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Abstract: The chemical synthesis of heterocycles typically requires elevated temperature and acid or
base addition to form the desired product. Moreover, these reactions often involve hazardous reagents,
which is why biocatalytic routes for heterocycle formation have gained increasing attention. In recent
years, several enzymes belonging to the amidohydrolase superfamily have been identified to generate
heterocycles via cyclocondensation reactions. Of particular interest is the amidohydrolase MxcM,
which catalyzes the formation of an imidazoline moiety in the biosynthesis of the anti-inflammatory
natural product pseudochelin A. In this study, we present a concept for the immobilization of
this enzyme using a fused hexahistidine tag for fixation onto a solid, porous carrier. Notably, the
immobilization improves the enzyme’s tolerance to organic solvents. The immobilized MxcM exhibits
a residual activity of 169% in the polar solvent acetonitrile compared to the free enzyme, and the
storage stability in the presence of 20 vol% acetonitrile was ameliorated. In addition, an immobilized
enzyme reactor (IMER) was designed that can be operated under flow conditions. The MxcM-IMER
retains its biocatalytic activity and mechanic stability over the tested operation time. These results
provide important insights for the integration of heterocycle-forming amidohydrolases in chemical
processes.

Keywords: amidohydrolase; flow biocatalysis; heterocycle; imidazoline; immobilization; MxcM;
natural product; solvent tolerance

1. Introduction

Heterocycles are defined as molecules that incorporate at least one ring structure with
one or more heteroatoms, most commonly nitrogen, oxygen or sulfur [1]. Such compounds
are omnipresent in nature, as they can be found in nucleic acids, amino acids, carbohy-
drates, vitamins, pigments, and natural products [2]. Due to their specific biological effects,
heterocycles are important molecular fragments of agrochemicals and active pharmaceu-
tical ingredients [3,4]. Prominent examples include the fungicide cyazofamid [4] or the
β-lactam antibiotic penicillin [5]. The heterocyclic core as well as the attached functional
groups influence the physicochemical properties, metabolic stability, and bioavailability of
a drug [6,7]. A vast number of studies focused on the synthesis of heterocyclic compounds
for the discovery of new or optimized pharmaceuticals [8–12]. Over the past decade, the
demand for “green” chemistry has triggered the development of flow processes for the
synthesis of heterocycles [13,14]. Flow chemistry enables the set-up of fully automated and
controlled processes with higher efficiency and safety as well as lower waste generation.
Other advantages of flow processes include better heat and mass transfer or simplified
scalability [13–16]. Another aspect of green chemistry is the use of biocatalysts that operate
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under mild temperatures and in aqueous solutions. In heterocyclic chemistry, biocatalysts
are also of particular interest for the development of stereoselective syntheses [17–19].

Nature uses different enzyme-catalyzed reactions for the biosynthesis of heterocycles,
e.g., alkylation, condensation, decarboxylation, oxidation, or reduction [20–23]. In recent
years, evidence has accumulated that selected enzymes of the amidohydrolase superfamily
perform heterocyclizations. While amidohydrolases are usually known to hydrolyze vari-
ous substrates, the newly identified members catalyze cyclocondensations. In Streptomyces
spp., the biosyntheses of different benzoxazole natural products were shown to involve
amidohydrolases [24–27]. For instance, the amidohydrolase NatAM from the nataxazole
biosynthetic pathway was demonstrated to convert a substituted 2-aminophenyl benzoate
into a benzoxazole via a hemiorthoamide intermediate [27]. A homolog of NatAM was
found in the anaerobic bacterium Clostridium cavendishii DSM 21758, which produces meta-
substituted benzoxazoles [28]. Another heterocycle-forming amidohydrolase was identified
in the myxochelin biosynthesis gene cluster of the marine bacterium Pseudoalteromonas
piscicida S2040 [29]. The corresponding enzyme, MxcM, catalyzes an intramolecular con-
densation of the β-aminoethyl amide moiety in myxochelin B to form an imidazoline ring
(Figure 1) [29]. The product of this reaction, pseudochelin A, showed an improved activity
against human 5-lipoxygenase compared to other myxochelins, including myxochelin
B [30]. Thus, the integration of an imidazoline heterocycle enhanced the anti-inflammatory
properties. A preceding study focused on the kinetic and biochemical characterization of
the amidohydrolase MxcM [31]. The good stability and the high tolerance towards organic
solvents and concentrated salt solutions as well as its cofactor independency imply that
this enzyme might be a valuable candidate for integration into chemical process synthesis
of heterocyclic compounds. In this study, we further assessed the competence of the amido-
hydrolase MxcM for utilization in heterocyclic chemistry. For this purpose, we developed a
protocol for the immobilization of MxcM on a porous, solid support and characterized the
immobilized enzyme with regard to solvent tolerance and storage stability. Subsequently, a
packed-bed reactor with immobilized MxcM was designed and used for semicontinuous
flow synthesis of imidazoline heterocycles.
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Figure 1. Reaction catalyzed by the amidohydrolase MxcM. Intramolecular condensation of the β-
aminoethyl amide moiety in myxochelin B leads to the formation of the imidazoline moiety in pseu-
dochelin A [29,31]. 

2. Results and Discussion 
2.1. Immobilization of MxcM 
2.1.1. Influence of Divalent Metal Ions 

Previous studies demonstrated that the amidohydrolase MxcM is active and stable 
as a hexahistidine (6xHis)-tagged fusion protein [31]. Because histidine residues promote 
the binding of a protein to metals on a solid support, a His-tag can be used both for puri-
fication and immobilization purposes [32]. Immobilizations based on the metal affinity of 
His-tags usually result in good enzymatic activity and stability compared to other immo-
bilization methods. Furthermore, they enable the recovery of the support material [33,34]. 
In this study, recombinantly produced 6xHis-MxcM was immobilized on Chromalite 
MIDA/M particles. Chromalite MIDA/M is a hydrophilic, polymethacrylic macroporous 

Figure 1. Reaction catalyzed by the amidohydrolase MxcM. Intramolecular condensation of the
β-aminoethyl amide moiety in myxochelin B leads to the formation of the imidazoline moiety in
pseudochelin A [29,31].

