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Abstract: As a result of the sol-gel method, we were able to produce pure ZnO and ZnO-doped TiO2

nanocomposites. The hexagonal wurtzite phase in ZnO products was discovered by powder X-ray
diffraction (XRD). ZnO products are typically hexagonal wurtzite crystallites, formed according to
the Debye Scherrer formula. Nanocomposites with significant morphological changes were created
using the sol-gel process, including those that resembled rocks. To determine the composition of Zn,
O, and Ti atoms in the samples, a multidimensional X-ray analysis was performed. There is an energy
gap between 3.61 eV, as determined by UV-vis spectroscopy. In this study, pure ZnO and ZnO-doped
TiO2 nanocomposites were used to study the degradation of methylene blue (MB) under visible light
irradiation. Over an irradiation course of 6 h, a ZnO-doped TiO2 composite (84%) were studied.
As determined by the kinetic analysis, nanocomposites made from pure ZnO and ZnO-doped TiO2

followed pseudo-first-order kinetics. In the presence of ZnO-doped TiO2 nanocomposites, antibacterial
activity was significantly improved. This was shown to be effective against Gram-positive and
Gram-negative bacteria (Escherichia coli and B. sublittus). There is evidence that the metal oxide
nanocomposites that are produced can be used as an appropriate antimicrobial and disinfection
alternative, particularly in biomedical settings, as reported in more detail.

Keywords: ZnO-doped TiO2; sol-gel method; antibiotic-resistant; phase analysis; pseudo-first-order
kinetics; infected water contaminated; wastewater treatment; photocatalytic degradation

1. Introduction

It has been well documented that nanomaterials have superior mechanical, electrical,
magnetic, thermal, catalytic, and antimicrobial properties to their bulk counterparts [1,2]. In
addition to nanomedicine, nanoelectronics, biomaterials, energy generation, and consumer
goods, nanotechnology also has the potential to create a wide range of innovative materials
and devices [3–5]. One interesting application of ZnO is its hexagonal wurtzite structure,
characterized by a two-layer hexagonal close packed (hcp) metal-oxide structure [6,7]. An
oxide of a basic metal is known as an oxide of a basic metal [8,9]. Several million kg of zinc
alloys are produced annually, mostly as a step in the production process. [10,11]. There
is nothing complicated about the structure of ZnO rock salt, as it is the structure of many
other binary metal oxides. The Zn:O ratio in ZnO is frequently not stoichiometric, which
means that it is not always 1:1. Non-stoichiometric zinc oxide changes colour, whereas
stoichiometrically accurate zinc oxide is white. The development of nanoscale materials,
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which vary in size and morphology, has attracted the attention of diverse industries and
technologies [12,13].

A variety of technologies have been developed and employed to produce crystalline
oxide powders of nanoscale dimensions. How to synthesize these materials using less
energy has been described in several ways, but there are still challenges, including man-
ufacturing capacity limitations and use in production lines [14,15]. In many cases, their
main goal is to reduce the cost of chemical synthesis and develop useful materials for
technology applications [16,17]. Using sodium hydroxide as the starting component, this
study proposes a straightforward and low-cost sol-gel procedure for the synthesis of ZnO
nanoparticles. In terms of their electro-optical performance, ZnO nanoparticles are chemi-
cally stable and have a large bandgap (3.37 eV). Nanocrystalline ZnO, with a large surface
area, is synthesized using a simple chemical approach. Optimizing the parameters, ~pH,
and irradiation period of ZnO nanoparticles allowed for them to destroy methylene blue
(MB) dyes [18–20].

Ion exchange can be achieved for a variety of ions using titanium oxide, which ex-
hibits desirable catalytic and adsorptive properties [21,22]. It is evident that TiO2 (Brookite
structure) acts as a bacterial wall, since it has a bandgap of 3.68 eV in the visible light re-
gion [23,24]. Brookite, therefore, is photoreactive and photoactive [25,26]. Our study evaluates
the structure, microstructure, photocatalytic characteristics, and antimicrobial activity of
TiO2-substituted ZnO nanocomposites in light of the above. To our knowledge, there is
no report discussing the properties of ZnO-doped TiO2 nanocomposites [27–30]. With its
ZnO-doped bandgap, the TiO2 metal oxide is suitable for photocatalytic applications as
well as antimicrobial ones. Our research used the sol-gel approach to synthesize pure ZnO
and ZnO-doped TiO2 nanocomposites. To evaluate the nanocomposites generated by this
method, researchers used powder X-ray diffraction (PXRD), scanning electron microscopy
(SEM), energy-dispersive spectroscopy (EDS), fourier transform infrared spectroscopy
(FTIR), ultra-violet visible spectroscopy (UV-vis), Raman spectroscopy and photocatalytic
spectroscopy, and Brunauer–Emmett–Teller (BET) and antimicrobial approaches.

