dark and 80% under irradiation in 4 h. LaFeO3 was shown to degrade rho-
damine B up to 78% in 3 h under photocatalytic conditions by Wiranwetchayan et al. [67].
Comparing our results to catalytic degradation of rhodamine B in literature, the degrada-
tion of rhodamine B found for our LaCo1−xNixO3−δ is much faster and can be considered
competitive with the other literature findings.
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In this study, we did not observe any correlation between the kinetic constant and the
energy band gap. Indeed, band gap should affect the catalytic degradation, as the energy
band gap determines the amount of energy required to excite electrons from the valence
band to the conduction band and initiate the catalytic process. Nevertheless, the difference
in energy band gap (Figure 4) among the different perovskites is relatively small.

The microstructural and textural features, such as crystal size and surface area, are
important in catalytic processes, as small particles with large surface make more active
sites available for the catalytic reaction. However, as can be seen in Figure 12, the highest
catalytic activity is found for LaCoO3−δ despite the fact that composition exhibits the
smallest surface area, while the Ni-doped samples generally show an increase in reaction
kinetics by increasing the surface area. The microstrain (Figure 2c) is here probably related
more to the structural defects upon doping than to microstructural/morphological tensions,
and its increase is often associated to a higher catalytic activity. According to that, the
perovskite with 60 mol% Ni should show the highest catalytic activity, which is not the
case. Therefore, the reason for the LaCoO3−δ perovskite to be the best performing catalyst
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in dark ambient degradation of rhodamine B must be related to the structural properties of
the perovskite. Here, two options are possible, the Ni enrichment at the surface and the Co
oxidation state. The Ni-enriched surface, found by XPS (Table 1), can be partly be caused
by the segregated NiO. NiO has previously been found to lower the catalytic activity of
mixed Co-Ni oxides [68]. However, considering the small amount of NiO observed in the
XRD pattern, this seems unlikely to be the main reason for the worse catalytic activity of
Ni-containing perovskites despite the fact that NiO might be the reason for the surface Ni
enrichment. The second option is that the oxidation state of Co is the crucial parameter to
control for these reactions. In fact, LaCoO3−δ has a considerably higher amount of Co(II) in
the structure whereas the Co(III) is stabilized upon Ni doping, with a high amount (~90%)
of Co(III), as seen from the XPS results (Table 1). This is in agreement with other literature
results concerning another oxidation reaction, the catalytic oxidation of CO, where Co(II)
was found preferred over Co(III) [69,70]. Therefore, in the case of dark ambient degradation
of rhodamine B using Ni-doped LaCoO3−δ perovskites, the most crucial parameter to
control is the Co(II)/Co(III) ratio.

Catalysts 2023, 13, x FOR PEER REVIEW 12 of 18 
 

 

sites available for the catalytic reaction. However, as can be seen in Figure 12, the highest 
catalytic activity is found for LaCoO3-δ despite the fact that composition exhibits the small-
est surface area, while the Ni-doped samples generally show an increase in reaction kinet-
ics by increasing the surface area. The microstrain (Figure 2c) is here probably related 
more to the structural defects upon doping than to microstructural/morphological ten-
sions, and its increase is often associated to a higher catalytic activity. According to that, 
the perovskite with 60 mol% Ni should show the highest catalytic activity, which is not 
the case. Therefore, the reason for the LaCoO3-δ perovskite to be the best performing cata-
lyst in dark ambient degradation of rhodamine B must be related to the structural prop-
erties of the perovskite. Here, two options are possible, the Ni enrichment at the surface 
and the Co oxidation state. The Ni-enriched surface, found by XPS (Table 1), can be partly 
be caused by the segregated NiO. NiO has previously been found to lower the catalytic 
activity of mixed Co-Ni oxides [68]. However, considering the small amount of NiO ob-
served in the XRD pattern, this seems unlikely to be the main reason for the worse catalytic 
activity of Ni-containing perovskites despite the fact that NiO might be the reason for the 
surface Ni enrichment. The second option is that the oxidation state of Co is the crucial 
parameter to control for these reactions. In fact, LaCoO3-δ has a considerably higher 
amount of Co(II) in the structure whereas the Co(III) is stabilized upon Ni doping, with a 
high amount (~90%) of Co(III), as seen from the XPS results (Table 1). This is in agreement 
with other literature results concerning another oxidation reaction, the catalytic oxidation 
of CO, where Co(II) was found preferred over Co(III) [69,70]. Therefore, in the case of dark 
ambient degradation of rhodamine B using Ni-doped LaCoO3-δ perovskites, the most cru-
cial parameter to control is the Co(II)/Co(III) ratio. 

2 4 6 8 10 12 14

0.01

0.02

0.03

0.04

0.05

LaCo1-xNixO3

 

k 
(m

in
−1

)

SBET (m
2 g−1)

LaCoO3

 
Figure 12. Correlations of kinetic constant and surface area determined by BET isotherm. The black 
squares are data for the Ni-doped samples and the green star is the symbol of the undoped LaCoO3. 
The black line is a guide for the eye for the Ni-doped series. 

