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Catalytic materials have become prominent in many high-tech fields in recent years [1].
These materials are not categorized according to their nature, bonding form, or processing
methods, but rather according to their functions [2,3]. The emergence of catalytic materials
in energy (energy storage, conversion, and utilization) [4–12] and environmental (detection,
protection, and rehabilitation) applications has received increased attention from both
academic and industry scientists [13–20]. Thus, it is necessary to provide a platform for
researchers and engineers to discuss the development of catalytic materials in energy
and environmental applications. We are honored to serve as the Guest Editors of this
Special Issue entitled “Synthesis and Application of Catalytic Materials in Energy and
Environment” for the journal Catalysts. This Special Issue is focusing on the synthesis,
characterization, application, and mechanism analysis of homogeneous and heterogeneous
catalysts in energy and environmental applications.

This Special Issue includes sixteen articles in total, out of which fifteen are research
articles and one is a review paper. Lu et al. synthesized MoS2 with a nano-flower-like
morphology using sodium molybdate dihydrate and thiourea as molybdenum and sulfur
sources [21]. The results show that under the catalytic action of hydrothermal synthesis of
MoS2, the concentration of Cu2+ dissolved by ultrasonic treatment for 10 h is 39.46 mg/L.
The research article by Dourari et al. focuses on unraveling the effect of MgAl/CuO
nanothermite on the characteristics and thermo-catalytic decomposition of nanoenergetic
formulation based on nanostructured nitrocellulose and hydrazinium nitro-triazolone. The
outstanding catalytic impact of MgAl-CuO on the thermal behavior of developed energetic
composites was elucidated using kinetic modeling and applied to the differential scanning
calorimetry (DSC) data using isoconversional kinetic methods, for which a considerable
drop in the activation energy was acquired for the prepared formulations, highlighting
the catalytic influence of the introduced MgAl-CuO nanothermite [22]. Do et al. inves-
tigated the effect of a hierarchically ordered macroporous structure of alumina support
on the steam reforming of 1-methyl naphthalene using mesoporous alumina-supported
nickel and potassium (xK/Ni-MeAl) and macroporous alumina-supported nickel and
potassium (xK/Ni-MaAl) catalysts [23]. Hierarchically ordered macroporosity in Al2O3
supports play an important role in maintaining the high Ni dispersion through multiple
interactions in Ni-K over AlO4 tetrahedra in alumina. This, in turn, improves the catalytic
performance of steam reforming, including high gas yields, the turnover frequency for
hydrogen production, and 1-methyl naphthalene conversion [23]. Ge et al. prepared an
atomically dispersed cobalt-nitrogen-carbon (Co-N-C) catalyst for the oxygen reduction
reaction (ORR) by using a metal-organic framework (MOF) as a self-sacrifice template
under high-temperature pyrolysis [24]. The excellent ORR activity is attributed to the high
density of the Co-N-C sites with high intrinsic activity and high specific surface area to
expose more active sites. Liu et al. prepared a pig-blood-derived mesoporous carbon (BC)
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as a novel Fe-N-C material for the electrochemical detection of hydrogen peroxide [25].
