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Abstract: Fructose-1,6-bisphosphate aldolase (FBA) is an important enzyme involved in central
carbon metabolism (CCM) with promising industrial applications. Artificial intelligence models
like generative adversarial networks (GANs) can design novel sequences that differ from natural
ones. To expand the sequence space of FBA, we applied the generative adversarial network (Pro-
teinGAN) model for the de novo design of FBA in this study. First, we corroborated the viability of
the ProteinGAN model through replicating the generation of functional MDH variants. The model
was then applied to the design of class II FBA. Computational analysis showed that the model
successfully captured features of natural class II FBA sequences while expanding sequence diversity.
Experimental results validated soluble expression and activity for the generated FBAs. Among the
20 generated FBA sequences (identity ranging from 85% to 99% with the closest natural FBA se-
quences), 4 were successfully expressed as soluble proteins in E. coli, and 2 of these 4 were functional.
We further proposed a filter based on sequence identity to the endogenous FBA of E. coli and rese-
lected 10 sequences (sequence identity ranging from 85% to 95%). Among them, six were successfully
expressed as soluble proteins, and five of these six were functional—a significant improvement com-
pared to the previous results. Furthermore, one generated FBA exhibited activity that was 1.69fold
the control FBA. This study demonstrates that enzyme design with GANs can generate functional
protein variants with enhanced performance and unique sequences.

Keywords: metabolic enzymes; fructofructose-1,6-diphosphate aldolase; ProteinGAN; protein
sequence design

1. Introduction

Central carbon metabolism (CCM) is crucial for providing energy and diverse sub-
strates required to sustain essential life processes. CCM includes multiple metabolic
pathways and regulatory networks [1]. Exploring the diversity of these proteins enhances
our understanding of life and provides novel building blocks for protein or metabolic engi-
neering. In the past, proteins have often been discovered from natural resources through
protein chemistry or data mining [2,3]. A more recently strategy to expanding functional
protein sequence spaces involves de novo design, which can be used to create completely
novel protein sequences rather than optimizing existing natural sequences [4]. Artificial
intelligence (AI) technology has been applied for de novo design [5–7] using generative
models, which focus on learning the distribution characteristics of the data and then directly
generating diverse new sequences [8]. For example, ProGen, utilizing a large language
model (LLM), is trained on a dataset encompassing approximately 280 million protein
sequences. ProGen is capable of generating artificial lysozymes that exhibit as low as 31.4%
sequence identity compared to natural sequences, albeit with significantly reduced activity,
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approximately 200-fold lower than the natural control [9]. Through utilizing graph neural
networks (GNNs), ProteinSolver is able to process PDB files containing protein structures
as input. This allows the generation of new sequences that fold into predetermined shapes,
although the biological activity of the generating proteins have not confirmed [10]. Another
generative model, known as variational auto-encoder (VAE), is capable of learning the
underlying structure of complex data and generating new data that closely resemble the
training data. VAE has been utilized to generate ornithine transaminases, with 87 unique
mutants demonstrating improved stability or activity compared to the wild type, and
with an average of eight amino acid substitutions [11]. Generative adversarial networks
(GANs) employ a game-theoretic approach to learn the generation process of functional
sequences [8]. Using GAN based on the self-attention mechanism, ProteinGAN is capable
of capturing the intricate evolutionary relationships within the multi-dimensional space
of amino acid sequences. It has successfully generated malate dehydrogenases (MDHs)
(EC: 1.1.1.37) that have been experimentally verified to exhibit natural catalytic activity and
have sequence identities ranging from 66% to 98% compared to natural MDHs, including a
highly mutated variant of 106 amino acid mutations (66% identity) [12].