2. Results and Discussion
2.1. Immobilization of MxcM
2.1.1. Influence of Divalent Metal Ions

Previous studies demonstrated that the amidohydrolase MxcM is active and stable as
a hexahistidine (6xHis)-tagged fusion protein [31]. Because histidine residues promote the
binding of a protein to metals on a solid support, a His-tag can be used both for purification
and immobilization purposes [32]. Immobilizations based on the metal affinity of His-tags
usually result in good enzymatic activity and stability compared to other immobilization
methods. Furthermore, they enable the recovery of the support material [33,34]. In this
study, recombinantly produced 6xHis-MxcM was immobilized on Chromalite MIDA/M
particles. Chromalite MIDA/M is a hydrophilic, polymethacrylic macroporous iminodi-
acetic acid affinity resin with a mean particle size of 110 µm and a pore diameter of 1000 Å.
The resin can be loaded with divalent metal ions that form chelate complexes with the imi-
dazole moieties of the 6xHis-tag. To screen the performance of resins loaded with different
metal ions for the immobilization of MxcM, a commercial Chromalite MIDA/M/Ni2+ resin
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was compared to Ni2+, Cu2+ and Co2+ self-loaded particles. For immobilization, an enzyme-
to-particle ratio of 0.1 mgMxcM/mgpdw was applied corresponding to a maximal achievable
enzyme loading of 10 wt%. The particle mass refers to the particle dry weight (pdw). With
all tested resins, a good immobilization yield of 70–80% and an enzyme loading between
7.2 and 8.2 wt% was achieved (Figure 2A). The most favorable results were obtained with
the preloaded Chromalite MIDA/M/Ni2+ particles, which provided an immobilization
yield of 80.7 ± 0.3% and an enzyme loading of 8.2 ± 0.2 wt%. For the residual activity
of the immobilized enzyme, we observed significant differences (Figure 2B). The MxcM
on Ni2+ preloaded particles showed a residual activity of 30.9 ± 8.7% compared to the
free enzyme. While the performance of Ni2+ self-loaded particles regarding the enzyme
activity was improved to 48.2 ± 11.9%, the Cu2+ self-loaded resin had a residual activity
of only 10.6 ± 1.3%. The mean residual activity of MxcM on Co2+ self-loaded Chromalite
MIDA/M amounted to 69.2% but exhibited a surprisingly high standard deviation of
34.1%. Generally, many factors can affect the residual activity of an enzyme that is attached
to a solid support, e.g., steric hindrance or hydrophobic and ionic interactions [35]. The
different metal ions exhibit varying binding affinities to the carrier (Cu2+ > Ni2+ > Co2+)
and His-tag selectivity (Cu2+ < Ni2+ < Co2+), which might have influenced the performance
of the immobilizate [35,36]. Most amidohydrolases catalyze metal-dependent reactions
and, hence, feature one or more metal-binding sites [27,37]. Although experimental data
indicate that MxcM does not require metal ions for its biocatalytic activity, a sequence
alignment revealed that the crucial metal-coordinating residues are present [31]. For that
reason, the metal content as well as the type of divalent metal ion used for immobilization
might influence the enzyme’s biocatalytic activity if the metal ions are captured by the
putative metal-binding site of MxcM [35,38].
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To evaluate the effect of the enzyme concentration and the incubation time during 
the immobilization process, the Chromalite MIDA/M/Ni2+ resin was incubated with two 
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Figure 2. Influence of the divalent metal ion loaded on Chromalite MIDA/M resin on the immobi-
lization yield, enzyme loading (A) and residual enzymatic activity (B). The Ni2+-preloaded particles
were compared to resin that was self-loaded with Ni2+, Cu2+, or Co2+. Activity of free MxcM:
13.5 ± 0.4 U/mgMxcM (Nbiol = 2, Ntech = 3; 0.2 µM MxcM).

2.1.2. Influence of Enzyme Concentration, Immobilization Time, and Enzyme-to-Particle Ratio

To evaluate the effect of the enzyme concentration and the incubation time during
the immobilization process, the Chromalite MIDA/M/Ni2+ resin was incubated with
two different concentrations of the enzyme solution for 3 or 20 h at an enzyme-to-particle
ratio of 0.1 mgMxcM/mgpdw. As displayed in Figure 3, the higher enzyme concentration
and a longer immobilization time marginally improved the yield and loading, but the
residual activity was slightly reduced. For this reason, an immobilization time of 3 h and
the lower enzyme concentration were applied in the following experiments.
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Figure 3. Effects of enzyme concentration and immobilization time on the immobilization efficiency.
(A) Immobilization yield and enzyme loading after varying the concentration of the MxcM solution
(c1 = 0.53 mg/mL; c2 = 1.11 mg/mL) and the time used for the immobilization process. Ni2+-
preloaded Chromalite MIDA/M particles were used as the immobilization resin (enzyme-to-particle
ratio: 0.1 mgMxcM/mgpdw). (B) Residual activity of immobilized MxcM generated in the different
immobilization setups. Activity of the free MxcM: 14.5 ± 0.4 U/mgMxcM (Nbiol = 2, Ntech = 3;
0.2 µM MxcM).

We observed that enhancing the enzyme-to-particle ratios during the immobilization
process from 0.1 to 0.2 and 0.4 mgMxcM/mgpdw led to an increased loading of MxcM on the
immobilization resin (Figure 4). A ratio of 0.1 mgMxcM/mgpdw effectively resulted in an
enzyme loading of 7.8 ± 0.2 wt% and an immobilization yield of 76.3 ± 1.8%. With enzyme-
to-particle ratios of 0.2 and 0.4 mgMxcM/mgpdw, the enzyme loading increased by a factor of
1.2 or 2, respectively, while the immobilization yield and residual activity were significantly
reduced. The latter can be explained by an increased enzyme concentration on the surface
and in the pores of the resin, which might lead to the effects of steric hindrance or altered
enzyme–enzyme interactions [39,40]. A maximal loading of 15.5 ± 1.5 wt% was reached
with 0.4 mgMxcM/mgpdw. However, because the yield (27.5 ± 3.3%) and residual activity
(24.6 ± 5.5%) were notably lowered under these conditions, an enzyme-to-particle ratio of
0.1 mgMxcM/mgpdw was used for the subsequent experiments. Overall, we demonstrate
the technical feasibility for the immobilization of a heterocycle-forming amidohydrolase
for the first time. This way, the enzyme becomes recyclable, offering new opportunities for
process operation.
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Figure 4. Influence of the different enzyme-to-particle ratios on the immobilization efficiency. (A) Im-
mobilization yield and enzyme loading reached after the immobilization with ratios of 0.1, 0.2,
and 0.4 mgMxcM/mgpdw. (B) Residual activity of immobilized MxcM generated in the three im-
mobilization setups. Activity of the free MxcM: 13.7 ± 0.2 U/mgMxcM (Nbiol = 2, Ntech = 3; 0.2 µM
MxcM).
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2.1.3. Activity of Immobilized MxcM in Organic Solvents

