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Joanna Chałupka †, Jacek Dulęba † , Adam Sikora * , Tomasz Siódmiak and Michał Piotr Marszałł

Department of Medicinal Chemistry, Collegium Medicum in Bydgoszcz, Faculty of Pharmacy, Nicolaus
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Abstract: Kinetic resolution is one of the methods which allows obtaining enantiomerically pure com-
pounds. In the study presented herein, enantioselective biotransformations of (R,S)-1-phenylethanol
were performed with the use of various catalytic systems containing ionic liquids and n-heptane or
toluene as a reaction medium, vinyl acetate or isopropenyl acetate as an acetylating agent, and lipases
from Burkholderia cepacia or Candida rugosa. The conducted studies proved that the use of Burkholderia
cepacia lipase, vinyl acetate, and n-heptane with [EMIM][BF4] allows obtaining enantiomerically pure
1-phenylethyl acetate, with the enantiomeric excess of products eep = 98.9%, conversion c = 40.1%,
and high value of enantioselectivity E > 200. Additionally, the use of ionic liquids allowed us to reuse
enzyme in 5 reaction cycles, ensuring the high operational stability of the protein.

Keywords: racemic 1-phenylethanol; Burkholderia cepacia lipase; Candida rugosa lipase; ionic liquid;
enantioselective biotransformation

1. Introduction

The organic reaction is the most important way to develop new drugs and precursors.
At the same time, with the significant development of the pharmaceutical market, the
need for new drugs is ever-growing. Therefore, chemical catalyst synthesis and analysis
reactions play a crucial role in setting scientific trends. However, this type of reaction has
some limitations [1]. The cost of applying chemical catalysts is high and often exceeds
reaction efficiency benefits. The process often requires extreme conditions of reaction,
especially temperature and pressure. Moreover, the low specificity of catalysts has been
observed [1,2]. The reaction using enzymes as catalysts, commonly known as biocatalysis,
is the alternative solution to make synthesis more efficient, cheap, and environmentally
friendly [3].

Lipases (E.C. 3.1.1.3) belong to ones of the most widely applied biocatalysts. They are
characterized by high activity, stability, and stereoselectivity in catalyzing broad spectra of
reaction without applying cofactors [1,4,5]. The advantages of the reactions catalyzed by
these enzymes are occurring in aqueous and non-aqueous mediums, the high solubility of
hydrophobic substrates, the possibility to reuse the enzyme, and the high specificity of the
reaction [1,6]. Esterification and transesterification are the most common organic reactions
catalyzed by lipases [7]. Therefore, they are used in obtaining expected products with high
efficiency. Enantioselectivity is the feature of lipases that allows obtaining chirally pure
compounds, especially drugs and their building blocks [8–12]. Due to chiral centre (or
centres) in their structure, chiral drugs show various pharmacological activities depending
on each enantiomer. So far, there have been many chiral drugs in the form of enantiomers
characterized by better therapeutic activity than the other enantiomer included in the
racemic mixture of this drug [13]. Lipases were applied in many reactions to obtain pure
compounds or key intermediates [14]. A significant way to obtain an optically pure drug
or intermediate is the kinetic resolution of a racemic mixture of a chemical compound. This
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reaction is based on transferring one enantiomer from the reaction medium faster than the
other one [8]. The kinetic resolution of non-steroidal anti-inflammatory drugs (NSAIDs) as
(R,S)-ibuprofen (towards S-enantiomer) catalyzed by a lipase from Candida antarctica (CAL-
B) and lipase from Candida rugosa (CRL) and (R,S)-flurbiprofen (towards R-enantiomer)
is widely described in the literature [3,9,13,15]. CRL has also been used in the synthesis
of other NSAID ((S)-naproxen), cardiological β-blocker ((S)-atenolol) [16,17], and critical
intermediates of ezetimibe, a drug used in hypercholesterolemia [14]. On the other hand,
CAL-B catalyzed the reaction of obtaining (R)-ketorolac (NSAID) antibiotics, quinolone
derivatives, and (-)-chloramphenicol and (as Novozym 435) pimecrolimus, the compound
used in the therapy of dermatitis [14]. In synthesizing rasagiline mesylate from racemic
indanol, an essential drug in treating Parkinsonian syndrome, the reaction was catalyzed by
a lipase from Thermomyces languinosis (TLL). Lipases from Pseudomonas sp. also undoubtedly
have significance in chiral synthesis. Pseudomonas stutzeri lipase (TL) has been applied in
achieving benzoin derivatives as the chiral building block. Moreover, Pseudomonas cepacia
lipase (PCL), commonly named lipase from Burkholderia cepacia (BCL), has been tested
in receiving numerous chiral intermediates such as tetrahydrofuran intermediates [14],
mandelic acid [18,19], and myo-inositol [20,21]. However, all the compounds mentioned
above are obtained in reactions catalyzed by a narrow spectrum of enzymes. The kinetic
resolution of the one of the most commonly studied (R,S)-1-phenylethanol (RS-1-PHE),
important secondary alcohol with a chiral center (Figure 1), is catalyzed by a wide range of
lipases toward obtaining the chirally pure building block (R)-1-phenylethanol (R-1-PHE).
In pharmacy, R-1-PHE was applied in ophthalmic preservatives and cholesterol intestinal
adsorption [22–24]. This enantiomer was also used in the cosmetic industry as a mild
fragrance [22,25]. It is worth mentioning that the enantiomers of (R,S)-1-phenylethanol
showed various odors—(R)-1-phenylethanol has a floral, earthy-green, and honeysuckle
aroma, whereas the (S)-1-phenylethanol is characterized by a mild hyacinth and gardenia
smell with the addition of strawberries [26]. On the other hand, 1-phenylethyl acetate odor
was described as sweet and fruity, tropical, mango, woody, musty, and honey-like with
floral powdery nuances [27,28]. Both enantiomers of (R,S)-1-phenylethanol also exist in
volatile plants.
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Figure 1. The structures of (R,S)-1-phenylethanol (a), and enantiomers: (R)-1-phenylethanol (b), and
(S)-1-phenylethanol (c).