3. Materials and Methods 
3.1. Perovskite Oxide Powders Synthesis 

LaCo1-xNixO3-δ (x = 0, 0.2, 0.4, 0.6, and 0.8) were synthesized by solution combustion 
synthesis. Stoichiometric amounts of La(NO3)3·6H2O (Th. Geyer, Renningen, Germany, 
purity 98%), Co(NO3)2·6H2O (Th. Geyer, Renningen, Germany, purity 98%), and 
Ni(NO3)2·6H2O (Alfa Aesar, Kandel, Germany, purity 98%) were dissolved in 190 mL de-
ionized water. The amount of weighed chemicals are found in Table S3 in Supplementary 
Materials. Citric acid (Carl Roth, Karlsruhe, Germany, purity ≥ 99.5%) was added as or-
ganic fuel with a citric acid-to-metal cations molar ratio of 2. NH4NO3 (Sigma Aldrich, 
Steinheim, Germany, purity ≥ 99.5%) was added as an additional oxidant to achieve a 
reducers-to-oxidizers ratio of 1.5, and pH was adjusted to 6 by adding NH4OH solution 
(25 wt%). The solution was left on a hot plate controlled at 80 °C using a connected Vertex 
thermometer for evaporation of the water under magnetic stirring until a gel was formed. 

Figure 12. Correlations of kinetic constant and surface area determined by BET isotherm. The black
squares are data for the Ni-doped samples and the green star is the symbol of the undoped LaCoO3.
The black line is a guide for the eye for the Ni-doped series.

3. Materials and Methods
3.1. Perovskite Oxide Powders Synthesis

LaCo1−xNixO3−δ (x = 0, 0.2, 0.4, 0.6, and 0.8) were synthesized by solution com-
bustion synthesis. Stoichiometric amounts of La(NO3)3·6H2O (Th. Geyer, Renningen,
Germany, purity 98%), Co(NO3)2·6H2O (Th. Geyer, Renningen, Germany, purity 98%),
and Ni(NO3)2·6H2O (Alfa Aesar, Kandel, Germany, purity 98%) were dissolved in 190 mL
deionized water. The amount of weighed chemicals are found in Table S3 in Supplementary
Materials. Citric acid (Carl Roth, Karlsruhe, Germany, purity ≥ 99.5%) was added as
organic fuel with a citric acid-to-metal cations molar ratio of 2. NH4NO3 (Sigma Aldrich,
Steinheim, Germany, purity ≥ 99.5%) was added as an additional oxidant to achieve a
reducers-to-oxidizers ratio of 1.5, and pH was adjusted to 6 by adding NH4OH solution
(25 wt%). The solution was left on a hot plate controlled at 80 ◦C using a connected Vertex
thermometer for evaporation of the water under magnetic stirring until a gel was formed.
When the gel was formed, the magnetic bar was removed, and the hot plate was set to
310 ◦C under the fume hood to cause the self-ignition. The as-burned powder was crushed
and calcined at 1000 ◦C for 5 h with a 2 ◦C min−1 temperature ramp.
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3.2. Perovskite Oxide Powders Characterization

The bulk structural properties of the synthesized perovskites was investigated by
XRD on a PANalytical Empyrean diffractometer (Almelo, The Netherlands), with Cu
Kα radiation (λ = 1.5418 Å), a voltage of 45 kV, and a current of 40 mA. The obtained
diffraction patterns were analyzed quantitatively by Rietveld refinement using the GSAS-
II software [71]. A Chebyschev polynomial with seven coefficients was chosen for the
background. Sample displacement was refined together with the unit cell of the crystal
phase. The size of the particles was fitted isotropic and the microstrain of the structure
was fitted with the atomic coordinates and the atomic displacement parameter (Uiso) for
the most abundant B-site atom. From fitting results, the structural information, in partic-
ular the cell edge lengths and relative phase composition, was obtained. The agreement
factors, describing the goodness of the Rietveld fitting, were acceptable. The cif files for
the starting model were taken from the ICDD PDF4+ database: LaCoO3 (01-080-3118),
LaCo0.2Ni0.8O3 (00-066-0346), LaCo0.4Ni0.6O3 (00-005-0602), LaCo0.6Ni0.4O3, (01-073-2813),
and LaCo0.8Ni0.2O3 (01-073-2813).

The XPS spectra were acquired by an ESCALAB MkII (VG Scientific—East Grinstead, UK)
spectrometer equipped with a standard Al excitation source and 5-channeltron as detection
system. The measurements were performed operating at 50 eV constant pass energy and the
binding energy (BE) scale was calibrated positioning the C 1s peak from adventitious carbon
at BE = 285.0 eV. The obtained spectra were processed by CasaXPS software.