In this study, we apply the ProteinGAN model to the de novo design of a CCM
metabolic enzyme—Fructose-1,6-bisphosphate aldolase (FBA) (EC 4.1.2.13) (Figure 1).
FBA is an essential glycolytic enzyme, ubiquitous in various organisms and extensively
involved in diverse biological processes [13,14]. Based on their structural and catalytic
characteristics, FBAs can be classified into two types: class I and class II [15]. Class I
FBA, primarily found in higher eukaryotes such as animals, plants, and algae, forms a
tetramer [16]. It catalyzes reactions through forming a Schiff-base intermediate through the
interaction between the amino group on the active center lysine and the carbonyl group
of the natural substrate [17]. In contrast, class II FBA, predominantly found in bacteria,
forms various types of multimers [16]. It catalyzes reactions through polarizing the keto
carbonyl group of the substrate to an enediol intermediate through divalent metal ions [18].
We chose class II FBA for our design based on the following considerations: (1) There is a
comparable number of diverse sequences to MDH (19,527 bacteria class II FBA sequences
vs. 16,706 for MDH). (2) It is more readily expressed as it originates primarily from bacteria.
(3) It possesses a more intricate structure and function compared to MDH. It incorporates
motifs for binding metals and substrate, and it cleaves a substrate molecule into two distinct
product molecules.

Initially, we corroborated the viability of the ProteinGAN model in generating MDHs [12].
Subsequently, we assessed the model’s efficacy in generating sequences for class II FBA.
Out of the 20 FBA sequences generated in silico, 4 showed soluble expression in E. coli,
with 2 exhibiting activity. We further proposed a filter predicated on sequence identity to
the endogenous FBA of the expression host. After reselection, 10 sequences were obtained,
of which 6 were found to be soluble, and 5 sequences exhibited activity, with a maximal
activity 1.69 times that of the control FBA. This study successfully demonstrated the
feasibility of using ProteinGAN to explore the potential protein sequence space of FBA and
generate diverse and high-performance novel enzymes.
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lowed by enzyme activity validation. 
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Figure 1. Workflow of de novo protein design and validation. (a) Train the ProteinGAN model on an
enzyme dataset, generate an equal number of sequences as the natural ones, and validate further.
(b) Evaluate the generated sequences using four computational methods and then filter them using a
sequence selection strategy. (c) Synthesize, clone, express, and purify the selected sequences, followed
by enzyme activity validation.

2. Results
2.1. Replication of ProteinGAN and Validation Using MDH

We replicated the ProteinGAN model based on the code provided by Repecka et al.
and evaluated its efficacy with the identical MDH dataset [12] (Tables S1 and S2). During
training, we noticed that the generator-to-discriminator decay ratio had a substantial
influence on model convergence, with successful convergence achieved at a ratio of 5:2
(Figure S1a). The remaining parameters of the model were configured based on Repecka
et al.’s study: learning rate—5 × 10−5; steps—2,500,000 [12]. The model convergence
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was evaluated through monitoring several variables, including the loss of the generator
and discriminator, the discriminator’s scoring, the sequence identity, and the BLOSUM
matrix score between generated sequences and training sequences (Figure S2). After the
initial training, both the generator and discriminator losses exhibited a relatively stable
trend before plateauing (Figure S2a). The discriminator network demonstrated effective
differentiation between generated and natural sequences, with the scoring gap between
these two types of sequences gradually narrowing as training steps increased (Figure S2b).
For every 1200 learning steps, the model generated 64 sequences. The identity and BLOSUM
matrix scores of these generated sequences were then compared to the natural sequences
in both the training and validation datasets. The identity and BLOSUM matrix scores
between generated and natural sequences showed a progressive increase and eventually
reached a stable state after 2,500,000 learning steps (Figures S3a and S2c,d). Monitoring
these variables led to the conclusion that the generator’s data quality improved over time,
indicating steady model convergence.

We evaluated the interpretability and controllability of the model via interpolation
as described [12]. The resulting correlation matrix heatmap visualized the correlations
between the physicochemical properties of sequences and the dimensions of the latent space
(Figure S3b). On average, the absolute Pearson’s correlation coefficient was 0.86, with 81% of
latent space dimensions highly correlated (absolute Pearson’s correlation coefficient > 0.8)
with corresponding primary or secondary sequence features. This indicates the tunability
of physicochemical properties through manipulating the latent vector. These results are
consistent with those reported previously (average Pearson’s r = 0.86, 76% highly correlated
dimensions), demonstrating the effective replication of the ProteinGAN model and its
controllability in this study [12].

