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Abstract: Bioactive dihydropyrimidinones (DHPs) were designed and synthesized by a multicom-
ponent Biginelli reaction. The reaction was catalyzed by the polarized surface of nano-zirconium
dioxide with partial positive charge of 0.52e at the Zr center and a negative charge of −0.23e at
the oxygen center. There was good corroboration between the computed and experimental ZrO2

cell parameters and bond distances as determined by in silico and in vitro experimental methods.
Since DHPs were found to target the peroxisome proliferator-activated receptor (PPAR)-γ, we tested
these ligands toward MCF-7 cell toxicity, which revealed that the compounds 4d [ethyl-4-(4′-fluoro-
[1,1′-biphenyl]-4-yl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate] and 4e [ethyl-4-(3′-
methoxy-[1,1′-biphenyl]-4-yl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate] inhibited
proliferation with IC50 values of 11.8 and 15.8 µM, respectively. Further, our bioinformatic analysis
found that the active molecule 4d, fit into the enzyme’s catalytic site, almost in the same position as
rosiglitazone, which was buried deep inside the cavity. In conclusion, we herein report novel DHPs
which could be better structures to help explore a new class of synthetic PPAR-γ ligands.

Keywords: dihydropyrimidinone; PPAR-γ ligands; DFT calculations; zirconia; MCF-7 cells

1. Introduction

Peroxisome proliferator-activated receptor (PPAR)-γ is a transcription factor pro-
tein composed of five different domains: N-terminus, Activation Factor-1, Central DNA-
binding, D, and F domains [1–4]. PPAR-γ plays a role in the development of breast cancer
tumors by interacting with IGF and its downstream pathways, such as MAPK, PI3K, and
the mTOR pathway, which negatively regulate the growth of cancer cells [5–8]. Further-
more, cyclin D1 suppression and p53 over expression in breast cancer cells are transcription
events associated with PPAR, allowing us to create PPAR-targeting ligands [9]. PPAR-
γ-activating ligands, such thiazolidinediones (TZDs, pioglitazone, and rosiglitazone, 1),
arachidonic acid, leukotriene B4, non-esterified fatty acids, clofibrate, fenofibrate, bezafi-
brate, and Wy-14643, increase apoptosis and prevent tumor cells from forming new blood
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vessels [8–12]. This class of compounds have a U-shaped pharmacophore that is required,
with one acid group attached to a core planar ring and an extra lipophilic component, which
together produce H-bonds in the PPAR-γ amino acids His449, His323, Ser289, and Tyr473
in the active site [13,14]. A poorly soluble ligands, such as phenylpropanoic acids, in solid-
phase hydrogels have been used in high-throughput crystal structure determination meth-
ods to bind at the LBDs of PPAR [15]. Valerenic acid, a partial agonist of PPAR-γ, promoted
adipocyte differentiation, glucose uptake-related proteins, and adiponectin production by
binding to the Ω loop pocket of PPAR-γ [16]. Ciglitazone, a PPAR-γ agonist, inhibited
tumor growth and its associated angiogenesis, by inhibiting the phosphorylation of STAT3
and showed multiple actions, appearing as a potential candidate for treating malignant
glioma [17]. It was also revealed that PPAR-γ agonists might be improved by switching out
the thiazolidinedione ring for its bioisosteric groups, such as pyran, oxazolidine-2,4-dione,
tetrazole, carbazole, or oxathiazoles [18–22]. The discovery of dihydropyrimidinone 2
(DHPs) as a promising PPAR-γ agonist was mostly due to the bioisosteric replacement
of the thiazolidinedione ring [23]. This compound was then modified to have an extra
lipophilic structure and carbonyl functionality [24–26]. We have previously shown in silico
and in vitro that 5-acetyl-4-(1H-indol-3-yl)-6-methyl-3,4-dihydropyrimidin-2(1H)-one is the
lead structure that targets PPAR-γ [27]. We therefore expanded our research in this paper
by affixing lipophilic and heterocyclic rings (R) at the third and fourth positions in 3 and
found that some of the active DHPs as novel scaffolds acted as PPAR-γ ligands (Figure 1).
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Figure 1. Generation of DHPs as PPAR-γ agonists.

