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Abstract: Phosphine-free ruthenium benzylidene complexes containing imidazole ligands are re-
ported. These catalysts are effective for ring-closing metathesis (RCM) and cross-metathesis (CM)
reactions at high temperatures, where the more widely used phosphine-containing N-heterocyclic
carbene-based ruthenium catalysts show side reactions. This discovery opens up a pathway to
develop more selective ruthenium metathesis catalysts for reactions requiring harsh conditions.
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1. Introduction

Olefin metathesis (OM), an essential method for the construction of carbon–carbon
double bonds, has been used in many applications by introducing well-characterized
ruthenium organometallic complexes [1–6]. In the case of ruthenium catalysts, introducing
N-heterocyclic carbenes (NHCs) as ligands (Figure 1, Grubbs II, 2) led to a number of
air- and moisture-stable catalysts compared to Grubbs I, which contains two Pcy3 ligands
(Figure 1, 1) [7–9]. In addition, the more specialized phosphine-free ruthenium complexes
(containing one NHC ligand) such as nitrogen-ligated (Figure 1, Grubbs III, 3) [10] and
oxygen-ligated (Figure 1, Hoveyda—Grubbs II, 4) [11] ruthenium catalysts have been
introduced to allow for better results in industrially important metathesis reactions.
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Figure 1. Ruthenium olefin metathesis catalysts 1–4. 

Since Grubbs reported the first nitrogen-chelated ruthenium catalyst containing 
two pyridine ligands [12], a series of phosphine-free ruthenium catalysts containing a 
pyridine or imine ligand have been reported (Scheme 1) [13–38]. For example, Schrodi et 
al. [18] disclosed a Ru catalyst with motif A that showed higher catalytic activity in 
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Figure 1. Ruthenium olefin metathesis catalysts 1–4.

Since Grubbs reported the first nitrogen-chelated ruthenium catalyst containing
two pyridine ligands [12], a series of phosphine-free ruthenium catalysts containing a pyri-
dine or imine ligand have been reported (Scheme 1) [13–38]. For example, Schrodi et al. [18]
disclosed a Ru catalyst with motif A that showed higher catalytic activity in ring-opening
olefin metathesis polymerization (ROMP). Grubbs’ group [20] and Slugovc and Grela’s
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group [23] synthesized a series of nitrogen-chelated ruthenium complexes containing
an imine ligand with motif B or C. Catalysts for multisite chelation were reported by
our group in 2016, which exhibited high activity for the RCM and CM reactions (motif
D) [24]. However, compared with the free nitrogen-chelated Ru catalysts, the endocyclic
nitrogen-chelated model (Scheme 1, A–D) resulted in lower initiation rates due to the
stronger binding of the Ru-N bond. In addition, Grubbs noted that the pyridine ligands in
[(H2IMes)(pyridine)2(Cl)2Ru=CHPh] can be readily replaced with phosphanes [12]. Given
the similar nature of pyridine and imidazole [39], it seems logical to test whether the imida-
zole ligands, after transformation into the corresponding ruthenium complexes (Figure 1),
act as OM catalysts and what the properties of this system will be.
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Scheme 1. Nitrogen-ligated ruthenium catalysts.

Here, we disclose a method for the stepwise preparation of a NHC ruthenium complex
containing two imidazole ligands and demonstrate its high performance in RCM and
CM reactions at high temperatures, as compared to the commercial phosphine-containing
ruthenium catalysts, such as Grubbs II, that show side reactions [40]. To the best of our
knowledge, the catalytic properties of the Grubbs catalysts bearing imidazole ligands
have rarely been described in the related chemical literature. Only Schanz’s group [41,42]
and Öztürk and coworker [43] reported that using ruthenium benzylidene complexes
containing 1-methylimidazole and poly(N-vinylimidazole) in combination with an excess
of mineral acids (H3PO4 or HCl) to form 14 electron-active Ru complexes demonstrated its
high performance in ROMP and CM reactions.

2. Results and Discussion
2.1. Synthesis of Catalysts 6a and 6b

Complexes 6a and 6b were then obtained in moderate to fair yields by using commer-
cially available Ru precursor 2 in reaction with 1-mesityl-1H-imidazole 5a or 1-benzyl-1H-
imidazole 5b (Scheme 2). All complexes were characterized via NMR spectroscopy and
HRMS.
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2.2. RCM Transformations

The catalytic behavior of Ru catalysts 6a–6b was first evaluated in the model RCM
reaction of N,N-diallyl-4-methylbenzenesulfonamide 7, and the results are summarized
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in Table 1. Since 6a–6b, as expected, gave essentially the same selectivity while producing
RCM product 8 and cycloisomerization product 9, for a better understanding of the results,
only the RCM reactions promoted by the Ru catalyst 6b are reported in Table 1. For com-
parison, parallel RCM reactions performed with 2 were included in Table 1. Moreover,
to put our results in a more general context, parallel reactions promoted by the Schanz
catalyst (containing two 1-methylimidazoles and one NHC ligand) [42] in combination
with mineral acids (H3PO4 or HCl) were also added.