We then conducted a series of bioinformatics analyses to evaluate the quality of the
generated sequences, aiming to determine if the model captured the latent representations
and evolutionary relationships inherent to natural sequences. First, we performed amino
acid composition analysis, which showed a strong correlation between the generated and
natural MDHs when categorized according to their physicochemical properties (Pearson’s
correlation coefficient > 0.9) (Figure S3c). This indicates that the model successfully learned
evolutionary and physicochemical constraints. Next, we examined amino acid types and
distributions at each position through aligning generated and natural sequences. Sequence
logo analysis (Figure S3d) and Shannon entropy (Figure S3e) revealed the preservation
of key catalytic and substrate-binding residues, indicating a high degree of consistency
between the generated and natural sequences. This suggests the effective learning of
relationships inherent to the natural data. We also evaluated the diversity of the generated
MDH sequences, finding up to four-fold more clusters for generated versus natural MDHs
(Figure S3f). The t-distributed stochastic neighbor embedding (t-SNE) [19] dimensionality
reduction visualization further demonstrated a broader distribution for the generated
sequences, indicating an enhanced sampling of sequence space (Figure S3g). Overall, these
analyses demonstrated the model’s ability to generate diverse sequences capturing key
features of natural protein evolution.

We used the trained model to generate a total of 16,706 sequences, equivalent to natural
sequences. These sequences were filtered to include pairs with an identity exceeding 85%
of the natural sequences (based on the experimental results from Repecka et al. [12]) and
obtained a total of 897 sequences. From this subset, we picked up 20 sequences with closet
identity to natural MDH ranging from 85% to 99%, containing 6–46 amino acid mutations
(including substitutions, insertions, and deletions, Table S3). These sequences were checked
for essential amino acids in functional positions (including active site, substrate binding
sites, and NAD+ binding sites, Figure S3d). The resulting sequences were synthesized and
cloned into the pET32a expression vector. These constructs were then expressed in E. coli
Origami B (DE3) and tested for enzyme activity. Four sequences were successfully soluble
expressed, and three of them were successfully purified using affinity chromatography,
which showed 91.36%, 61.35%, and 4.51% enzymatic activity relative to MDH−WT, respec-
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tively. These three MDH sequences exhibited 91.46%, 86.59%, and 94.14% of identity to the
closest natural MDH sequence, equal to containing 28, 44, and 17 amino acid mutations
(Table S3, Figures S4 and S5).

The soluble expression variants and the functional variants accounted for 20% (4/20)
and 15% (3/20), respectively, slightly lower than the results of Repecka et al. [12] (35%
or 19/55, 24% or 13/55) [11]. It was noteworthy that to improve the soluble expression
ratio of MDH, Repecka et al. used a second expression host, ArcticExpress (DE3) [12].
However, in our experiments, we found that MDH−WT could not be normally expressed
in this expression system. Using this method, 14 out of 20 generated MDH sequences were
soluble or partially soluble expressed, but the enzyme activity validation results showed
that their expression supernatants were all inactive. Therefore, using ArcticExpress (DE3)
for expression failed to provide a solution for optimizing the solubility of the generated
MDHs. Additionally, protein solubility predictions via Protein-Sol [20] also disagreed with
our results (Table S3) [19].

We compared our functional MDH sequences to those produced by Repecka et al.
The highest identity found was 71% (Table S4), indicating our generated sequences are
novel and distinct from the sequences generated in their study. Furthermore, the preserved
enzymatic activity demonstrates ProteinGAN’s ability to produce functional MDH variants
on par with natural sequences.

2.2. Computational Evaluation of Generated FBA Sequences

We then applied this model for the de novo design of class II FBA. A total of
19,527 bacterial class II FBA family sequences were downloaded from UniProt (https://
www.uniprot.org/, accessed on 25 September 2022) on September 25, 2022. Sequences with
lengths less than 300 amino acids and longer than 512 amino acids were excluded. To
balance the dataset, an up-sampling approach was utilized, resulting in 18,404 sequences
designated for training and 160 sequences allocated for validation (Tables S5 and S6).