As mentioned above, (R,S)-1-phenylethanol was kinetically separated in the reaction
catalyzed by a wide spectrum of lipases [29]. The mechanism of this process is based on
the acylation of (R,S)-1-phenylethanol as the acyl acceptor with ester as the acyl donor in
the presence of an appropriate solvent and lipase as the catalyst [30]. The result of the
reaction is (R)-1-phenylethyl acetate [31,32]. The most used acyl donor is vinyl acetate,
due to the high enantiomeric excess of product obtained during the reaction [31–33]. The
enantiomeric excess of product was close to 100%. However, alternative donors, such as
isopropenyl acetate, have also been investigated (Figure 2) [30,34]. To improve the efficiency
of the reaction, the lipase was commonly applied in its immobilized form using various
physicochemical supports [22,31].
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Figure 2. The kinetic resolution of (R,S)-1-phenylethanol using various acyl donors: vinyl acetate or
isopropenyl acetate.

Ionic liquids (ILs) are organic salts in which the ions are poorly coordinated, which
makes them liquid below 100 ◦C or at room temperature [35]. They are composed of a large
organic cation with a low degree of symmetry and a small anion, which may be organic or
inorganic in origin [36]. Considering the chemical structure of the cation on which the posi-
tive charge is located, the following ionic liquids (ILs) are distinguished: Ammonium [R4N]
+, Phosphonium [R4P] + (b), Sulfonium [R3S] + (c), Oxonium [R2O] + (d) (Figure 3) [37].
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Ionic liquids are unusual chemical compounds that are used in many fields of modern
science. Many ionic liquids have been developed to solve specific synthetic problems and
are therefore also referred to as so-called “design solvents”. Their unique properties make
them useful in many technological processes [35]. Ionic liquids are also considered as “green
solvents” that exhibit several unique characteristics such as high ionic conductivity, high
solvation power, thermal stability, low volatility, and recyclability. Therefore, ionic liquids
have potential pharmaceutical applications for drug design and formulation development.
ILs are widely used in the pharmaceutical industry, mainly as catalysts and reaction media
to replace volatile organic solvents [38]. Conventional organic solvents pose a threat to the
environment due to the volatility, highly flammability, toxicity, and carcinogenic properties
they exhibit. Ionic liquids are promising green solvent alternatives to the volatile organic
solvents due to their ease of reuse, non-volatility, thermal stability and ability to dissolve
a variety of organic and organometallic compounds [36,39]. The use of ionic liquids as
a reaction medium has many advantages. These “green” solvents are environmentally
friendly and their transformations are often faster [40]. Additionally, ionic liquids can be
recovered from the bioreactor and reused in subsequent catalytic cycles, which reduces
the overall cost of the process. The main advantage of the use of ionic liquids, especially
[EMIM][BF4], is that they increase the catalytic properties of lipase from Burkholderia cepacia.
Additionally, due to the fact that the direct addition of ionic liquids to the reaction system
containing organic solvent such as: n-heptane or toluene creates a two-phase catalytic
system in which one phase contains lipase, whereas the second phase contains substrates
and products, it provides the possibility to reuse biocatalyst in other catalytic reactions
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by simple separation of lipase from the catalytic system. The conducted studies proved
that the use of Burkholderia cepacia lipase, vinyl acetate, and n-heptane with [EMIM][BF4]
as a two-phase reaction medium allows obtaining enantiomerically pure 1-phenylethyl
acetate. Additionally, the composition of the two-phase reaction system allowed reusing
the enzyme in five reaction cycles, ensuring the high operational stability of the protein.