The use of organic solvents can be beneficial for biocatalytic processes, e.g., due to the
improved solubility of substrates and products or simplified downstream processing [41–44].
Previous studies demonstrated that the amidohydrolase MxcM is active in several organic
solvents. Herein, the enzymatic activity increased with the log p-value of the organic
solvent. High residual activities were observed in hydrophobic solvents. Since MxcM
catalyzes a cyclocondensation reaction with water as a byproduct, a reduction in the water
activity can be expected to shift the reaction equilibrium towards the product side [31]. Be-
cause immobilization is known to ameliorate the solvent tolerance of enzymes [45–47], we
evaluated this effect for the immobilized MxcM in five different solvent systems (Figure 5).
To ensure that the hydration shell of the MxcM was kept intact, 10 vol% water was added
to each setup. In accordance with the reported solvent tolerance of the MxcM, we ob-
served high residual activities of the free MxcM in the hydrophobic solvents n-hexane
and methyl tertiary-butyl ether (MTBE), while the presence of acetonitrile reduced the
enzymatic activity (Figure 5A). Interestingly, the activity of the immobilized MxcM in
n-hexane and MTBE was elevated by a factor of 2.3 or 1.9, respectively, compared to the
aqueous system (Figure 5B). These hydrophobic solvents formed a liquid two-phase system
with water. The immobilized MxcM was found in the aqueous phase. Consequently, the
enzymatic reaction occurred in the aqueous phase, where the local concentration of the
enzyme was higher than in systems with only one liquid phase. Additionally, transport
of the substrate and product between the two liquid phases presumably influenced the
measured specific activity. In contrast, the water-miscible solvent acetonitrile had direct
contact with the enzyme and disrupted its hydration shell [48,49]. Therefore, the activity
in acetonitrile was significantly reduced compared to the aqueous system. Our results
indicate that the immobilization positively affected the tolerance of the MxcM towards
acetonitrile. The residual activity of the immobilized MxcM in acetonitrile was reduced
to 65.4 ± 7.2% compared to the aqueous system (specific activity: 2.2 ± 0.2 U/mgMxcM).
Without immobilization, acetonitrile was extremely detrimental for the enzymatic activity
(residual activity: 8.5 ± 3.7%; specific activity: 1.3 ± 0.2 U/mgMxcM). If these values are
brought into relation, it becomes evident that the immobilization ameliorated the enzyme’s
stability in acetonitrile (169.0 ± 18.7% residual activity in acetonitrile after immobilization).
Furthermore, the activities of the immobilized MxcM in 20 vol% acetonitrile and in buffer
were almost identical (92.0 ± 12.7% residual activity compared to the aqueous system). The
hydrophilic surface properties of the immobilization support Chromalite MIDA/M might
influence the water distribution in the microenvironment of the enzyme and, thus, protect
the enzyme from the detrimental effects of acetonitrile [50–52].
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was set to 100%. The activity of the immobilized MxcM in buffer: 3.3 ± 0.3 U/mgMxcM (Ntech = 3;
0.2 µM MxcM).
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2.1.4. Storage Stability of the Immobilized MxcM

In order to assess the storage stability of the immobilized and free MxcM, the samples
were stored for 28 days at 4 ◦C in phosphate buffer and in phosphate buffer with 20 vol%
acetonitrile. At defined time points, the enzyme leaching and residual activity were
measured (Figure 6). Only on day 1, a significant amount of enzyme was detected in the
supernatant (0.03 ± 0.01 mg/mL), which might have been caused by insufficient washing
of the resin on the previous day. On all remaining days of the sampling, no significant
enzyme leaching was observed, suggesting a stable binding of the enzyme to the solid
support. In buffer, both the immobilized and the free MxcM nearly retained the specific
activity. After 28 days of storage, the residual activity of the free MxcM was 91.3 ± 4.2%,
while the residual activity of the immobilizate amounted to 89.6 ± 22.9%. As mentioned
before, the presence of 20 vol% acetonitrile reduced the specific activity of the free enzyme
by approximately 60%, while the activity of the immobilized MxcM was only marginally
affected. On day 28, the measured residual activity in 20 vol% acetonitrile compared to day
0 was 11.6 ± 2.7% for the free MxcM and 22.6 ± 5.9% for the immobilized enzyme. For this
reason, the immobilization increased the stability in 20 vol% acetonitrile. The reusability,
the good storage stability, and the tolerance to organic solvents of the immobilized enzyme
prompted us to evaluate the performance of the immobilizate under flow conditions.
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50 mM phosphate buffer with 20 vol% acetonitrile (ACN) stored at 4 ◦C. The activity of free MxcM:
13.7 ± 0.2 U/mgMxcM (Nbiol = 2, Ntech = 3; 0.2 µM MxcM).

2.2. Design and Characterization of the Immobilized Enzyme Reactor
2.2.1. Reactor Packing

For the preparation of the immobilized enzyme reactor (MxcM-IMER), the immobiliza-
tion procedure was upscaled, and the immobilizate was packed into empty HPLC columns
(50 × 2.1 mm). During the packing process, which was conducted in three iterative runs, the
pump pressure was recorded. The maximal packing density was reached with a volumetric
flow rate of 1.5 mL/min. The physical parameters of the two separately packed reactors
are listed in Table 1. We observed that the immobilization yield after the scale-up was ~10%
higher, which can be attributed to a more intensive mixing in the horizontally fixed 5 mL
tubes. The pressure drop induced by the packed bed increased in a linear correlation with
the volumetric flow rate, indicating that the particles were not deformed (Figure S1). Using
the Carman–Kozeny equation (6), the theoretical porosity of the packed bed was calculated
to ~20%. The cubic closest packing of a packed bed with ideal spherical particles features a
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porosity of 26% [53]. This difference can be explained by the particle size distribution of
the Chromalite MIDA/M particles.

Table 1. Parameters of the MxcM-IMERs. The dimensions of the steal columns: 50 × 2.1 mm, empty
volume: 173.2 µL.

Parameter Reactor 1 Reactor 2

Immobilization yield [%] 87.4 ± 1.1 85.6 ± 0.8
Enzyme loading [wt%] 8.9 ± 0.1 8.7 ± 0.1

Particle dry weight [mg] 29.9 29.3
Enzyme mass [mg] 2.9 2.8

Enzyme concentration [mM] 0.29 0.28
Pressure drop at 1.5 mL/min [bar] 4.1 3.8

Theoretical porosity ε [%] 1 19.2 19.6
1 Calculated with the Carman–Kozeny equation.