Table 1. Screening of RCM reaction conditions a.
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a Substrate (0.5 mmol), solvent (0.5 mL), [Ru] (1 mol%), and additive (3 mol%). The reaction was carried out at
80 ◦C. b Additive (30 mol%). c Additive (2 mol%). d Additive (5 mol%).

The RCM reaction of N-protecting diene 7 with catalyst 2 proceeded almost quantita-
tively at 25 ◦C, and no isomerization product 9 was observed (Table 1, entry 1). Regardless
of the poor efficiency displayed by Ru catalyst 6b in the same reaction (entry 2), we thought
to investigate the factors affecting its catalytic behavior in the RCM reactions. Note that
the formation of isomerization product 9 may be ascribed to the oxidative coupling of the
diene to the Ru center followed by β-elimination and reductive elimination when the Ru
complex in RCM reactions displayed a latent catalytic property [44,45]. Schanz disclosed
that the coordination of imidazole ligand precursors to Grubbs-type catalysts generated
a latent catalytic system, which could translate into an active Ru complex through the
addition of mineral acids (H3PO4 or HCl) [41,42]. Encouraged by this result, we tried
to use H3PO4 or HCl as an additive to enhance the activity and chemoselectivity of 6b.
Additionally, the results revealed that 6b did not have a significant enhancement in the
yield of 8 along with the formation of 9, but the Schanz catalyst gave a better result in the
presence of H3PO4 (entries 3–6). Screening mineral acids as an additive did not give a better
result; therefore, we turned our attention to the reaction temperature. As the temperature
increased, the yield of product 8 also increased; however, it also did not suppress the
formation of isomerization product 9 (entries 7–10). Importantly, when the RCM reaction
of N-protecting diene 7 was carried out in toluene at 80 oC by using 6b as a catalyst, the
conversion of 7 was more than 99% (entry 10). Moreover, Demonceau [44] and Dixneuf [45]
reported that using terminal alkynes as additives could inhibit the isomerization product
by promoting the formation of an active Ru complex. These results encouraged us to
continue screening different terminal alkynes as additives at this temperature. The use of
3 mol% of phenylacetylene as an additive led to a slight decrease in the yield of 8, along
with a considerable increase in the formation of 9 (entry 11). Using 3-bromopop-1-yne as
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an additive did not cause a significant enhancement in the yield of product 8, but inhibited
the formation of 9 (entry 12). Interestingly, a prolonged reaction time (from 4 h to 12 h)
gave RCM product 8 a 95% yield by using 3 mol% of 3-bromoprop-1-yne as an additive,
and the formation of 9 was not observed (entry 13). Changing the reaction temperature,
reaction time, and the amount of additive did not lead to a definite improvement in the
yield of 8 (entries 14–17).

Having the optimal parameters in hand, we opted to test the activity of 6a and 6b
in a set of RCM reactions (Table 2). In general, 6b was found to smoothly realize the ring
closure of tested substrates 7, 9, 11, 13, 17, and 19, giving corresponding five-, six-, or
seven-membered cyclic olefins in a higher yield with respect to 6a. However, for eneyne
substrate 15, neither catalyst 6a nor 6b could promote the RCM reaction.

Table 2. Substrate scope of RCM reactions a.

Entry Substrate Product [Ru] Yield

1
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a Substrate (0.5 mmol), toluene (0.5 mL), [Ru] (1 mol%), and 3-bromoprop-1-yne (3 mol%) at 80 °C 
for 12 h. Isolate yield. 

The catalytic profile of 6b was then evaluated in the CM reactions of two different 
terminal olefins without an additive. Moreover, to ensure the fairness of the test, parallel 
reactions catalyzed by 2 and the Schanz catalyst were also added (Figure 2). Although 2 
showed slightly higher reactivity, styrenes with R1 as a 4-F, 4-Me, or 4-MeO moiety were 
all reacted with (allyloxy)benzene to give CM products 23−25 by using 6b in an addi-
tive-free manner. Out of curiosity, the CM reaction of styrene and (allyloxy)benzene was 
also carried out at 80 °C, giving 25 in a 90% yield, which exhibited the ability of 6b to 
work under harsh conditions. Catalyst 6b was also entered into a reaction of styrene and 
terminal olefins with various functional groups (-CN and -COOMe; 26−27), but catalyst 
2 also had a superior conversion. Moreover, the Schanz catalyst was used to synthesize 
23−27 in an additive-free manner, and the results showed that 6b and the Schanz catalyst 
perform similar activities in the CM reactions. 

 

Figure 2. Substrate scope of CM reactions. Substrate 21 (5.0 mmol), substrate 22 (0.5 mmol), DCM 
(0.5 mL), and [Ru] (2.5 mol%) at 40 °C for 12 h. Isolate yield. b Toluene as solvent at 80 °C for 12 h. 