2. Results and Discussions
2.1. Chemical Synthesis of Dihydropyrimidinones

We initially employed a Biginelli reaction to synthesize bioactive DHPs using nano-
ZrO2 as a catalyst since the increased surface area in nano-materials allows organic sub-
strates and reagents to selectively reacted to form products, which in-turn can then diffuse
freely from the reaction catalytic sites [28]. Biginelli reactions are well known as a one-pot
condensation reactions of an aldehyde (1a–k), urea (2), and β-keto ester (3) to obtain DHPs,
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a medicinally useful class of heterocycle [29]. A nano-catalysts can run many organic
reactions with a negligible amount, as such these materials are widely used in green synthe-
sis, which gives significant, selective results, eventually the formation of side products is
limited by various heterocyclic ring formation procedures [30,31]. Since ZrO2 nanoparticles
are less studied in the area of heterocyclic ring-forming reactions, we recently reported the
synthesis and characterization of nano-ZrO2 and also utilized this metal composite in the
multi-component synthesis of bioactive pyranopyrazoles to target cyclin dependent kinase
1 in human breast cancer cells [32].

Initially, the Biginelli reaction was carried out for compound 4a via refluxing 1a,
urea (2), ethyl acetoacetate (3), and 20 mol% of the nano ZrO2 catalyst in an ethanol solvent
for 60 min, achieving a significant yield (90%). Moreover, increasing the amount of catalyst
had no effect on the percentage yield. After reaction completion, the crude was filtered and
the filtrate containing the catalyst was recovered, dried and reused five more times. The
only disadvantage in using the nano-ZrO2 catalyst would be in its large-scale use, as it will
be difficult to manufacture it in large quantities and reduce the heterogeneity in the size of
the metal composites.

Herein, we conducted a multi-component Biginelli reaction using nano–ZrO2 and
succeeded in obtaining bioactive Biginelli products (Scheme 1, Table 1). The resul-
tant product was completely characterized using highly advanced analytical techniques
(Supplementary Materials).
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Scheme 1. Synthetic scheme for the preparation of DHPs.

Table 1. Tabular representation of the Biginelli reactants and products used in this study and their
cytotoxicity data on human breast cancer MCF-7 cells. IC50 is a measure from three independent
experimental wells.

SI No Aldehyde Product MCF-7
(IC50 in µM)

MCF-10A
(IC50 in µM)

1
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Table 1. Cont.

SI No Aldehyde Product MCF-7
(IC50 in µM)

MCF-10A
(IC50 in µM)
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was made by improving the percentage yields of DHPs, by using less hazardous reaction
conditions, or by facile isolation of DHPs from the reaction mixture [33,34]. The Biginelli
reaction mechanism has been precisely studied in which the limiting step was found to be
an in situ aldol condensation, followed by an additional urea molecule condensation with
the reactive mixture to give the corresponding DHPs. Further, the artificial force-induced
reaction method has been systematically used to analyze the reaction mechanism of the
Biginelli reaction, which revealing that the first step was confirmed by the condensation of
urea and benzaldehyde, followed by the addition of ethyl acetoacetate via a second urea
molecule catalysis [35]. Additionally, a simple, economic, pressurized, and erbium trichlo-
ride hexahydrate-catalyzed solvent-free reaction was carried out using Q-tube equipment
to produce Biginelli reaction products [36]. In addition, a Biginelli reaction was carried out
under solvent-free condition using an imidazolium and sulfonic acid-decorated (Bronsted
acid) catalyst system [37]. Therefore, we performed a DFT calculation in order to evaluate
the role of nano-ZrO2 in the mechanistic aspects of the Biginelli reaction.