2.2.2. Residence Time Behavior

To estimate the theoretical residence time, which would be required to reach the
reaction equilibrium in an ideal plug flow reactor, we made use of the [E]·τ-concept [54,55].
For this, the reaction time course of the batch reactions with immobilized MxcM was
recorded (Figure S2). For further calculations, we anticipated that the reaction equilibrium
of 60.5 ± 5.4% pseudochelin A is reached after 30 min with an enzyme concentration of
0.2 µM and 0.5 mM myxochelin B. Using the [E]·τ approach, a theoretical residence time
of 1.3 s was calculated to be required at an enzyme concentration of 0.28 mM to achieve a
product yield of 60% for a substrate concentration of 0.5 mM. This theoretical residence
time was used to provide a reasonable estimate for the required volumetric flow rate.

Since it can be assumed that the properties of the MxcM-IMER differed from an ideal
plug flow reactor, the real residence times were measured for volumetric flow rates of 0.25
to 1.00 mL/min, which corresponded to theoretical residence times between 8 and 2 s for
a theoretical porosity of 20%. For this purpose, we conducted tracer experiments once
with phosphate buffer and once with phosphate buffer including 15 vol% acetonitrile as
mobile phases. The analysis of the recorded UV profiles revealed that an integration of
the flow reactors into the HPLC systems caused a peak broadening of the residence time
distribution (Figure S3). For this reason, the mean residence time was calculated and used
for the assessment of the residence time behavior (Figure 7). For every tested flow rate,
the real residence times were higher than the theoretical ones, which was probably due
to backmixing and interactions of the analytes with the particles in the packed bed via
pore diffusion and adsorption. In addition, the differences between the theoretical and real
porosity would affect the residence times.
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2.2.3. Operation in Semicontinuous Mode

For a semicontinuous mode of operation, the MxcM-IMERs were integrated into
the HPLC system and placed into the column oven to achieve a temperature control
(Scheme 1). The autosampler was used to inject the substrate myxochelin B into the flow
system. Two separate eluent reservoirs, filled with 50 mM phosphate buffer and acetonitrile,
allowed the adjustment of the eluent composition.
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Scheme 1. Flow chart of an HPLC system with integrated MxcM-IMER for application in the
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First, we evaluated the impact of different volumetric flow rates on myxochelin B con-
version (Table 2). The conversion was determined from the mole portion of pseudochelin
A at the reactor outlet. The results indicate that the conversion was nearly independent
from the residence time. With 100 vol% buffer as mobile phase, the conversion ranged
between 25 and 48%. For both reactors, the best conversion was achieved at a flow rate
of 0.75 mL/min, which corresponds to a mean residence time of ~12 s. It can be hypoth-
esized that the elevated convection at higher volumetric flow rates reduces the diffusion
limitations, which might occur in the packed bed at lower flow rates. Interestingly, the
addition of 15 vol% acetonitrile to the mobile phase greatly influenced the performance
of the MxcM-IMERs. Under these conditions, the substrate conversion increased to over
90%. The presence of acetonitrile might improve the solubility of the substrate and product
in the mobile phase and reduce mass transfer limitations between the bulk phase and
the catalytically active particle surface. Acetonitrile might also influence the hydrophobic
interactions between the enzymes [56].

Table 2. Conversion of myxochelin B in a semicontinuous flow system with the MxcM-IMERs
under different volumetric flow rates, calculated from the mole portion of pseudochelin A at the
reactor outlet; 5 µL of 20 mM myxochelin B (0.1 µmol) were injected into the HPLC system using
the autosampler. The experiments were conducted with 50 mM phosphate buffer (pH 8) or 50 mM
phosphate buffer with 15 vol% acetonitrile (ACN) (Ntech = 2).

Volumetric
Flow Rate

Buffer Buffer + 15 vol% ACN

Reactor 1 Reactor 2 Reactor 1 Reactor 2

0.25 mL/min 25.4 ± 9.5% 36.4 ± 0.4% 96.6 ± 1.1% 93.5 ± 0.7%
0.50 mL/min 34.4 ± 4.1% 42.6 ± 7.2% 95.7 ± 0.7% 95.3 ± 0.03%
0.75 mL/min 41.2 ± 3.1% 47.8 ± 5.0% 94.6 ± 2.5% 93.3 ± 0.3%
1.00 mL/min 27.5 ± 1.1% 36.5 ± 6.1% 94.6 ± 0.5% 90.3 ± 0.4%

Subsequently, we analyzed the temperature-dependency at flow rates of 0.5 and
0.75 mL/min (Table 3). For both flow rates, a temperature of 30 ◦C seemed to be advan-
tageous in the flow system. In contrast, previous experiments revealed a temperature
optimum of 50 ◦C for the free MxcM [31]. In batch reactions, the immobilized enzyme also
exhibited higher activities at 50 ◦C (Figure S4). For the MxcM-IMERs, we observed that
the temperature had the greatest influence on the conversion in the presence of 15 vol%
acetonitrile and a flow rate of 0.5 mL/min. Here, a temperature increase from 30 to 50 ◦C
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led to a ~50% reduction in the conversion. All other conditions were only slightly affected
by the elevated temperature. The temperature and the presence of polar organic solvents
can modify the conformational flexibility and activity of enzymes by influencing hydrogen
bonds or hydrophobic interactions [57,58]. In addition, the temperature influences the
viscosity of the eluents, which can alter the flow conditions and the mass transport in the
flow system.

Table 3. Temperature-dependent conversion of myxochelin B in a semicontinuous flow system with
the MxcM-IMERs at volumetric flow rates of 0.50 and 0.75 mL/min; 5 µL of 20 mM myxochelin
B (0.1 µmol) were injected into the HPLC system using the autosampler. The experiments were
conducted with 50 mM phosphate buffer (pH 8) or 50 mM phosphate buffer with 15 vol% acetonitrile
(ACN) (Ntech = 3).