2. Results and Discussion
2.1. X-ray Diffraction Analysis

An XRD pattern of nanoparticle powder is shown in Figure 1 to determine their
crystallite size and crystalline phase. A significant broadening of the diffraction peaks
was observed for the dispersion patterns of films analyzed by X-ray diffraction and ultra-
dispersed titanium oxide powders. X-ray diffraction found that the produced materials
were cubic symmetry ZnO with identical diffraction peaks to those found in JCPDS File No.
36-1451 [31,32]. Some diffraction peaks correlated well with the ZnO crystal planes (002),
(101), (110), (103), and (201), respectively. Using the lattice constants, a = b = 0.324 nm and
c = 0.521 nm of (JCPDS File No. 36-1451), we accurately indexed the hexagonal wurtzite
phase of ZnO as the peaks in all patterns [33,34]. All crystalline peaks were properly indexed
by comparing the TiO2 diffractogram patterns with the JCPDS data files. According to
Figure 1, the major peaks at 25.5◦, 31.0◦, 40.0◦, 58.2◦, 78◦, and 91.4◦ occurred at the atomic
plans (101), (110), (111), (211), (002), and (301), corresponding to those of the tetragonal
anatase and rutile TiO2 (JCPDS File No. 21-1272). TiO2 nanocomposites were estimated by
Debye–Scherer to have an average crystallite size of 15.93 nm. Figure 1 shows the seven
peaks that corresponded to standard hexagonal wurtzite ZnO nanocomposites of 19 nm
in diameter (100), (002), (101), (102), (110), (103), and (201). Furthermore, the exhibited
composite crystalline phases of both ZnO and TiO2 confirm that both phases were present
within the heterostructure [35–39]. Using the Debye–Scherrer formula, we calculated the
grain crystallite size. There are several dimensions to the equation: ‘D’ relates to the
crystallite size in nanometres D = 0.94λ/cosθ; 0.94 represents the dimensionless constant k;
FWHM is the full width at half maximum (FWHM); diffraction angle θ is the diffraction
angle; X-ray wavelength is 0.1541 nm. We used Scherrer’s formula to estimate the average
particle size of the sample based on the full width at half-maximum (FWHM) of the
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diffraction peak associated with the plane (101). In order to calculate this, we took the full
width at half-maximum (FWHM) of the peak located at 36.33◦ rotation, corresponding to
plane (101).
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Figure 1. X-ray diffraction pattern of pure ZnO and ZnO-doped TiO2 nanocomposites.

2.2. Structural and Elemental Analysis

A series of SEM images of pure ZnO and ZnO doped TiO2 nanocomposites is shown
in Figure 2a–i. Due to particle aggregation, many particles displayed irregular spherical
morphology upon SEM imaging. Additionally, the pictures clearly show that the grain
size was typically less than 10 nm. The large surface area of the catalyst enhances its
photocatalytic activity. The size of ZnO-doped TiO2 nanocomposites does not differ from
that of ZnO without TiO2, but the size of the holes decreases with the addition of TiO2. This
SEM image shows numerous nano-sized growth sites on the surface of ZnO nanoparticles.
In Figure 3a,b, ZnO is shown as pure nanoparticles and ZnO-doped TiO2 nanocomposites,
supposedly Zn and O, are the components of the synthetic nanoparticles made up of Zn
and O. In addition, this study confirms that ZnO nanoparticles contain Ti-ion. Based
on the results, the nanocomposites are composed of Zn, Ti, and O, confirming that Ti
was substituted for Zn in ZnO. Ti is present in the doped samples at a concentration of
27.85%. ZnO nanocomposites have a chemical composition of 37.89% Zn and 34.26% O.
Zn-doped TiO2 nanocomposites, however, have lower zinc contents and slightly higher
oxygen contents [40].