For this purpose, we initially optimized the ZrO2 structure, where 3D periodicity was
removed by extending 10 Å in the z-direction and the organic molecule was placed on the
surface. During the optimization, the ZrO2 surface atomic positions were restrained and
the organic molecules were allowed to relax. The adsorbent had three functional units (-OH,
NH2 and C=O) in the tail prone to interaction with the ZrO2 surface. The conformational
search led to two stable orientations (molecule 1 and 2) in Scheme 2. In orientation 1, the
OH and NH2 groups simultaneous interacted with the O of the ZrO2 surface with bond
distances of dHNH . . . OZr: 1.24 and 1.56 Å and dOH . . . OZr: 1.62 Å. The six-membered ring
presented perpendicular to the surface at a distance of 1.35 Å. The calculations suggested
that the electronegativity of oxygen was prone to adsorb a proton from the NH2 group
of the organic molecule. In orientation 2, the carbonyl group was parallel to the surface,
allowing the –NH2 group to interact with the surface. The OH group interacted with
surface by 1.96 Å. Hence, orientation 2 reverted back to the molecule orientation 1 during
the optimization. The orientation of molecule 2’s energies was calculated by restraining
the ligand’s positions. The orientation of molecule 1 was more stable with 0.56 eV than 2.
The optimized geometries are given in Figure 2. The adsorption energies for orientation 1
was larger than orientation 2. The adsorption of the organic molecules increased the Fermi
energy (EFermi of ZrO2 surface: −6.43 eV; ZrO2–organic molecule 1: −5.73 eV and ZrO2–
organic molecule 2: −5.54 eV) by 0.69 and 0.89 eV for orientations 1 and 2, respectively. The
interaction between the organic molecules and the surface were also found to decrease the
band gap to 0.01 eV irrespective of the orientations. This confirms the orbital overlap and
thereby the chemical bonding between the adsorbent and adsorbate. The reduction and
removal of water molecule led to molecule 3, where the six-member ring became parallel to
the surface making pi-stacking interactions with ~1.60 to 2.17 Å. However, as observed in
orientation 1, the NH2 group strongly bound to the oxygen of the ZrO2 with a distance of
1.12 Å. The species was stable on the surface with a negative adsorption energy of−1.82 eV.
The presence of the NH3 group in molecule 4 did not prefer to interact with the ZrO2
through the six-member ring. The two protons of the NH3 group strongly interacted with
the oxygen on the ZrO2 surface. The computed negative adsorption energy of −1.75 eV
shows the stability of molecule 4 on the surface. The increase in the bulkiness of the side
chains of molecules 5 weakened the interaction between the surface and molecule, where
only H-bonding interactions were observed with a distance of 2.36 Å. Interestingly, the
steric side chain allowed the C=O to interact with the Zr surface and presented at a distance
of 1.83 Å. However, a negative adsorption energy (−0.32 eV) was observed. Molecule 6
was adsorbed on to the surface through weak interaction with an adsorption energy of
−0.08 eV. The increase in bond distance between the ZrO2 and molecule 6 facilitated the
release of the product without the transition state. The decrease in interaction was found to
stabilize the Fermi orbital with more negative energy.
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Figure 2. Optimized geometries of the surface-adsorbed molecules 1–6.

In conclusion, we computationally found that the nano-ZrO2 surface is a polarized
surface with a partial positive charge of 0.52e at the Zr center and a negative charge
of −0.23e at the oxygen center (Table 2). There was good corroboration between the
computed and experimental ZrO2 cell parameters and bond distances, as given in Table 3
and Scheme 2, which supports the method adopted in this work.
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Table 2. Adsorption energy calculations for the Biginelli intermediates and products.

Molecule EFermi (eV) Band Gap (eV) Adsorption Energy
(Eads, eV)

ZrO2 Surface −6.43 0.02 -

ZrO2 Surface-Molecule 1 −5.72 0.01 −3.31

ZrO2 Surface-Molecule 2 −5.54 0.01 −2.75

ZrO2 Surface-Molecule 3 −5.77 0.01 −1.82

ZrO2 Surface-Molecule 4 −5.98 0.01 −1.75

ZrO2 Surface-Molecule 5 −6.01 0.01 −0.32

ZrO2 Surface-Molecule 6 −6.21 0.01 −0.08

Table 3. Comparison between the experimental and calculated cell parameters and bond distance for
bulk m-ZrO2.