Volumetric
Flow Rate Temperature

Buffer Buffer + 15 vol% ACN

Reactor 1 Reactor 2 Reactor 1 Reactor 2

0.50 mL/min
30 ◦C 58.7 ± 1.4% 52.4 ± 4.9% 95.8 ± 1.6% 91.8 ± 1.0%
50 ◦C 49.9 ± 2.0% 40.8 ± 1.1% 44.1 ± 1.3% 52.2 ± 4.1%

0.75 mL/min
30 ◦C 62.7 ± 0.6% 44.1 ± 8.1% 97.0 ± 0.5% 91.7 ± 0.8%
50 ◦C 50.3 ± 2.6% 41.2 ± 4.2% 85.1 ± 3.6% 84.8 ± 3.5%

To assess the process stability of the MxcM-IMERs, we recorded the residual activity
after 8 days of operation and 38 semicontinuous runs for the characterization of the reactors
(total operation time: ~12 h) at a flow rate of 0.5 mL/min and a temperature of 30 ◦C. During
the downtime periods, the reactors were stored at 4 ◦C in phosphate buffer. Especially
in flow systems, the streaming mobile phases can induce a leaching of the Ni2+-ions
and the enzymes, which would lead to a reduction in the enzyme concentration in the
reactor [56,59,60]. Compared to day 0, the residual activities were calculated to 102.3 ± 7.6%
for reactor 1 and 107.5 ± 5.6% for reactor 2. Consequently, it can be assumed that the
enzymes stayed active under the flow operation and that no significant leaching effects
occurred in the MxcM-IMERs, providing evidence of the high stability of the enzyme–metal
chelate complexes. This result is consistent with several references in the literature, which
describe low metal and enzyme leaching and, thus, good stability of His-tag based affinity
immobilization resins [34,61,62]. Furthermore, visual inspection of the reactors on day 8
did not reveal a compression of the packed bed, indicating a high mechanical stability of the
immobilizate. Since the MxcM-IMERs have not yet reached their maximum performance,
the operation time period should be extended in the future to further assess the long-term
process stability in flow. Based on these properties, it might also be feasible to operate the
MxcM-IMER in the continuous mode.

3. Materials and Methods
3.1. Production and Purification of Myxochelin B and Pseudochelin A

For the production of myxochelin B, M. xanthus FB was cultured in CYE medium
(casitone 10 g/L, 5 g/L yeast extract, 2.1 g/L MOPS, 1 g/L MgSO4 × 7 H2O, 0.5 mg/L
vitamin B12; pH 7.4) in the presence of 3 wt% of the adsorber resin Amberlite XAD7HP
(Sigma Aldrich, Taufkirchen, Germany) and 100 mg/L of the biosynthetic precursor 2,3-
dihydroxybenzoic acid. After 7 days of incubation at 30 ◦C and 130 rpm, the adsorber resin
was collected by filtration. Subsequently, the resin was washed with water and adsorbed
compounds were eluted with methanol. The eluate was concentrated in a vacuum evap-
orator (Heidolph Instruments, Schwabach, Germany), and solid particles were removed
by centrifugation and filtration. Myxochelin B was isolated from the bacterial raw extract
using a semipreparative HPLC system (Shimadzu, Duisburg, Germany) and a Nucleodur
100-5 C18 VarioPrep column (Macherey-Nagel, Düren, Germany) in two consecutive purifi-
cation steps with the following chromatographic conditions: flow rate—4 mL/min; mobile
phases—methanol (MeOH) and water with 0.1 vol% trifluoroacetic acid. Step 1: 0–14 min:
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50% MeOH; 14–20 min: 50–100% MeOH; 20–25 min: 100% MeOH; 25–27 min: 100–50%
MeOH; 27–20 min: 100% MeOH. Step 2: 50% MeOH isocratic. The identity and purity of
the isolated myxochelin B was analyzed via LC-MS and HPLC (Figure S5). Pseudochelin A,
which served as an analytical standard, was produced in the recombinant strain M. xanthus
DSM16526: pJK5 before [29].

3.2. Enzyme Production and Purification

For the production of 6xHis-tagged MxcM, the recombinant expression strain Es-
cherichia coli BL21(DE3): pET28a(+)-mxcM was cultured according to a previously described
protocol [29]. The cells were harvested by centrifugation (4500 rpm, 30 min, 4 ◦C), the
supernatant was discarded, and the cell pellet was resuspended in lysis buffer (50 mM
NaH2PO4, 10 mM imidazole, 300 mM NaCl, and 10 vol% glycerol). The cell lysis was
conducted via pressure homogenization in a French press at 69 bars. Subsequently, the cell
debris was removed by centrifugation (19,000 rpm, 30 min, and 4 ◦C). For the isolation of
the 6xHis-tagged MxcM, an FPLC system (ÄKTA pure, Cytiva Europe, Freiburg, Germany)
was used in combination with HisTrap FF crude 1 mL columns (Cytiva Europe). First, the
columns were washed with 5 column volumes (CV) water and equilibrated with 5 CV
binding buffer (lysis buffer with 40 mM imidazole) at a flow rate of 1 mL/min. Afterwards,
the protein sample was applied and washed with 10 CV binding buffer. For protein elu-
tion, the amount of elution buffer (lysis buffer with 500 mM imidazole) was successively
increased to 100 vol% over 10 CV and kept at 100 vol% for 5 CV. Then, the column was
washed with 10 CV binding buffer. Finally, the isolated enzyme was desalted using the
PD-10 desalting column (Cytiva Europe) according to the manufacturer’s specification.
For the column equilibration and protein elution, 100 mM phosphate buffer (pH 8) was
used. The concentration of protein samples was determined by use of the NanoDrop2000
spectrophotometer (Thermo Fisher Scientific, Dreieich, Germany). The purity of the protein
solution was analyzed via SDS PAGE (Figure S6).

3.3. Immobilization

The purified 6xHis-tagged MxcM was immobilized on a porous Chromalite MIDA/M
(Purolite, an Ecolab Company, Ratingen, Germany) support, which was delivered as wet
particles. To determine the actual residual moisture, a defined mass of wet particles
was dried for 2 h at 60 ◦C in a SpeedVac vacuum concentrator (Eppendorf, Hamburg,
Germany). Afterwards, the particle dry weight was measured, and the residual moisture
was calculated. For the equilibration, 20 µL phosphate buffer (50 mM NaH2PO4 × 2 H2O,
pH 8) were added per mg wet particles. For the loading of the Chromalite MIDA/M
with Ni2+, Cu2+, or Co2+, the wet resin particles were suspended in a 10 mM metal salt
solution (NiSO4 × 6 H2O, CoSO4 × 7 H2O, CuCl2 × 2 H2O; 30 µL per mg resin). This
suspension was incubated for 3 h at 21 ◦C and 200 rpm. Subsequently, the particles were
washed four times with 20 µL phosphate buffer per mg wet particles. A defined amount of
enzyme solution and the immobilization resin were incubated for 3 h (or 20 h) at 21 ◦C and
200 rpm. The required volume of the enzyme solution was determined from the enzyme-
to-particle ratio and the particle dry weight. After the immobilization, the supernatant
was removed and the immobilizate was washed two times with 30 µL phosphate buffer
per mg wet particles. The amount of remaining free MxcM in the solution was measured
spectrophotometrically. The amount of immobilized enzyme was calculated from a mass
balance. The immobilization yield Yimmo (1) and the enzyme loading Wimmo (2) were
determined as criteria for the evaluation of the immobilization process.