2. Results and Discussion
2.1. Enantioselective Biotransformation of Racemic 1-Phenylethanol

Burkholderia cepacia and Candida rugosa lipases, which are commercially available, were
used to study the enantioselective biotransformation of (R,S)-1-phenylethanol in a variety
of two-phase reaction conditions. Ionic liquids are characterized by various advantages
while being utilized in the kinetic resolution of racemic compounds, as abovementioned;
therefore, the research that was undertaken concentrated on exploring different reaction
systems. The types of ionic liquid, acetylating agent, lipase, and solvent were tested
so the obtained catalytic systems varied from one another. Finally, it was composed of
32 reaction systems with addition of ionic liquids and 8 reaction systems without IL, as
is listed in Table 1. However, only some of the evaluated reaction systems demonstrated
adequate kinetic resolution performance criteria (Table 2). The catalytic system containing
lipase from Burkholderia cepacia, vinyl acetate as acetylating agent as well as n-heptane
and [EMIM][BF4] as reaction medium allowed obtaining the greatest outcomes among all
examined catalytic systems, nevertheless. The performed studies showed that only selected
ionic liquids enhanced the catalytic properties of enzymes.

Table 1. List of catalytic systems tested in kinetic resolution of racemic 1-phenylethanol.

No Acetylating Agent Reaction Medium Ionic Liquid Lipase

1 Vinyl acetate n-heptane None Burkholderia cepacia

2 Vinyl acetate toluene None Burkholderia cepacia

3 Isopropenyl acetate n-heptane None Burkholderia cepacia

4 Isopropenyl acetate toluene None Burkholderia cepacia

5 Vinyl acetate n-heptane None Candida rugosa OF

6 Vinyl acetate toluene None Candida rugosa OF

7 Isopropenyl acetate n-heptane None Candida rugosa OF

8 Isopropenyl acetate toluene None Candida rugosa OF

9 Vinyl acetate n-heptane [HMIM][BF4] Burkholderia cepacia

10 Vinyl acetate n-heptane [OMIM][Cl] Burkholderia cepacia

11 Vinyl acetate n-heptane [EMIM][BF4] Burkholderia cepacia

12 Vinyl acetate n-heptane [DMIM][MeSO4] Burkholderia cepacia

13 Vinyl acetate toluene [HMIM][BF4] Burkholderia cepacia

14 Vinyl acetate toluene [OMIM][Cl] Burkholderia cepacia

15 Vinyl acetate toluene [EMIM][BF4] Burkholderia cepacia

16 Vinyl acetate toluene [DMIM][MeSO4] Burkholderia cepacia

17 Isopropenyl acetate n-heptane [HMIM][BF4] Burkholderia cepacia

18 Isopropenyl acetate n-heptane [OMIM][Cl] Burkholderia cepacia

19 Isopropenyl acetate n-heptane [EMIM][BF4] Burkholderia cepacia

20 Isopropenyl acetate n-heptane [DMIM][MeSO4] Burkholderia cepacia

21 Isopropenyl acetate toluene [HMIM][BF4] Burkholderia cepacia

22 Isopropenyl acetate toluene [OMIM][Cl] Burkholderia cepacia
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Table 1. Cont.