Band gap was obtained through a Kubelka–Munk plot of the UV–Vis data from the
perovskites. The diffuse reflectance spectra were gathered in the range 200–800 nm by a
UV–Visible Spectrophotometer, PerkinElmer Lambda 1050 (Waltham, MA, USA), with an
integrating sphere using BaSO4 as a reference material.

The morphology of the synthesized perovskites was analyzed by scanning electron
microscopy (SEM) using a Zeiss EVO 60 microscope (Oberkochen, Germany). The per-
ovskite powder was gently placed on carbon tape prior to entering the SEM, and no further
coating was applied.

Specific surface area (Brunauer, Emmet, and Teller’s method [72]) and pore size distri-
butions (Barrett, Joyner, and Halenda’s method [73]) were evaluated by nitrogen adsorp-
tion/desorption measurements at −196 ◦C, using ASAP 2020 Plus (Micromeritics, Norcross,
GA, USA). All the samples were pre-treated under vacuum at 250 ◦C (10 ◦C min−1) for 1 h
prior to the measurements.

Zeta potential was measured on a Zetasizer Nano ZS (Malvern, UK). The samples
were dispersed in a 5 mM NaCl solution to ensure a higher conductivity and pH adjusted
with HCl or NaOH to the desired pH. After the initial pH adjustment, the samples were
sonicated for 10 min at 35 kHz and placed on a magnetic stirrer for further pH adjustment
if needed. After each adjustment, the suspension was left to equilibrate for 5 min.

3.3. Thermocatalytic Tests

A measure of 10 mg L−1 of rhodamine B was prepared, and pH value was adjusted to
2. Then, 100 mL of solution was poured into a cap bottle and placed in a Bandelin RK 100 H
sonication bath at a frequency of 35 kHz with temperature control. The sonication was
used to keep the perovskite particles in suspension as it was found that the particles either
agglomerated or precipitated on the glass surface without the sonication. The temperature
of the rhodamine B solution was varied between 25 ◦C and 60 ◦C to test the thermocatalytic
properties of the powders. When the desired temperature was reached, the perovskite
powder was added, and the solution was stirred for 15 s using a magnetic stirrer before
inserting it again into the sonication bath. The reaction start was when the perovskite
powder was added to the rhodamine B solution. The temperature in the cap bottle was
monitored with a thermometer and kept constant within 1–2 ◦C of the desired temperature.
The catalytic reaction was stopped when the measured absorbance of the dye was ≤5% of
the initial absorbance or, alternatively, after 90 min of run-time. We note that the absorbance
did not change for the rhodamine B solution when perovskites were not added. Samples
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were collected and filtered through a 0.45 µm RC filter for absorbance measurements and
then measured on a Spectronic 20 Genesys at 558 nm. A cover was placed over the samples
between measurements to minimize external light interference.

4. Conclusions

Ni-doped LaCoO3−δ perovskites were synthesized by solution combustion synthesis
and used as thermocatalysts for the degradation of rhodamine B in the 25–60 ◦C temperature
range under dark. Thermocatalytic results have shown that the undoped LaCoO3−δ

exhibits the greatest activity (k = 0.052 min−1 at 300 mg L−1 perovskite) in the degradation
of rhodamine B, with degradation within 60 min at room temperature and <10 min at
60 ◦C. The introduction of Ni in the formulation caused a decrease in perovskite oxide
catalytic activity (k = 0.017 min−1 at 300 mg L−1 of LaNi0.6Co0.4O3−δ) and this might be
ascribed to the increase and stabilization of the Co(III) in the perovskite structure of the
Ni-doped samples, where Co(III) content increased from 78% to 89–90%. However, at lower
catalyst concentration (100 mg L−1), the kinetics of the 80 mol% Ni-doped-LaCoO3−δ was
found better than the undoped perovskite, due to the higher surface area of the Ni-doped
perovskite powder. For the Ni-doped LaCoO3−δ perovskites, the catalytic activity increased
with increasing Ni-content, in agreement with the increase in surface area (from 3.31 to
12.87 m2 g−1), and thus, the catalytic activity was determined by a balance between the
surface oxidation state of Co and surface area.
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www.mdpi.com/article/10.3390/catal13020325/s1, Table S1. Crystal space group, lattice parameters,
crystal size, density, and fitting parameters from Rietveld refinement for all synthesized perovskites;
Table S2. Atomic positions and thermal parameters of LaCoO3−δ and LaCo0.2Ni0.8O3−δ from Rietveld
refinements. Differences compared to that in the ICDD database is shown in brackets; Table S3.
Amounts of chemicals used for synthesizing of each perovskite composition; Figure S1. X-ray
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LaCoO3−δ. Bold line Co 2p 3/2, dashed line Co 2p 1/2; green dotted line Co satellites; Figure S3.
Fitted Co 2p, Ni 2p XPS region of LaCo0.6Ni0.4O3−δ; Figure S4. ATR-FTIR of LaCoO3−δ. Inset shows
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