Cell Parameter/Bond Length Experimental Calculated

a (Å) 5.21 5.1147

b (Å) 5.26 5.1299

c (Å) 5.37 5.1149

α (◦) 90.00 90.00

β (◦) 80.53 90.18

γ (◦) 90.00 90.00

V (Å3) 145.2 134.15

Zr-O (Å)
2.021
1.952

2.225, 2.223
2.221, 2.220

2.3. DHPs Inhibits the Proliferation of MCF-7 Cells

MDG 548 (thioxopyrimidindione) was discovered as a selective PPAR-γ scaffold via a
robust, integrated and “tier”-based throughput virtual screening method with a special
focus on the retrieval of novel bioactive chemical scaffolds for PPAR-γ [38]. Using a Alamar
Blue assay, we screened 11 DHPs against the proliferation of MCF-7 cells. In the assay con-
dition, Olaparib was used as a positive control. Among the tested DHPs, compounds 4b–e
inhibited the proliferation of MCF-7 cells with IC50 values of 11.8, 15.8, 21.2, and 26.2 µM,
respectively (Supplementary Materials). The biphenyl rings containing DHPs, whose
substituents such as cyclopentylamide, carbaldehyde, fluorine, and methoxy groups or
atoms at the 4th or 3rd positions were found to be responsible for the bioactivity. Further,
we performed a cytotoxicity experiment using the MCF-10A cell line, a non-tumorigenic
epithelial cell line, in order to evaluate the selectivity of lead DHPs anti-cancer activity.
The results of the analysis revealed that the compounds were non-toxic up to 100 µM,
indicating an anti-cancer effect in human breast cancer cells (Supplementary Materials).

2.4. Bioinformatic Analysis of DHPs That Targets PPAR-γ in MCF-7 Cells

Since rosiglitazone has been established as a potent PPAR-γ agonist and its co-crystal
structure resolved, we herein conducted a bioinformatic analysis to understand the DHP
binding affinity toward PPAR-γ, using the reported co-crystal structure (PDB ID:4EMA). In
silico molecular simulations of compound 4d into the active site of PPAR-γ was conducted.
Re-docking of co-crystallized ligands into the active site of PPAR-γ replicated all the
key interactions accomplished by the co-crystallized ligand with the key amino acids
in the active site, as shown in Figures 3 and 4 [39], indicating that the used setup was
suitable for the docking study. Molecular docking of compound 4d in PPAR-γ revealed
an optimal binding mode defined by the affinity of the minimum Gibbs binding energy of
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−8.9 kcal/mole. As shown in Figure 5, compound 4d fitted into the PPAR-γ active site in
almost the same position as the rosi, buried deep inside the cavity (Figure 6). Ser289 formed
a hydrogen bond with the –NH group of the pyrimidinone ring. Besides the hydrogen
bond interaction, compound 4d linked to the PPAR-γ amino acid residues Arg288 and
Tyr327 via cation–pi and pi–pi interactions, respectively, as shown in Figure 7. Furthermore,
hydrophobic interactions with residues Cys285, Ser289, Arg288, Ala292, Ile326, Tyr327,
Met329, Leu330, Phe363, Met364, and His449 were observed, increasing the complex’s
stability (Figure 8).
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3. Materials and Methods
3.1. Chemistry

The chemicals and solvents used for the reactions were purchased from Sigma-Aldrich
(St. Louis, MO, USA). Pre-coated silica gel TLC plates were used to monitor the completion
of the reaction. 1H- and 13C-NMR was recorded on an Agilent NMR spectrophotometer
(400 and 500 MHz, Santa Clara, CA, USA); TMS and CDCl3 were used as an internal
standard and solvent, respectively. Chemical shifts are expressed as ppm.

3.2. General Procedure for the Synthesis of the Substituted Dihydropyrimidinones (DHPs)

Different substituted aldehydes (1a–k) were dissolved in ethanol in a 100 mL round-
bottomed flask. Subsequently, urea (2), ethyl acetoacetate (3), and nano-ZrO2 (20 mol%)
were added in equimolar amounts to the above solution. Stirring was continued and the
reaction was refluxed at 80 ◦C for up to 60 min. Completion of the reaction was monitored
by silica-coated TLC and filtered to recover the catalyst for reuse, the collected reaction
mass solution was added to ice-cold water and white solid products (4a–k) were formed,
which were filtered using Whatman filter paper and recrystallized with hot ethanol.