No Acetylating Agent Reaction Medium Ionic Liquid Lipase

23 Isopropenyl acetate toluene [EMIM][BF4] Burkholderia cepacia

24 Isopropenyl acetate toluene [DMIM][MeSO4] Burkholderia cepacia

25 Vinyl acetate n-heptane [HMIM][BF4] Candida rugosa OF

26 Vinyl acetate n-heptane [OMIM][Cl] Candida rugosa OF

27 Vinyl acetate n-heptane [EMIM][BF4] Candida rugosa OF

28 Vinyl acetate n-heptane [DMIM][MeSO4] Candida rugosa OF

29 Vinyl acetate toluene [HMIM][BF4] Candida rugosa OF

30 Vinyl acetate toluene [OMIM][Cl] Candida rugosa OF

31 Vinyl acetate toluene [EMIM][BF4] Candida rugosa OF

32 Vinyl acetate toluene [DMIM][MeSO4] Candida rugosa OF

33 Isopropenyl acetate n-heptane [HMIM][BF4] Candida rugosa OF

34 Isopropenyl acetate n-heptane [OMIM][Cl] Candida rugosa OF

35 Isopropenyl acetate n-heptane [EMIM][BF4] Candida rugosa OF

36 Isopropenyl acetate n-heptane [DMIM][MeSO4] Candida rugosa OF

37 Isopropenyl acetate toluene [HMIM][BF4] Candida rugosa OF

38 Isopropenyl acetate toluene [OMIM][Cl] Candida rugosa OF

39 Isopropenyl acetate toluene [EMIM][BF4] Candida rugosa OF

40 Isopropenyl acetate toluene [DMIM][MeSO4] Candida rugosa OF

After 168 h of incubation, the (R)-1-phenylethyl acetate was obtained with the highest
value of enantiomeric excesses of the product being eep = 98.0%, whereas the enantios-
electivity was E = 205.0. The application of lipase from Burkholderia cepacia resulted in
obtaining acceptable results in specific reaction systems, whereas the use of Candida rugosa
OF lipase did not provide sufficient kinetic resolution of racemic compounds in all tested
catalytic systems.

2.2. Effect of Reaction Time

It is significant to test the duration of reaction time, since it is one of the most crucial
aspects of the kinetic resolution of racemic compounds. Other investigations have shown
that the enantioselectivity and enantiomeric excess of both products and substrates rapidly
decline when the reaction medium is incubated for an excessively long time. During
prolonged reaction, the reaction can no longer be regarded as enantioselective, as a result of
the conversion having the potential to be higher than 50%. Commercially available lipases
from Burkholderia cepacia (10 mg), vinyl acetate (28.25 µL; 0.3 mM) as an acetylating agent,
(R,S)-1-phenylethanol (10 µL; 0.08 mM), [EMIM][BF4] (200 µL), and n-heptane (400 µL)
were utilized as the reaction media in the experiment. The biotransformations were carried
out for 168 h at 37 ◦C. According to Figures 4 and 5, the reaction duration increased along
with the conversion, enantiomeric excess of the substrate, and enantiomeric ratio. Over the
same time span, the value of enantiomeric excess of products was constant. The value of
conversion was the highest after 168 h of reaction, and it varied depending on the type of
catalytic system (Table 2).
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Table 2. Enzymatic parameters including enantiomeric excesses of products (eep) and substrates (ees),
conversion (c), and enantioselectivity (E) of different reaction systems screened for the enantioselective
transesterification of (R,S)-phenylethanol after 168 h of incubation.