2.3. UV-Vis Measurements

As can be seen in Figure 4, pure ZnO and ZnO-doped TiO2 nanocomposites were
analyzed using UV-vis spectroscopy. At wavelengths of nearly 213 and 282 nm, the greatest
absorption peak is observed in the as-prepared sample [41–43]. Moreover, a commercial
bulk ZnO nanoparticles shows no discernible absorption band in the UV-vis spectrum. The
absorption spectra of ZnO-doped TiO2 nanocomposites were used to estimate their optical
bandgaps. E = hc/λ (eV); where, ‘h’ is Planck’s constant (6.626× 10−34 Js), ‘c’ is the velocity
of light (3 × 108 m/s), ‘λ’ is an absorbance waveband with a sharp peak, corresponding
to a wavelength. There is a solid shoulders’ peak of around 343 nm in the ZnO sample,
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which is a pretty blue colour, and is shifted away from the absorption edge derived from
UV absorption [44]. As it has a higher value than ZnO-doped TiO2 (Eg = 3.61 eV), the
produced ZnO is widely believed to be nanoscale [45,46].
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Figure 4. UV-visible spectrum of synthesized pure ZnO and ZnO-doped TiO2 nanocomposites.

2.4. FTIR Analysis

In Figure 5, the main functional group in the catalyst was determined using FTIR at
room temperature. This is due to the stretching vibrations of the zinc oxygen bond, and
the FTIR spectra peaks at 483 cm−1, 597 cm−1, and 881 cm−1. An elongated peak indicates
that the ZnO catalyst is crystalline [15,47]. The symmetrical and asymmetric stretch of CO2
molecule vibration modes occurs due to the absorption of CO2 molecules from the air. This
may be due to the stretching and bending vibrations of the -OH group that was absorbed
on the catalyst surface during FTIR analysis, explaining the broad peaks at 3377 cm−1,
3491 cm−1, and 3569 cm−1 [48–50].

Catalysts 2023, 13, x FOR PEER REVIEW 7 of 20 
 

 

 
Figure 5. Doped TiO2 nanocomposites synthesized with pure ZnO as the doped component are 
shown in the FTIR spectrum. 

2.5. Raman Spectroscopy Analysis 
Raman scattering can be used to study anions and cations, lattice distortions, and the 

distribution of lattice defects. This can be seen in Figure 6. The Raman spectrum of ZnO-
doped TiO2 nanocomposites at ambient temperature includes many bands between 500 
cm−1 and 4000 cm−1. The broad and strong peaks shift to a lower frequency when the Zn 
ions’ mass is increased, because Zn ions have a larger mass than Ti ions. In an interesting 
coincidence, similarly to how electronic frequency is affected by cell volume, the Zn-O 
stretching mode is commonly attributed to the Raman spectrum’s high, broad peak at 116 
cm−1. The Ti substitution Zn is produced at the Zn site. ZnO reduces this lattice parameter 
and cell volume, as was shown previously in X-ray diffraction patterns. Increasing the 
lattice cell characteristics suggests that a ZnO-doped TiO2 nanoparticle is present in the 
Raman modes, as indicated by the blue shift. As a result of the lattice contraction, the 
average bond length of the cell is shortened. According to the Raman vibrational spec-
trum, the peak at 1080 cm−1 indicates a shift from red to blue, suggesting a shift in the 
Raman modes. In addition to the different synthesis temperatures and strained lattices, 
structural defects could also contribute to the change in peak location [51–53]. 

Figure 5. Doped TiO2 nanocomposites synthesized with pure ZnO as the doped component are
shown in the FTIR spectrum.



Catalysts 2023, 13, 215 6 of 16

2.5. Raman Spectroscopy Analysis

Raman scattering can be used to study anions and cations, lattice distortions, and
the distribution of lattice defects. This can be seen in Figure 6. The Raman spectrum of
ZnO-doped TiO2 nanocomposites at ambient temperature includes many bands between
500 cm−1 and 4000 cm−1. The broad and strong peaks shift to a lower frequency when
the Zn ions’ mass is increased, because Zn ions have a larger mass than Ti ions. In an
interesting coincidence, similarly to how electronic frequency is affected by cell volume,
the Zn-O stretching mode is commonly attributed to the Raman spectrum’s high, broad
peak at 116 cm−1. The Ti substitution Zn is produced at the Zn site. ZnO reduces this
lattice parameter and cell volume, as was shown previously in X-ray diffraction patterns.
Increasing the lattice cell characteristics suggests that a ZnO-doped TiO2 nanoparticle
is present in the Raman modes, as indicated by the blue shift. As a result of the lattice
contraction, the average bond length of the cell is shortened. According to the Raman
vibrational spectrum, the peak at 1080 cm−1 indicates a shift from red to blue, suggesting a
shift in the Raman modes. In addition to the different synthesis temperatures and strained
lattices, structural defects could also contribute to the change in peak location [51–53].
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Figure 6. Raman spectrum of synthesized pure ZnO and ZnO doped TiO2 nanocomposites.