Yimmo [%] =
mimmo

cenz·Venz
(1)

Wimmo[wt%] =
mimmo

mPDW+mimmo
(2)
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where mimmo [mg] = mass of immobilized enzyme; cenz [mg/mL] = concentration of the
enzyme stock solution; Venz [mL] = volume of enzyme solution; and mPDW [mg] = particle
dry weight.

For the determination of the residual activity of the immobilized enzyme, the specific
activity of the immobilizate and the free enzyme were measured. The reactions with the
free MxcM were performed in 50 mM phosphate buffer (pH 8) with 0.2 µM MxcM and
0.5 mM myxochelin B in a total volume of 250 µL. For the reactions with the immobilized
MxcM, the total volume was adjusted to achieve the same enzyme–substrate ratio. Prior to
the addition of the substrate, all reactions were preheated to 30 ◦C. Then, myxochelin B
was added and, after 2 min incubation at 30 ◦C, the reactions were stopped by heat (99 ◦C,
5 min, 300 rpm). For the removal of the denatured enzyme or the immobilization resin, the
reaction mixtures were centrifuged for 2 min at 13,000 rpm. The supernatant was filtered
and analyzed by reversed phase HPLC using a Nucleodur Sphinx RP column (150 × 2 mm,
3 µm, Macherey Nagel). The separation of the substrate and product was achieved with
an isocratic method (13 vol% acetonitrile, 87 vol% water with 0.1 vol% trifluoracetic acid;
flow rate: 0.4 mL/min). The substrate conversion was determined from the peak areas at a
wavelength of 254 nm and used for the calculation of the specific activity. Each experiment
was performed in two biological (Nbiol) and three technical replicates (Ntech).

3.4. Activity in Organic Solvents and Storage Stability of Immobilized MxcM

To analyze the performance of the immobilized MxcM in organic solvents, the reactions
with free and immobilized enzyme were conducted in 90 vol% n-hexane, MTBE, and
acetonitrile and 10 vol% ddH2O. Additionally, a setup of 20 vol% acetonitrile and 80 vol%
phosphate buffer was evaluated. For each setup, the specific enzymatic activity was
determined and used for the calculation of the residual activity regarding immobilization,
which describes the effect of the immobilization on the specific activity in each solvent
system (Ntech = 3).

The storage stability of the immobilized and free MxcM was evaluated in phosphate
buffer and in phosphate buffer with 20 vol% acetonitrile. In these media, the enzyme was
stored at 4 ◦C for 28 days. On defined days of sampling, the specific activity was determined
(Nbiol = 2, Ntech = 3). For the investigation of the enzyme leaching, the protein concentration
in the supernatant was measured. The supernatant was removed and replaced by fresh
storage medium.

3.5. Reactor Packing

First, an empty stainless-steel HPLC column (50 × 2.1 mm, SCP Seitz Chromatographie
Produkte, Weiterstadt, Germany) was integrated into the HPLC system (Shimadzu) to
record the pressure drop induced by the system at volumetric flow rates of 0.50, 0.75,
1.00, 1.25, and 1.50 mL/min. The immobilization process described in Section 3.3 was
upscaled to obtain a sufficient amount of immobilizate. Afterwards, the immobilizate was
packed into the empty column. To achieve a homogenous packed bed, the MxcM-IMER
was installed into the HPLC system, and the immobilizate was compressed by successively
increasing the flow rate from 0.50 to 1.50 mL/min. Each flow rate was maintained for
5 min. Because the height of the packed bed was significantly reduced after the first
and second packing iterations, the empty volume was refilled with immobilizate. After
the third packing iteration, the height of the packed bed remained constant. The system
pressure with integrated MxcM-IMER was measured at different flow rates and used for
the calculation of the pressure drop induced by the packed bed (∆pparticles). Assuming that
the pressure drop induced by the fittings and the fluid are negligibly small compared to
∆pparticles, the equation (3) can be used to describe the correlation between ∆pparticles and
the friction coefficient (λ), the column length (LS), the mean particle diameter (dp), the fluid
density (ρF), and the empty tube velocity (u) [63,64].
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∆p ≈ ∆pparticles= λ
LS
dp

ρF· u2

2
(3)

For a laminar flow (Rep < 20), the friction coefficient depends on the porosity of the
packed bed (ε) and the Reynolds number (Rep) (4). The Reynolds number depends on u,
dp, ρF and on the dynamic viscosity (ηF) (5). From Equations (3)–(5), the Carman–Kozeny
equation can be deduced (6). The theoretical porosity of the packed bed (ε) is calculated
from (6) by the iterative target value search.

λ =
(1 − ε)2

ε3
300
Rep

(4)

Rep =
u dp ρF

ηF
(5)

∆p = 150
(1 − ε)2

ε3
LS·ηF· u

d2
p

(6)

3.6. Characterization of the Residence Time Behavior

By use of the integrated UV detector, the residence time distribution of the analytes
in the reactor was recorded. The integration of the MxcM-IMER led to a significant peak
broadening of the residence time distribution compared to the empty system. For that
reason, the mean residence time was calculated from the residence time distribution and
used for the evaluation of the residence time behavior (Figure S7).

3.7. Characterization of the Reactor Performance in Semicontinuous Mode

The influence of the different reaction parameters (flow rate, temperature, and mobile
phase composition) was tested in a semicontinuous mode of operation. For this, the MxcM-
IMER was installed into the column oven of the HPLC system. Prior to the biocatalytic
reaction, the reactor was preheated and equilibrated with the required mobile phase for
30 min. The substrate myxochelin B (0.1 µmol) was injected using the autosampler. The
reaction mixture from the reactor output was collected and separately analyzed via HPLC-
MS (Ntech = 2–3 per reactor).