No eep ees c E

1 96.6% 23.2% 19.4% 72.4

2 96.7% 37.0% 27.7% 86.8

3 97.0% 48.3% 33.3% 105.9

4 96.8% 40.1% 29.3% 90.5

5 95.6% 12.0% 11.1% 49.4

6 97.9% 8.1% 7.7% 104.2

7 91.3% 12.0% 11.6% 24.7

8 96.6% 7.8% 8.9% 10.0

9 97.0% 12.0% 11.0% 74.4

10 94.1% 88.0% 48.3% 96.5

11 98.9% 68.1% 40.8% 379.0

12 39.1% 0.0% 0.0% 2.3

13 27.1% 0.5% 1.8% 1.8

14 78.7% 23.2% 22.8% 10.5

15 89.0% 42.0% 32.1% 25.9

16 19.9% 0.0% 0.1% 1.5

17 12.7% 0.4% 3.2% 1.3

18 21.2% 0.5% 2.4% 1.6

19 20.4% 0.2% 1.2% 1.5

20 0.3% 0.0% 1.8% 1.0

21 2.1% 0.1% 4.2% 1.0

22 5.9% 0.1% 0.9% 1.1

23 42.1% 0.5% 1.2% 2.5

24 68.2% 0.6% 0.9% 5.3

25 49.0% 13.0% 21.0% 3.3

26 29.0% 2.4% 7.7% 1.9

27 79.8% 18.2% 18.6% 10.6

28 39.2% 0.0% 0.0% 2.3

29 2.4% 0.0% 0.5% 1.1

30 9.4% 0.5% 5.2% 1.2

31 29.5% 0.5% 1.7% 1.9

32 0.1% 0.0% 3.5% 1.0

33 21.2% 17.0% 44.5% 1.8

34 19.2% 5.9% 23.5% 1.6

35 24.6% 18.6% 43.1% 2.0

36 1.3% 0.0% 0.3% 1.0

37 0.2% 0.1% 38.7% 1.0

38 24.1% 5.2% 17.8% 1.7

39 20.2% 0.1% 0.6% 1.5

40 2.9% 0.0% 0.8% 1.1
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(R,S)-phenylethanol in the two-phase catalytic system consisting of [EMIM][BF4] and n-heptane as
well as lipase from Burkholderia cepacia.

2.3. Effect of Biocatalysts

The enzyme-catalyzed biotransformation of racemic phenylethanol was carried out
using lipases from Candida rugosa OF and Burkholderia cepacia in native forms, and their
catalytic and enantioselective capabilities were examined. The use of lipase from Candida
rugosa OF in spite of previously published studies with other racemic compounds were
not suitable for kinetic resolution of (R,S)-phenylethanol and did not allow obtaining
satisfactory results of enantioselectivity among all evaluated catalytic systems, as indicated
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in Table 2. Nevertheless, the use of Burkholderia cepacia lipase allowed obtaining the
product of (R)-phenylethyl acetate with a high value of enantiomeric excess and conversion.
Nevertheless, the performed studies proved that the utilized biocatalysts are sensitive to
reaction conditions, and only some from the tested reaction systems were appropriate to
the enzyme, as indicated in Table 2.

2.4. Effect of Reaction Medium

Some of the catalytic systems presented herein were effective in kinetic resolution of
(R,S)-phenylethanol. As was observed, Candida rugosa lipase exhibited low stereoselectivity
in the assayed reaction media and it was not suitable for kinetic resolution of racemic
1-phenylethanol. Nevertheless, the performed studies proved that Burkholderia cepacia
lipase is the proper biocatalyst to perform kinetic resolution. Nevertheless, among all
testes catalytic systems, only a few containing Burkholderia cepacia lipase were effective.
Because of this, one of the most crucial aspects of improving reaction conditions to increase
enantioselectivity is selecting the best reaction medium. Taking into account the addition of
ionic liquids, it should be noted that, according to the obtained results, only [EMIM][BF4],
[HMIM][BF4], and [OMIM][Cl] were appropriate for the enantioselective acetylation of
racemic phenylethanol. However, the addition of [DMIM][MeSO4] inhibited the biocata-
lysts and stopped the reaction. During the experiments the influence of organic solvent
was also tested. The catalytic systems contained n-heptane or toluene. As it turned out,
only one tested catalytic system containing ionic liquid ([EMIM][BF4]) and toluene was
appropriate for kinetic resolution of racemic phenylethanol. Although the enantioselective
value for this catalytic system was higher than 20 (E = 25.94, sample No.: 23), it was still
significantly lower than the E-values obtained for analogues catalytic systems containing
n-heptane instead of toluene (Figures 6 and 7). Therefore, it should be noted that the cat-
alytic systems containing n-heptane as the reaction medium, vinyl acetate as the acetylating
donor, and Burkholderia cepacia lipase were the most efficient among all tested mixtures.
The obtained results were also in line with other studies published elsewhere, in which
n-heptane was selected as the optimal reaction medium. Nevertheless, it should be noted
that despite organic solvents being suitable for enzymatic biotransformation, they are toxic
to the environment; thus, it was decided to compose a two-phase catalytic system in which
the amount of n-heptane would be limited, but still create the optimal surrounding for
lipase, whereas the substrates and products would be placed in ionic liquid, which could
be easily separated from the reaction mixture. To limit the amount of organic solvent, it
was decided to combine ionic liquid and organic solvent in a volumetric ratio equal to 2:1.
Finally, the addition of [EMIM][BF4] to the mixture exhibited the best kinetic resolution
parameters, yielding the enantioselectivity E = 379.0, enantiomeric excess of products
eep = 98.9%, and conversion c = 40.8% after 7 days of reaction.