2.6. Photocatalytic Analysis

UV/visible spectroscopy was performed using pure ZnO and ZnO-doped TiO2 nanocom-
posites as a photocatalyst on aqueous solutions of 20 ppm MB dye [29,54]. When the illumina-
tion period was extended, there was a greater degradation of organic pollutants into non-toxic
substituents, as shown by the decrease in the absorption peak. When compared to pure zinc
oxide, ZnO-doped TiO2 nanocomposites show the greatest degradation rate. As shown in
Figure 7, an MB dye solution with ZnO-doped TiO2 has a time-dependent UV-vis absorption
spectrum. There is, however, a significant difference between the two samples in terms of the
rate at which the maximum absorbance values decrease. In both cases, the relative absorption
peak intensity dramatically decreased with an increase in visible light illumination [55,56].
Therefore, we conclude that both catalyst powders are photoactive.
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Afterward, the efficiacy of the samples was tested to determine whether they were
degrading, as shown in Figure 8. To determine the degradation profile of MB dye over time,
ZnO-doped TiO2 nanocomposites were irradiated with visible light. In the presence of ZnO-
doped TiO2 nanocomposites, the samples degraded with 84% efficiency [57–60]. The high
surface area of ZnO-doped TiO2 nanocomposites allows for them to interact with many
molecules. A photon with an energy level above the bandgap excites the photocatalyst and
elevates electrons from the valence band (VB) to the conduction band (CB). These electrons
produce superoxide radicals when they react with the oxygen dissolved in the solution,
and OH- is converted into •OH radicals as a result of these reactions. The mechanism of
this can be described by the following equations:

ZnO doped TiO2 NPs + hυ→ ZnO doped TiO2 NPs + (e−/h+) (1)

e− + O2 → O− (2)

h+ + OH− → :OH (3)

h+
VB + OH/H2O→ HO* + H+ (4)

HO* + MB dye→ degraded product (5)

The electron acceptor, energy absorber, and radical generator of hydrogen peroxide is
essential for photocatalytic reactions. The recombination rate of electrons and holes will
decrease as a result. It is expected that dye molecules will be broken down by anions of
superoxide radicals and the hydroxyl radicals that are produced [4,10,17,20].
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Figure 8. Photocatalytic degradation efficiency bar diagram of ZnO-doped TiO2 nanocomposites.

To provide precise kinetic data, first-order kinetics were applied to the photodecom-
position of MB dye [21–23]. In the equation C/Co = −kt, K represents the rate constant
and T represents the reaction time, where Co represents the initial dye concentration and C
represents the final dye concentration. As shown in Figure 9a,b, (C/Co) and ln(Co/Ct) plots
relate to time. According to the total percentage of photodegradation and photodegradation
kinetics, ZnO-doped TiO2 has a much higher photocatalytic activity than ZnO. In Figure 10,
visible light is irradiated and produces a photocatalytic reaction, while pure ZnO and ZnO-
doped TiO2 have different properties. This is because ZnO absorbs visible light, allowing for
it to capture and produce electrons from the photoinduced electrons [27,40]. Consequently,
the results show that pure ZnO nanoparticles and ZnO-doped TiO2 nanocomposites both
exhibit good photocatalytic activity for MB dye under visible-light illumination.
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2.7. BET Analysis

A nitrogen adsorption–desorption analysis was used to determine the specific surface
area and porous structure of ZnO-doped TiO2 nanocomposites, which contribute to their
photocatalytic activity. Several samples have mesoporous characteristics and type IV
isotherms [24,51,56]. An enhanced surface area and pore size distribution was observed
for nanomaterials doped with ZnO/TiO2 (24.12 cm2/g and 1.89 nm) when compared
with bare ZnO (14.67 cm2/g and 1.89 nm). When dyes degrade, electrons travel more
efficiently through the pores, due to their larger size and volume. Increasing the surface-
active material sites increases their catalytic activity, which is enhanced by the large surface
area. Figure 11 shows the N2 adsorption–desorption isotherms used to determine the
BET surface area of harvested samples. The distribution of pore sizes is also shown in
Figure 12, and Dubinin and Astakov’s (DA) method was used to calculate the pore radius of
the synthesized materials.