Because of the unique nanostructure of Fe-BCs with rough surface structures, hierarchical
pores, and high graphitization degrees, the Fe-BCs, as a kind of advanced electrode mate-
rial, exhibited remarkable performance in electrocatalysis. Xu et al. fabricated a promising
hydroxide/oxide Co(OH)2/α-NiMoO4 NWs/CC heterostructure with nanoflowers deco-
rating the nanowires on a carbon cloth (CC) substrate via hydrothermal and calcination
methods [26]. In contrast to one-dimensional nanomaterials, the interfaces of Co(OH)2
nanoflowers and α-NiMoO4 nanowires on CC provide more active sites for electrocatalytic
reactions; therefore, they exhibit obviously enhanced electrocatalytic activities in overall
water splitting. Yu et al. prepared titanium dioxide–reduced graphene oxide composites
(TiO2-RGO) using a one-step hydrothermal method to degrade different dyes (methyl
orange, methylene blue, and rhodamine B) in water [27]. This paper provides a practical
avenue to design extremely efficient photocatalysts for dye degradation. The increase in
diesel consumption has led to the proliferation of soot particles from diesel exhaust, result-
ing in pollution in the form of smog. To solve this problem, Liu et al. successfully prepared
a series of Ag-doped Mn1−xAgxCo2O4 spinel catalysts using an auto-combustion synthesis
method that uses glucose as a fuel [28]. Chen et al. designed a simple strategy to prepare
composites that consist of TaON/CdS hybrids via a hydrothermal process [29]. The results
show that the pristine CdS nanoparticles loaded with 20 wt% TaON (TC4) could maximize
the photocatalytic hydrogen evolution rate to 19.29 mmol g−1 h−1 under visible light irradi-
ation, which was 2.13 times higher than that of the pristine CdS (9.03 mmol g−1 h−1) under
the same conditions. Tan et al. successfully prepared Zn1−xCdxS catalysts with the Zeolitic
Imidazolate Framework-8 (ZIF-8) as the precursor to using an ion exchange method and the
ability and electrochemical properties of a series of ZIF-8, ZnS, and Zn1−xCdxS catalysts in
the photocatalytic degradation of 2-CP and TC were investigated [30]. Four active species,
O2

−, h+, -OH, and SO4•−, can be generated to degrade 2-chlorophenol and tetracycline
hydrochloride under PMS-assisted activation. Zn1−xCdxS nanocage with high activity and
stability provides a feasible approach to catalytically remove persistent pollutants from
aqueous solutions under visible light conditions. Metal phase molybdenum disulfide (1T-
MoS2) is considered a promising electrocatalyst for the hydrogen evolution reaction (HER).
Wei et al. developed the 1T-MoS2/NiS heterostructure as an interface engineering-induced
strategy for the hydrogen evolution reaction (HER) [31]. This work demonstrates that tun-
ing the electronic structure through interface engineering to enhance the intrinsic activity
of electrocatalysts is a feasible strategy. Wang et al. reported a novel strategy of improving
the midpoint voltage and structural stability of Li-rich manganese-based cathode material
by increasing the nickel content [32]. Li et al. prepared La3+ and Ni2+-doped BiOCl using
a sol–gel method and characterized by physicochemical and spectroscopic techniques.
The photocatalytic performances were investigated by the degradation of gentian violet
under visible light. The bandgap of BiOCl declined after doping; the results of PL and
EIS demonstrated that the La- and Ni-Co-doped BiOCl effectively enhanced the transfer
and separation of photogenerated electrons and holes. Therefore, the Ni and La co-doped
BiOCl exhibited the best catalytic performance with a catalytic degradation efficiency of
95.5% in 105 min [33]. Jiang et al. reported a strategy to prepare Pt/Pd nanoparticles
decorated with Co-N-C materials, where Co-N-C was obtained directly via the pyrolysis
of ZIF-67. The as-prepared Pt/Pd/Co-N-C catalysts showed excellent ORR performance,
offered with a higher limit current density (6.6 mA cm−2) and similar half-wave potential
positive (E1/2 = 0.84 V) compared with commercial Pt/C. In addition to the ORR activity, it
also exhibits robust durability [34]. Zhao et al. developed a novel route for the rapid and
high-yield synthesis of mordenite (MOR) zeolite via an ice-templating method [35]. In com-
parison to traditional hydrothermal synthesis, the high yield, the superior crystallinity, and
the large reduction in the water level and reaction pressure indicate that simple device and
conventional silica sources by this route have great potential for the commercial production
of pure MOR zeolite. Moreover, the changed bonding environment of silicon atoms in MOR
zeolite remarkably enhances its acid strength; this is because of the relative decrease in the
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tetrahedrally coordinated Si-O-Si bond and, accordingly, the increase in the T-OH (T = Si,
Al) groups and Si-O-Al sites. Han et al. summarized the research progress of noble metal
(Pt, Pd, Au, Ag, and Ir) catalysts for the removal of VOCs in recent years with the discussion
of the influence factors in the preparation process on the catalytic performance [36]. The
reaction mechanisms of the removal of VOCs over the corresponding noble metal catalysts
were also briefly discussed.
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