2.5. Effect of Lipase Reusability in Enzyme-Catalyzed Biotransformation of Racemic Compound

One of the most important advantages of using ionic liquids in two-phase enzyme-
catalyzed biotransformations is that the enzyme can be reused in different catalytic systems
simply by replacing the ionic liquid with specific substrates and reaction products. During
the study, the influence of the recyclability of native lipases on the kinetic resolution of
racemic atenolol was investigated. Burholderia cepacia lipase was again used for this
purpose according to the indicated substrate-exchange method.

After the catalytic process, the remaining ionic liquid containing enantiomers of 1-
phenylethanol and its derivatives was transferred to a separate tube. The same remaining
lipase suspended in n-heptane was then added to a new batch of ionic liquid containing
racemic 1-phenylethanol as the reaction substrate. The correct acetylating agent was used
to initiate the enantioselective reaction (vinyl acetate). In the presented experiment, five
reaction cycles were performed, reaching 840 h of catalytic and operational activity of the
enzymes used. Enantiomeric excesses for all evaluated reaction mixtures after the fifth
reaction cycle exceeded 95% of the starting value (Figure 8).
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After five reaction cycles, there was no discernible difference in the catalytic activity of
the enzyme in the next catalytic cycles found. Thus, the results obtained show that not only
are there direct benefits associated with using ionic liquids to reach catalyst parameters
beyond acceptable levels, but also the separation of substrates and products from the
catalytic system.
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3. Materials and Methods
3.1. Chemicals

Amano PS lipase from Burkholderia cepacia (APS-BCL) (≥30,000 U/g) was obtained
from Sigma Aldrich. Lipases from Candida rugosa OF were a gift from Meito Sangyo Co., Ltd.
Heptane, isopropanol, toluene trifluoroacetic acid, and ionic liquids such as 1-hexyl-3-
methylimidazolium tetrafluoroborate [HMIM][BF4], 1-ethyl-3-methylimidazolium tetraflu-
oroborate [EMIM][BF4], 1,3-dimethylimidazolium methyl sulfate [DMIM][MeSO4], and
1-methyl-3-octylimidazolium chloride [OMIM][Cl] were purchased from Sigma Aldrich.
The substrates of kinetic resolution ((R,S)-1-phenylethanol, isopropenyl acetate, vinyl ac-
etate), as well as reference standards of (R,S)-1-phenylethyl acetate, (R)-1-phenylethanol,
and (R)-1-phenylethyl acetate were purchased from Sigma Aldrich.

3.2. Instrumentation

The HPLC analysis were performed with the use of the Shimadzu HPLC-system (Kyoto,
Japan), which was equipped with an autosampler (model: SIL-20AC HT); solvent delivery
pump combined with gradient systems (model: LC-20 CE); a degasser (model: DGU-20A5);
a column oven (model: CTO-10ASVP); a UV -VIS detector (model: SPD-20A). The chiral
resolutions were conducted by using Lux Cellulose-3 (LC-3) (4.6 mm × 250 mm × 5 µm)
column with cellulose tris(4-methylbenzoate) which were purchased from Phenomenex
Co (Torrance, CA, USA). All incubations were performed at a controlled temperature and
number of rotations (250 RPM) in the incubating apparatus, model: the Inkubator1000 and
Unimax 1010, which were purchased from Heidolph (Schwabach, Germany). The HPLC
samples were concentrated using the Refrigerated CentriVap Concentrator, which was
purchased from Labconco (Kansas City, MO, USA).

3.3. Chromatographic Conditions

The use of a chiral column: Lux Cellulose-3 thermostated at 15 ◦C allowed us to achieve
baseline chiral separation of the enantiomers of both (R) and (S)-1-phenylethanol and their
esters. The optimal mobile phase consisted of n-heptane/2 propanol/trifluoroacetic acid
(98.7/1.3/0.15, v/v/v). In order to obtain satisfactory resolution, the flow rate of the
mobile phase was set at 1 mL/min. The UV detection wavelength was set at 254 nm. In
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order to optimize chromatographic conditions, reference samples of (R,S)-1-phenylethanol,
(R,S)-1-phenylethyl acetate, (R)-1-phenylethanol, and (R)-1-phenylethyl acetate were used.