3.3. Ethyl-4-(4-(6-fluoro-5-methylpyridin-3-yl)phenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrim-
idine-5-carboxylate (4a)

1H-NMR (500 MHz, CDCl3): δ 8.11 (s, 1H), 7.79 (s, 1H), 7.40 (d, J = 8.0 Hz, 2H), 7.35 (d,
J = 8.1 Hz, 2H), 5.68 (s, 1H), 5.39 (s, 1H), 4.11–4.05 (m, 2H), 2.30 (s, 3H), 2.28 (s, 3H), 1.13 (t,
7.0 Hz, 3H); 13C-NMR (126 MHz, CDCl3): δ 165.5, 162.8, 153.0, 146.3, 143.4, 142.8, 140.2,
136.6, 134.3, 127.6, 60.2, 55.4, 18.9, 14.6, 14.9; LCMS (ESI): m/z for C20H20FN3O3, calcd
369.39; found: 370.15 [M + H]+.

3.4. Ethyl-4-(3′-(cyclopentylcarbamoyl)-[1,1′-biphenyl]-4-yl)-6-methyl-2-oxo-1,2,3,4-tetrahydro
pyrimidine-5-carboxylate (4b)

1H-NMR (500 MHz, CDCl3): δ 7.88 (s, 1H), 7.63 (dd, J = 23.5, 7.5 Hz, 2H), 7.50 (d,
J = 7.5 Hz, 2H), 7.43 (t, J = 7.5 Hz, 1H), 7.36 (d, J = 7.5 Hz, 2H), 6.23 (s, 1H), 5.42 (s, 1H),
4.40 (dd, J = 13.8, 7.0 Hz, 1H), 4.11–4.05 (m, 2H), 2.34 (s, 3H), 2.07 (dt, J = 11.7, 5.8 Hz, 2H),
1.72 (s, 4H), 1.49 (m, 2H), 1.16 (t, J = 6.9Hz, 3H); 13C-NMR (126 MHz, CDCl3): δ 167.2,
165.6, 153.3, 146.4, 143.1, 141.0, 139.9, 135.5, 129.8 128.9, 127.5, 127.1, 125.6, 101.2, 60.1,
55.3, 51.7, 33.2, 23.8, 18.8, 14.2; LCMS (ESI): m/z for C20H20FN3O3, calcd 447.53; found:
448.21 [M + H]+.

3.5. Ethyl-4-(3′-formyl-[1,1′-biphenyl]-4-yl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-
carboxylate (4c)

1H-NMR (500 MHz, CDCl3): δ 10.06 (s, 1H), 8.11- 8.05 (m, 1H), 7.82 (ddd, J = 17.4,
7.7, 1.2 Hz, 1H), 7.65–7.50 (m, 2H), 7.42 (d, J = 8.0 Hz, 1H), 7.30 (d, J = 5.0 Hz, 2H),
5.87 (s, 1H), 5.45 (s, 1H), 4.10–4.03 (m, 2H), 2.36 (s, 3H), 1.18 (t, J = 7.1 Hz, 3H); 13C-NMR
(126 MHz,CDCl3): δ 192.3, 165.6, 153.3, 146.4, 143.5, 141.5, 139.3, 136.9, 132.96, 129.52, 128.7,
128.0, 127.4, 126.6, 101.3, 60.1, 55.7, 55.4, 18.8, 14.2; LCMS (ESI): m/z for C20H20FN3O3,
calcd 364.39; found: 365.14 [M + H]+.

3.6. Ethyl-4-(4′-fluoro-[1,1′-biphenyl]-4-yl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-
carboxylate (4d)

1H-NMR (500 MHz, CDCl3): δ 8.26 (s, 1H), 7.51–7.47 (m, 2H), 7.46 (d, J = 8.0 Hz, 2H),
7.37 (d, J = 8.3 Hz, 2H), 7.09 (t, J = 8.7 Hz, 2H), 5.91 (s, 1H), 5.43 (d, J = 2.8 Hz, 1H), 4.08–4.05
(m, 2H), 2.34 (s, 3H), 1.17 (t, J = 7.1 Hz, 3H).; 13C-NMR (126 MHz,CDCl3): δ 165.6, 153.4,
146.4, 142.7, 139.8, 136.7, 128.6, 127.3, 127.1, 115.6, 101.3, 60.1, 55.3, 18.7, 14.2.
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3.7. Ethyl-4-(3′-methoxy-[1,1′-biphenyl]-4-yl)-6-methyl-2-oxo1,2,3,4tetrahydropyrimidine-5-
carboxylate (4e)