2.8. Antibacterial Activity
2.8.1. An Overview of Inoculum Preparation

Agar slopes containing nutrients were grown at 4 ◦C for stock cultures. Test tubes
containing Muller-Hinton broth (MHB) and bacteriophages were filled with loopfuls of cells
from stock cultures and incubated without agitation for 24 h at 37 ◦C or 25 ◦C. It was
possible to achieve 2.0 × 106 colony-forming units per millilitre by diluting the cultures in
fresh Muller–Hinton broth.

2.8.2. Antimicrobial Susceptibility Test

The disc-diffusion test was developed by Bauer et al., in 1966, as a means of detecting
antimicrobial activity. Himedia (Mumbai) provided Muller-Hinton Agar (MHA) for the
screening of in vitro antimicrobial activity [25,61]. A sterile petri-plate was prepared by
pouring molten media into 15 mL of sterile petri-plates. The coating of the 0.1% inoculum
solution was followed by the uniform swabbing of plates with the 0.1% inoculum solution,
followed by five minutes of drying. Extracts with a concentration of 40 mg were loaded
onto sterile discs. A loaded disc was placed on the medium surface and allowed to diffuse
for 5 min before incubation at 37 ◦C for 24 h. As shown in Figure 13a,b, inhibition zones
were measured in millimetres around the disc after incubation. For bacteria to be killed
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by pure zinc-oxide nanocomposites, a nanocomposite concentration of as low as 40 mg is
required during incubation [26,62].
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2.9. Screening of Antifungal Activity
2.9.1. Tested Fungi

One fungus strain was used during the course of the investigation (C. albicans). All
fungal cultures were taken from the Microbial Type Culture Collection (MTCC) at the Insti-
tute of Microbial Technology in Chandigarh, India. The screening procedure began with
the preparation of young fungal broth cultures. To assess the antifungal properties of
Sabouraud’s dextrose agar/broth, Hi Media Pvt. conducted antifungal tests. After inocu-
lating each strain in Sabouraud’s dextrose broth for six hours, each suspension contained
approximately 105 CFU/mL.

2.9.2. Determination of Antifungal Activity

Diffusion was obtained using agar wells, as described in Perez, 1993. This is most com-
monly used to cultivate fungi on Sabouraud’s dextrose agar (SDA). The innoculation of the culture
medium with separate suspensions of fungal strains was carried out using Sabouraud’s dextrose
broth. To prepare the wells, an 8 mm diameter hole was punched into each of the agar and
solvent blanks, and methanol, ethyl acetate and hexane were poured into the holes. A standard
antibiotic (Fucanazole, concentration 1 mg/mL) was used to incubate fungal plates at 37 ◦C
for 72 h. As shown in Figure 14, the diameters of the inhibition zones were measured. The
antifungal activity of zinc oxide doped with TiO2 NPs can be seen in the inhibition zone of
bacteria growth [63–65]. Antimicrobial agents that contain metal nanocomposites, such as Zn,
Ti, and Ag, may be created by oxide nanocomposites containing these metals.
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3. Experimental
3.1. Preparation of Pure Zinc Oxide and ZnO Doped TiO2 Nanocomposites

We used all chemical reagents (analytical grade) without further purification (E-Merck
99.99%). With the aid of the sol-gel method, pure ZnO was produced by combining
Zn(NO3)2 and NaOH. To prepare ZnO, an aqueous zinc nitrate solution containing 3 M was
stirred continuously for two hours with a magnetic stirrer until it was completely dissolved,
accompanied by a solution of 3 M sodium hydroxide (NaOH). As the zinc nitrate dissolved,
the aqueous solution was added drop by drop under high-speed stirring. A three-hour
running time was allowed after sodium hydroxide was completely added. The beaker
was covered carefully and this condition was maintained overnight. A careful observation
was made the following day to separate the supernatant solution. After centrifuging the
remaining solution, the precipitate was removed. In addition, the precipitate was repeatedly
washed with distilled water to remove contaminants. The dried Zn(OH)2 particles were
then annealed at 70 ◦C for two hours to convert them into ZnO nanocomposites using
a muffle furnace. In the same way, ZnO-doped TiO2 nanocomposites was prepared via
the same method by adding TiO2 to the solution for doping. Dopant stoichiometry can
be controlled by correctly dissolving titanium oxide. As prepared, the solutions had a
concentration of 0.4 M. Stirring the mixture at 80 ◦C for 4 h produced a homogeneous and
clear solution. Using a slow cooling method, air-cooled solutions were cooled to room
temperature and then aged for 24 h at that temperature. Following annealing at 600 ◦C in
an air furnace for two hours, the samples were kept at room temperature.