3.4. Kinetic Resolution of (R,S)−1-Phenylethanol

Enantioselective biotransformation of (R,S)-1-phenylethanol using vinyl acetate or iso-
propenyl acetate as the acetylating agent resulted in the production of phenylethyl acetate
(Figure 2). All tested reaction systems were in triplicate and consisted of commercially
available lipase from Candida rugosa OF or lipase from Burkholderia cepacia, vinyl acetate
(28.25 µL; 0.3 mM) or isopropenyl acetate (35.98 µL; 0.3 mM) as the acetyl donor, racemic
1-phenylethanol 10 µL, 0.08 mM) as well as ionic liquid (200 µL) and toluene or heptane
(400 µL) as the reaction media. The reaction was started by the addition of 10 mg of lipase
in native form. The reaction mixture was shaken at 250 rpm at t = 37 ◦C. The process of
enantioselective acetylation was monitored using chiral stationary phases and a HPLC
system. The samples were withdrawn at previously established time points (24, 48, 72,
96, 120, 144, 168 h) and then evaporated and re-dissolved in pure n-heptane, filtered, and
injected into the HPLC system.

The percentage enantiomeric excesses of the substrate (ees) and product (eep), conver-
sion (c) as well as enantioselectivity (E) were calculated [40,41] as shown below:

ees =
|R− S|
R + S

× 100%

eep =
|R− S|
R + S

× 100%

c =
ees

ees + eep
× 100%

E =
ln
[
(1− c)

(
1 + eep

)]
ln
[
(1− c)

(
1− eep

)]
where R represents the values of peak areas for (R)-phenylethanol and its ester and S
represents the values of peak areas for (S)-phenylethanol and its ester.

4. Conclusions

The results of the experiment supported the hypothesis that lipase from Burkholderia
cepacia is able to catalyze the enantioselective acetylation of racemic 1-phenylethanol with
the use of vinyl acetate as acetylating agent. It turned out that using two-phase catalytic
systems with toluene or n-heptane and ionic liquid, as well as Burkholderia cepacia lipase and
vinyl acetate, allowed for the production of highly enantioselective parameters. According
to a previously published paper related to the kinetic resolution of (R,S)-1-phenylethanol,
n-heptane was one of the most suitable reaction solvents, whereas the acetylating agent was
vinyl acetate or isopropenyl acetate [41–43]. Nevertheless, the main aim of the performed
study was to verify the possibility to perform kinetic resolution of racemic 1-phenylethanol
in a two-phase catalytic system. According to available literature in terms of enantiose-
lective biotransformation of racemic compounds, it was decided to test four ionic liquids,
i.e., [HMIM][BF4], [OMIM][Cl], [EMIM][BF4], and [DMIM][MeSO4] [44–49]. The used
ionic liquids, however, displayed a variety of kinetic characteristics, leading to varying
enantioselectivities and enantiomeric excesses of substrate and product.

Although the native Burkholderia cepacia lipase in the system including [EMIM][BF4]
and n-hexane as the reaction media and vinyl acetate as the acetylating agent produced
the best results among all evaluated catalytic systems (E = 379.0, eep = 98.9%), enantiose-
lective biotransformations were also observed for systems containing [HMIM][BF4] and
[OMIM][Cl]. Only the reaction medium containing [DMIM][MeSO4] inhibited the biocata-
lysts and stopped the biotransformation. Nevertheless, taking into account other studies
published elsewhere, the proposed herein catalytic system allowed us to obtain satisfactory
results, since the enantiomeric excesses of the product were close to 100%, whereas the
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enantioselectivity was about 400, which is in line with some other results [50–52]. On the
other hand, there are also previously published studies related to the kinetic resolution of
1-phenylethanol with the use of ionic liquids; nevertheless, without the composition of the
two-phase catalytic system, there is no possibility of ease of separation of lipase from the
reaction system or to reuse it in other bioseparations [53–57]. Whereas, the composition of
the catalytic system with ionic liquid and organic solvents such as n-heptane or toluene cre-
ates a two-phase bioreactor, with separate compartments containing lipase and substrates
with products of enantioselective biotransformation. Additionally, it should be noted that,
in the presented approach, the usage of potentially toxic organic solvents is significantly
limited, which is in parallel with the “green chemistry” methodology.
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