4. Conclusions

The impressive developments in the fields of molecular biology, bioinformatics, and
process engineering have spurred the discovery and engineering of new biocatalysts as
well as biocatalytic processes [65–68]. For this reason, biocatalysis has become a powerful
tool for the synthesis of heterocyclic compounds, which are of particular interest for the
pharmaceutical industry. Some years ago, genome mining revealed a new enzyme be-
longing to the superfamily of amidohydrolases that catalyzes the synthesis of imidazoline
heterocycles [29]. This enzyme, MxcM, was recently shown to exhibit promising activity
and stability properties [31]. In this study, we successfully established an immobilization
process for the amidohydrolase MxcM based on immobilized metal affinity chromatog-
raphy. Our immobilization protocol leads to immobilization yields of ~75% and enzyme
loadings between 7 and 8 wt% for an enzyme-to-particle ratio of 0.1 mgMxcM/mgpdw. In
buffer, the remaining activity of the immobilized MxcM amounted to 30–40% compared to
the free enzyme. We observed that higher enzyme loadings negatively affected the residual
activity, probably caused by steric hindrance and modified enzyme–enzyme interactions on
the particle surface. The immobilization of MxcM improved the enzyme’s solvent stability.
The specific activity of the immobilized enzyme in n-hexane and MTBE was doubled com-
pared to the aqueous system. In the polar solvent acetonitrile, the immobilized enzyme was
even more active than the free enzyme (residual activity: 169%). Additionally, the storage
stability in the presence of 20 vol% acetonitrile was increased through immobilization.
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Due to the good solvent and storage stability and the fact that no cofactors are required,
we further evaluated the performance of the immobilized MxcM for biocatalysis in flow.
For this purpose, packed bed-reactors were designed and installed into an HPLC sys-
tem. Interestingly, the composition of the mobile phase greatly influenced the conversion,
while the residence time and the temperature had only minor impact under the tested
conditions. The MxcM-IMERs featured a good operational stability, indicating that no
significant leaching events occurred and that the enzyme remained stable under operation
in flow. In the future, the presented HPLC-coupled flow system can be used to screen the
substrate scope of the amidohydrolase MxcM for the synthesis of imidazoline-containing,
heterocyclic compounds.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/catal13020229/s1, Figure S1: Pressure stability of the MxcM-IMERs;
Figure S2: Reaction time course of a batch reaction; Figure S3: UV profile at 254 nm after injection
of 0.1 µmol myxochelin B into the HPLC system with and without integration of the MxcM-IMERs;
Figure S4: Influence of the reaction temperature on the specific activity of the immobilized MxcM
in the batch reactions; Figure S5: Quality control of myxochelin B after semi-preparative HPLC
purification. Figure S6: SDS PAGE of the purified 6xHis-MxcM; Figure S7: Determination of the mean
residence time (τmean) from the residence time distribution.

Author Contributions: Conceptualization, L.W., S.T., S.L., K.R. and M.N.; methodology, L.W. and S.T.;
formal analysis, L.W. and S.T.; investigation, L.W. and S.T.; writing—original draft preparation, L.W.;
writing—review and editing, L.W., S.L., K.R. and M.N.; visualization, L.W.; supervision, M.N.; project
administration, M.N. All authors have read and agreed to the published version of the manuscript.

Funding: The financial support from the European Regional Development Fund (grant no. EFRE-
0300098 to M.N.) is gratefully acknowledged.

Data Availability Statement: The data presented in this study are available in the supplementary
materials.

Acknowledgments: We thank Katharina Kuhr (Laboratory of Technical Biology, TU Dortmund
University) for the preparation and purification of myxochelin B.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Alvarez-Builla, J.; Vaquero, J.J.; Barluenga, J. Modern Heterocyclic Chemistry; Wiley-VCH: Weinheim, Germany, 2011;

ISBN 978-3-527-63406-4.
2. Quin, L.D. Fundamentals of Heterocyclic Chemistry: Importance in Nature and in the Synthesis of Pharmaceuticals; Online-Ausg; John

Wiley & Sons, Incorporated: Hoboken, NJ, USA, 2010; ISBN 9780470626535.
3. Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen

heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem. 2014, 57, 10257–10274. [CrossRef]
4. Lamberth, C. Heterocyclic chemistry in crop protection. Pest Manag. Sci. 2013, 69, 1106–1114. [CrossRef] [PubMed]
5. Nicolaou, K.C.; Rigol, S. A brief history of antibiotics and select advances in their synthesis. J. Antibiot. 2018, 71, 153–184.

[CrossRef] [PubMed]
6. Meanwell, N.A. Synopsis of some recent tactical application of bioisosteres in drug design. J. Med. Chem. 2011, 54, 2529–2591.

[CrossRef] [PubMed]
7. Gomtsyan, A. Heterocycles in drugs and drug discovery. Chem. Heterocycl. Comp. 2012, 48, 7–10. [CrossRef]
8. Taylor, A.P.; Robinson, R.P.; Fobian, Y.M.; Blakemore, D.C.; Jones, L.H.; Fadeyi, O. Modern advances in heterocyclic chemistry in

drug discovery. Org. Biomol. Chem. 2016, 14, 6611–6637. [CrossRef]
9. Guo, W.; Zhao, M.; Tan, W.; Zheng, L.; Tao, K.; Fan, X. Developments towards synthesis of N-heterocycles from amidines via

C–N/C–C bond formation. Org. Chem. Front. 2019, 6, 2120–2141. [CrossRef]
10. Abdella, A.M.; Abdelmoniem, A.M.; Abdelhamid, I.A.; Elwahy, A.H.M. Synthesis of heterocyclic compounds via Michael and

Hantzsch reactions. J. Heterocycl. Chem. 2020, 57, 1476–1523. [CrossRef]
11. Murlykina, M.V.; Morozova, A.D.; Zviagin, I.M.; Sakhno, Y.I.; Desenko, S.M.; Chebanov, V.A. Aminoazole-Based Diversity-

Oriented Synthesis of Heterocycles. Front. Chem. 2018, 6, 527. [CrossRef]
12. Henary, M.; Kananda, C.; Rotolo, L.; Savino, B.; Owens, E.A.; Cravotto, G. Benefits and applications of microwave-assisted

synthesis of nitrogen containing heterocycles in medicinal chemistry. RSC Adv. 2020, 10, 14170–14197. [CrossRef]
13. Ley, S.V. On being green: Can flow chemistry help? Chem. Rec. 2012, 12, 378–390. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/catal13020229/s1
https://www.mdpi.com/article/10.3390/catal13020229/s1
http://doi.org/10.1021/jm501100b
http://doi.org/10.1002/ps.3615
http://www.ncbi.nlm.nih.gov/pubmed/23908156
http://doi.org/10.1038/ja.2017.62
http://www.ncbi.nlm.nih.gov/pubmed/28676714
http://doi.org/10.1021/jm1013693
http://www.ncbi.nlm.nih.gov/pubmed/21413808
http://doi.org/10.1007/s10593-012-0960-z
http://doi.org/10.1039/C6OB00936K
http://doi.org/10.1039/C9QO00283A
http://doi.org/10.1002/jhet.3883
http://doi.org/10.3389/fchem.2018.00527
http://doi.org/10.1039/D0RA01378A
http://doi.org/10.1002/tcr.201100041
http://www.ncbi.nlm.nih.gov/pubmed/22711555