3. Materials and Methods 
3.1. Instruments and Reagents 

1-Benzyl-1H-imidazole 5b and most alkenes were acquired from commercial sup-
pliers and were used without further purification. Here, 1-mesityl-1H-imidazole 5a was 
synthesized according to published procedures [46]. The 1H and 13C NMR spectra were 
obtained at 25 °C in CDCl3 on a Bruker AV 400 NMR spectrometer (Bruker Co., Fael-
landen, Switzerland), in which the chemical shifts (δ in ppm) were established with re-
spect to CHCl3. High-resolution mass spectrometry (HRMS) was performed on a Bruker 
microTOF-QII instrument (Bruker Daltonik GmbH, Bremen, Germany). 

3.2. Catalytic Tests 
3.2.1. RCM Reactions 
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The catalytic profile of 6b was then evaluated in the CM reactions of two different
terminal olefins without an additive. Moreover, to ensure the fairness of the test, parallel
reactions catalyzed by 2 and the Schanz catalyst were also added (Figure 2). Although 2
showed slightly higher reactivity, styrenes with R1 as a 4-F, 4-Me, or 4-MeO moiety were all
reacted with (allyloxy)benzene to give CM products 23–25 by using 6b in an additive-free
manner. Out of curiosity, the CM reaction of styrene and (allyloxy)benzene was also carried
out at 80 ◦C, giving 25 in a 90% yield, which exhibited the ability of 6b to work under harsh
conditions. Catalyst 6b was also entered into a reaction of styrene and terminal olefins with
various functional groups (-CN and -COOMe; 26–27), but catalyst 2 also had a superior
conversion. Moreover, the Schanz catalyst was used to synthesize 23–27 in an additive-free
manner, and the results showed that 6b and the Schanz catalyst perform similar activities
in the CM reactions.
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obtained at 25 °C in CDCl3 on a Bruker AV 400 NMR spectrometer (Bruker Co., Fael-
landen, Switzerland), in which the chemical shifts (δ in ppm) were established with re-
spect to CHCl3. High-resolution mass spectrometry (HRMS) was performed on a Bruker 
microTOF-QII instrument (Bruker Daltonik GmbH, Bremen, Germany). 

3.2. Catalytic Tests 
3.2.1. RCM Reactions 

Figure 2. Substrate scope of CM reactions. Substrate 21 (5.0 mmol), substrate 22 (0.5 mmol), DCM
(0.5 mL), and [Ru] (2.5 mol%) at 40 ◦C for 12 h. Isolate yield. b Toluene as solvent at 80 ◦C for 12 h.

3. Materials and Methods
3.1. Instruments and Reagents

1-Benzyl-1H-imidazole 5b and most alkenes were acquired from commercial suppliers
and were used without further purification. Here, 1-mesityl-1H-imidazole 5a was synthe-
sized according to published procedures [46]. The 1H and 13C NMR spectra were obtained
at 25 ◦C in CDCl3 on a Bruker AV 400 NMR spectrometer (Bruker Co., Faellanden, Switzer-
land), in which the chemical shifts (δ in ppm) were established with respect to CHCl3.
High-resolution mass spectrometry (HRMS) was performed on a Bruker microTOF-QII
instrument (Bruker Daltonik GmbH, Bremen, Germany).

3.2. Catalytic Tests
3.2.1. RCM Reactions

To the solution of N-protecting diene (0.5 mmol) and an additive (3 mol%) in a dry
solvent (DCM, or toluene, 0.5 mL), 1.0 mol% of a corresponding catalyst (2, 6a, 6b, or the
Schanz catalyst) was added in one portion in N2. The resulting mixture was stirred under
the given conditions (see Tables 1 and 2) for 12 h. After the reaction time was completed,
all volatiles were removed under reduced pressure and the crude product was purified
using column chromatography (SiO2, eluent: from n-hexane to 10% EtOAc/n-hexane).

3.2.2. CM Reactions

To the solution of styrene (5.0 mmol) and O-protecting terminal olefins (0.5 mmol) in
a dry solvent (DCM or toluene, 0.5 mL), 2.5 mol% of a corresponding catalyst (2, 6b, or
the Schanz catalyst) was added in one portion in N2. The resulting mixture was stirred
under the given conditions (see Figure 2) for 12 h. After the reaction time was completed,
all volatiles were removed under reduced pressure and the crude product was purified
using column chromatography (SiO2, eluent: from n-hexane to 10% EtOAc/n-hexane).

4. Conclusions

Two imidazole ruthenium catalysts were synthesized for the first time. The high activ-
ity of the synthesized ruthenium precatalysts, containing N-Mes or N-Bn imidazole ligands,
makes them very good precatalysts for high-temperature RCM and CM reactions. Main-
taining of the high catalytic activity of the ruthenium precatalysts under harsh conditions
may be attributed to the strengthening of the Ru-N bond.
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