3.2. Characterization Studies

A RigaKu D/max-RB diffractometer at 40 kV and 30 mA was used to perform powder
X-ray diffraction (XRD) experiments. The XRD spectra were recorded for angles (2θ)
ranging from 10◦ to 90◦. A JEOL JSM-5300 microscope with acceleration voltage 15 kV
was used to examine the surface morphology of the synthesized samples. Using the
IH-300X, selected area electron diffraction (SAED) was used to determine the elements’
compositions. In this experiment, spectra were recorded with a spectrometer (Brukker
IFS-66V). A UV-vis-NIR spectrophotometer (JASCO V-550, Tokyo, Japan) was used to
study the optical properties of ZNO-doped TiO2 nanocomposites. A Brukker IFS (66 V)
spectrometer was used to study the ZnO-doped TiO2 nanocomposites’ functional groups,
using fourier transform infrared spectroscopy (FTIR). A backscattering Ocean optics ID
Raman spectrometer (Dunedin, FL, USA), with a wavelength of 785 nm and power of
70 mW, was used for Raman spectroscopy studies.

3.3. Photocatalytic Performance Measurement

A ZnO-doped TiO2 nanocomposite was used to photocatalyze methylene blue (MB)
degradation under UV light (400 nm) and visible light in aqueous solution. The MB solution
was mixed with 40 mg of catalyst at a fixed concentration in 100 mL of MB solution under
UV light. To achieve adsorption–desorption equilibrium, the catalyst/MB solution was
kept in the dark for 2 h. To accelerate dye degradation, H2O2 was added to increase the
generation of -OH radicals during photodegradation. Under stirred conditions, UV light
was exposed through 100 mL of catalyst-loaded MB aqueous solution with simultaneous
exposure to UV light. Air was purged to ensure that the catalyst was well dispersed in the
solution. MB mixture solution was irradiated with UV for 30 min at a time. A UV-visible
spectrophotometer was used to measure changes in the absorption band maximum at given
time intervals after the photo-reacted solution of the centrifuged sample was withdrawn
from the UV-illuminated solution (2 mL every time).



Catalysts 2023, 13, 215 13 of 16

4. Conclusions

To remove dye-induced, unsafe water pollution, pure ZnO and ZnO-doped TiO2
nanocomposites were synthesized using the sol-gel approach. A variety of investigation
methods were employed to analyze the prepared ZnO-doped TiO2 nanocomposites, in-
cluding XRD, SEM, EDX, FTIR and Raman spectra. In an XRD analysis of ZnO-doped TiO2
nanocomposites with a crystalline size of 8.92 nm, they were found to be spherical in shape.
It was possible to effectively remove colours from aqueous solutions using ZnO/TiO2
nanocomposites. When ~pH was increased in MB solutions, the photocatalytic degradation
rate increased. It was found that when ZnO-doped TiO2 nanocomposites were photocat-
alyzed, they were able to degrade MB dye by 84%. The inhibition of MB dye evaporation
by pure ZnO and doped TiO2 nanocomposites indicates that the synthesized candidate is
suitable for degradation devices. According to BET surface area measurements, pure ZnO
and doped TiO2 nanocomposites have a specific surface area of 69 m2/g, while ZnO-doped
TiO2 nanocomposites have a specific surface area of 46 m2/g. Antibiotic-resistant pure
ZnO NPs doped with TiO2 were demonstrated to be effective against Gram-negative and
Gram-positive bacteria. According to specific antimicrobial studies, microorganisms exposed
to antimicrobial activity of ZnO with TiO2 nanocomposites showed cell inactivation at the
levels of signalling and regulatory networks.
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