Catalysts 2023, 13, 229 14 of 15

14. Newman, S.G.; Jensen, K.F. The role of flow in green chemistry and engineering. Green Chem. 2013, 15, 1456. [CrossRef]
15. Sharma, U.K.; van der Eycken, E.V. Flow Chemistry for the Synthesis of Heterocycles; Springer International Publishing: Cham,

Switzerland, 2018; ISBN 978-3-319-94327-5.
16. Pastre, J.C.; Browne, D.L.; Ley, S.V. Flow chemistry syntheses of natural products. Chem. Soc. Rev. 2013, 42, 8849–8869. [CrossRef]

[PubMed]
17. Sheldon, R.A.; Brady, D. Streamlining Design, Engineering, and Applications of Enzymes for Sustainable Biocatalysis. ACS

Sustain. Chem. Eng. 2021, 9, 8032–8052. [CrossRef]
18. Pinho e Melo, T.M.; Pineiro, M. Heterocycles: Synthesis, Catalysis, Sustainability, and Characterization; Wiley-VCH: Weinheim,

Germany, 2022; ISBN 978-3-527-83200-2.
19. Lechner, H.; Pressnitz, D.; Kroutil, W. Biocatalysts for the formation of three- to six-membered carbo- and heterocycles. Biotechnol.

Adv. 2015, 33, 457–480. [CrossRef]
20. Diana, P.; Cirrincione, G. Biosynthesis of Heterocycles; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; ISBN 9781118960554.
21. Hemmerling, F.; Hahn, F. Biosynthesis of oxygen and nitrogen-containing heterocycles in polyketides. Beilstein J. Org. Chem. 2016,

12, 1512–1550. [CrossRef]
22. Meng, S.; Tang, G.-L.; Pan, H.-X. Enzymatic Formation of Oxygen-Containing Heterocycles in Natural Product Biosynthesis.

ChemBioChem 2018, 19, 2002–2022. [CrossRef] [PubMed]
23. Gao, B.; Yang, B.; Feng, X.; Li, C. Recent advances in the biosynthesis strategies of nitrogen heterocyclic natural products. Nat.

Prod. Rep. 2022, 39, 139–162. [CrossRef]
24. Cano-Prieto, C.; García-Salcedo, R.; Sánchez-Hidalgo, M.; Braña, A.F.; Fiedler, H.-P.; Méndez, C.; Salas, J.A.; Olano, C. Genome

Mining of Streptomyces sp. Tü 6176: Characterization of the Nataxazole Biosynthesis Pathway. ChemBioChem 2015, 16, 1461–1473.
[CrossRef]

25. Lv, M.; Zhao, J.; Deng, Z.; Yu, Y. Characterization of the Biosynthetic Gene Cluster for Benzoxazole Antibiotics A33853 Reveals
Unusual Assembly Logic. Chem. Biol. 2015, 22, 1313–1324. [CrossRef]

26. Losada, A.A.; Cano-Prieto, C.; García-Salcedo, R.; Braña, A.F.; Méndez, C.; Salas, J.A.; Olano, C. Caboxamycin biosynthesis
pathway and identification of novel benzoxazoles produced by cross-talk in Streptomyces sp. NTK 937. Microb. Biotechnol. 2017,
10, 873–885. [CrossRef]

27. Song, H.; Rao, C.; Deng, Z.; Yu, Y.; Naismith, J.H. The Biosynthesis of the Benzoxazole in Nataxazole Proceeds via an Unstable
Ester and has Synthetic Utility. Angew. Chem. Int. Ed. 2020, 59, 6054–6061. [CrossRef] [PubMed]

28. Horch, T.; Molloy, E.M.; Bredy, F.; Haensch, V.G.; Scherlach, K.; Dunbar, K.L.; Franke, J.; Hertweck, C. Alternative Benzoxazole
Assembly Discovered in Anaerobic Bacteria Provides Access to Privileged Heterocyclic Scaffold. Angew. Chem. Int. Ed. 2022, 61,
e202205409. [CrossRef]

29. Korp, J.; Winand, L.; Sester, A.; Nett, M. Engineering Pseudochelin Production in Myxococcus xanthus. Appl. Environ. Microbiol.
2018, 84, e01789-18. [CrossRef]

30. Sester, A.; Winand, L.; Pace, S.; Hiller, W.; Werz, O.; Nett, M. Myxochelin- and Pseudochelin-Derived Lipoxygenase Inhibitors
from a Genetically Engineered Myxococcus xanthus Strain. J. Nat. Prod. 2019, 82, 2544–2549. [CrossRef]

31. Winand, L.; Vollmann, D.J.; Hentschel, J.; Nett, M. Characterization of a Solvent-Tolerant Amidohydrolase Involved in Natural
Product Heterocycle Formation. Catalysts 2021, 11, 892. [CrossRef]

32. Kuo, W.-H.K.; Chase, H.A. Exploiting the interactions between poly-histidine fusion tags and immobilized metal ions. Biotechnol.
Lett. 2011, 33, 1075–1084. [CrossRef] [PubMed]

33. Ley, C.; Holtmann, D.; Mangold, K.-M.; Schrader, J. Immobilization of histidine-tagged proteins on electrodes. Colloids Surf. B
Biointerfaces 2011, 88, 539–551. [CrossRef] [PubMed]

34. Basso, A.; Brown, M.S.; Cruz-Izquierdo, A.; Martinez, C.A.; Serban, S. Optimization of Metal Affinity Ketoreductase Immobiliza-
tion for Application in Batch and Flow Processes. Org. Process Res. Dev. 2022, 26, 2075–2084. [CrossRef]

35. Ueda, E.; Gout, P.; Morganti, L. Current and prospective applications of metal ion–protein binding. J. Chromatogr. A 2003, 988,
1–23. [CrossRef]

36. Janson, J.-C. Protein Purification: Principles, High Resolution Methods, and Applications; John Wiley & Sons, Incorporated: Hoboken,
NJ, USA, 2011; ISBN 9780470940075.

37. Sugrue, E.; Fraser, N.J.; Hopkins, D.H.; Carr, P.D.; Khurana, J.L.; Oakeshott, J.G.; Scott, C.; Jackson, C.J. Evolutionary expansion
of the amidohydrolase superfamily in bacteria in response to the synthetic compounds molinate and diuron. Appl. Environ.
Microbiol. 2015, 81, 2612–2624. [CrossRef] [PubMed]
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