1H-NMR (500 MHz, CDCl3): δ 7.51 (d, J = 8.2 Hz, 2H), 7.37 (d, J = 8.2 Hz, 2H), 7.33 (t,
J = 7.9 Hz, 1H), 7.13 (d, J = 7.7 Hz, 1H), 7.08–7.06 (m, 1H), 6.88 (dd, J = 8.2, 2.5 Hz, 1H),
5.81 (s, 1H), 5.43 (d, J = 2.4 Hz, 2H), 4.09_4.06 (m, 2H), 3.84 (s, 3H), 2.35 (s, 3H), 1.17 (t,
J = 7.1 Hz, 3HF).); 13C-NMR (126 MHz,CDCl3): δ 165.6, 159.8, 153.3, 146.2, 142.8, 140.7,
129.8, 128.4, 127.5, 127.0, 119.6, 112.7, 101.4, 60.1, 55.3, 18.8, 14.2; LCMS (ESI): m/z for
C21H22N2O4, calcd 366.41; found: 367.15 [M + H]+.

3.8. Ethyl-4-(3-(6-fluoro-5-methylpyridin-3-yl)phenyl)-6-methyl-2-oxo-1,2,3,4-
tetrahydropyrimidine-carboxylate (4f)

1H-NMR (500 MHz, CDCl3): δ 8.21 (s, 1H), 8.16 (s, 1H), 7.72–7.70 (m, 1H), 7.43 (s, 1H),
7.40–7.39 (m, 1H), 7.34 (d, J = 2.0 Hz, 1H), 5.99 (s, 1H), 5.46 (d, J = 2.8 Hz, 1H), 4.08–4.04
(m,2H), 2.34 (s, 3H), 2.32 (s, 3H), 1.15–1.13 (m, 3H); 13C-NMR (126 MHz,CDCl3): δ 165.6,
153.28, 146.6), 144.5, 142.8, 140.3, 137.3, 134.6, 129.5, 128.7, 126.6, 126.2, 125.3, 119.4, 101.0,
60.1, 55.6, 18.8, 14.6, 14.8.

3.9. Ethyl6-methyl-2-oxo-4-(4-(pyridin-3-yl)phenyl)-1,2,3,4-tetrahydropyrimidine-5-carboxylate (4g)
1H-NMR (400 MHz, CDCl3); δ 8.54 (s, 2H), 7.84 (s, 1H), 7.61 (dd, J = 21.5, 7.3 Hz, 4H),

7.43 (s, 1H), 6.26 (s, 1H), 5. 62 (s, 1H), 4.25 (d, J = 6.9 Hz, 2H), 2.52 (s, 3H), 1.35 (t, J = 6.9 Hz,
3H): LCMS (ESI): m/z for C21H22N2O4, calcd 337.37; found: 338.14 [M + H]+.

3.10. DFT Calculations

The structure and activity of all the molecules on ZrO2 surface was studied by den-
sity functional theoretical (DFT) methods. The structure model for the calculations was
generated based on the experimental crystal structures. These models were optimized
using the Kohn–Sham self-consistent DFT method as implemented in the SIESTA (Spanish
Initiative for Electronic Simulations with Thousands of Atoms) package [40], which consists
of localized molecular–orbital basis sets. The exchange–correlation functional, Exc using
generalized gradient approximation (GGA) of the Perdew–Burke–Ernzerhof (PBE) [41]
and Troullier–Martins norm-conserving pseudo potentials in the Kleinman–Bylander form
was used to describe all atoms in the calculation. A double-zeta basis (DZP) set with a
polarization orbital was included for all atoms and a pseudo atomic orbital basis set was
used for Zr with a real-space mesh cut-off of 300 Ry. Most of the calculations reported
so far on adsorption and reactivity of molecules on zirconium were performed on the
monoclinic phase which is stable at room temperature. The monoclinic ZrO2 (111) surface
was exposed by a 2 × 1 unit cell with three layers in the slab model. The layers were
allowed to relax during optimization. The sampling of the Brillouin zone was performed
with 3 × 3 × 1 k-point grids. A vacuum region of 10 Å is placed over the slab to avoid
interactions with the neighboring unit cell. All models were relaxed until the interatomic
force was 0.01 eV Å-1. The atomic coordinates were relaxed with convergence criteria of
0.05 eV for energy and 0.05 Å for displacement. Note that surface states only contribute
from atoms close to the surface of slab. For calculation of the binding energies of all reactant
molecules, the molecule was placed on top of the surface and the top layer was allowed
to interact with the adsorbate while the bottom layers were constrained. The adsorbate
molecule was located above the surface at distances that were chosen to be within the range
of physical interactions but longer than the corresponding chemical bond distances. The
adsorption energies, ∆Eads were calculated by, ∆Eads = Eadsorbate/ZrO2 − (Eadsorbate + Eslab)
where, ∆Eads is the adsorption energy, Eadsorbate/ZrO2 is the energy of the ZrO2 slab with
adsorbate molecules adsorbed on the surface, Eadsorbate is the energy of adsorbate in the
gas phase, and Eslab is the energy of the ZrO2 slab. Force constants were evaluated in each
case to confirm the energy minimum and transition states (single imaginary frequency).
The reaction energy (∆H) and activation barrier (Ea) for a reaction as R→ P on the ZrO2
surface were calculated based on the following formula: ∆H = E(slab + P) − E(slab + R),
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Ea = E(slab + TS) − E(slab + R), where E(slab + R) is the total energy of the reactants on the
ZrO2 surface, and E(slab + P) is the total energy of the products on the ZrO2 surface, and
E(slab + TS) is the total energy of the transition states on the ZrO2 surface. For adsorption
and reaction energy, a negative value denotes that the process is exothermic, and a positive
value denotes that it is endothermic.

3.11. Cell Viability Assay

MCF-7 cells were purchased from Procell Life Science and Technology. Around
2000 cells of MCF-7 were cultured in MEM or Leibovitz’s L-15 medium containing 2% FBS
and maintained at 37 ◦C in a 5% CO2 atmosphere. DHPs were dissolved in DMSO. A
series of DHPs were applied to the MCF-7 cells in 96-well plates for 12 h followed by 72 h
of treatment with or without DHPs at concentrations of 0, 0.01, 0.1, 10, 100, and 1000 µM.
A further 4 h were spent incubating the Alamar Blue assay reagent. According to the
established protocol, the IC50 values of the compounds were determined in the absence
and presence of DHPs [42–62].

3.12. Bioinformatics Analysis

Molecular docking experiments were carried out using Auto Dock Tools 1.5.7 (ADT) [63].
The X-ray crystallographic structure of PPAR-γ (PDB ID: 4EMA) was obtained from the
RCSB online database (http://www.rcsb.org (accessed on 11 March 2022). The receptor was
stripped of water molecules, non-bonded inhibitors, and cofactors. The protein was then
edited by adding polar hydrogen atoms and Kollman charges and saved in the same pdbqt
format. The co-crystallized ligand (CL) and the synthesized compound 4d were subjected
to molecular docking analysis. The ADT program processed and saved the ligands in
the pdbqt format for docking. All the ligand torsions were made rotatable. Docking
was carried out, and the pose with the lowest binding energy was chosen. Analysis and
visualization of the docking results were done using the Maestro (v2020.4; Avid Technology:
New York, NY, USA, 2020) [64] and the LigPlot+ (v.2.2.5; EMBL-EBI: Cambridgeshire, UK,
2011) programs [65].

4. Conclusions

In conclusion, DHPs were synthesized by a multi-component Biginelli reaction cat-
alyzed by nano-zirconium dioxide. The products were tested for MCF-7 cell toxicity, which
inhibited the MCF-7 proliferation. Further, our bioinformatic analysis found that the active
molecule fit into the enzyme’s catalytic site, in almost the same position as rosiglitazone,
which was buried deep inside the cavity.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal13020228/s1, 1H NMR, 13C NMR and Mass spectrums of
products 4; Log curves of synthesized compounds on MCF-7 cancer cells; Log curves of synthesized
compounds on MCF-10A non-cancerous cells.
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