We optimized three hyper-parameters, including steps, learning rate, and decay
ratio, to obtain a ProteinGAN model that can better understand and control primary
and secondary sequence properties for FBA. Four different sets of hyperparameters were
selected, and three models were trained in parallel for each set, resulting in a total of
12 models (Table S7). The Class II FBA-4 model, which has a learning rate of 5 × 10−4, a
decay ratio of 3:2, and 2,500,000 steps, was chosen for further investigation. The model
convergence was assessed through monitoring variable trends as stated previously and
yielded results similar to those presented earlier (Figure 2a and Figure S6).

A similar computational evaluation approach to that of MDH was used for the FBA
model. Statistical analysis of the final model’s correlation matrix revealed that approxi-
mately 97.6% of latent space dimensions were highly correlated (absolute Pearson’s correla-
tion coefficient > 0.8) with corresponding primary or secondary sequence features, with
an average absolute Pearson’s correlation coefficient of 0.91 (Figure 2b). Furthermore, the
generated FBA sequences exhibited strong correlations with natural FBA sequences in
terms of physicochemically categorized amino acid composition (Pearson’s correlation co-
efficient > 0.9) (Figure 2c). Sequence logo analysis and Shannon entropy demonstrated that
the amino acid compositions of conserved positions in the generated FBA sequences were
consistent with those of the natural sequences (Figure 2d,e). The diversity of the generated
FBA sequences was also evaluated, revealing that the cluster numbers of the generated
sequences were up to 40 times higher than those of the natural sequences (Figure 2f,g). De-
spite the conservative nature of the FBA training dataset, the use of ProteinGAN effectively
expanded the sequence space, highlighting their utility for expanding the space of highly
conserved functional proteins.

https://www.uniprot.org/
https://www.uniprot.org/
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Figure 2. Evaluation of FBA training process and generated sequences. (a) The identity of generated
sequences to training and validation sequences was monitored during the training process. A
regression fit using a weighted sum of linear and exponential terms was applied, depicted by solid
lines. (b) Interpolation results were obtained through correlating the latent space vectors with
protein properties calculated through the interpolation of each variable dimension. (c) Amino acids
were grouped based on physicochemical properties and box plots of the percentage amino acid
composition of the output and natural sequences were plotted. This analysis provides insight into
the differential distribution of amino acid composition between the generated and natural sequences.
(d) A sequence logo was created to illustrate the key conserved positions within the multiple sequence
alignment. This visualization helped identify important residues or motifs that were preserved in
the generated sequences, indicating their potential functional significance. (e) Shannon entropies
were calculated to estimate the sequence variability for both the generated and training sequences,
based on the multiple sequence alignment. This analysis provided insights into the diversity and
conservation of amino acids at different positions within the sequences. (f) Evaluating the sequence
diversity between the sequences we generated and the FBA training dataset. (g) A tSNE visualization
was performed to visualize the natural and generated FBA sequences. The dot sizes represented the
cluster size based on 80% identity for each representative sequence. This analysis provided a visual
representation of the distribution and clustering of the generated sequences compared to the natural
FBA sequences.



Catalysts 2023, 13, 1457 7 of 14

2.3. Experimental Validation of Generated FBA Sequences

We generated a total of 18,564 sequences using the trained model, equivalent to natural
sequences. Among them, 2033 sequences exhibited an identity of over 85%. From this
subset, we picked up 20 sequences with closest identity to natural FBA ranging from
85% to 99%, containing 2–52 amino acid mutations (including substitutions, insertions
and deletions, Table S8). These sequences were checked for essential amino acids in
functional positions (including the active site, substrate binding sites, and Zn2+ binding
sites; Figure 2d) [21]. The 20 selected sequences were successfully synthesized and cloned
into the pET32a expression vector, which included an N-terminal histidine tag, respectively
(Figure 3a) [22,23]. In E. coli BL21 (DE3) cells, 16 of these sequences were expressed, but
only 4, i.e., FBA−1, FBA−6, FBA−8, and FBA−17, were expressed as soluble proteins, and
the remaining 12 were found to be insoluble (Figure S7).
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Figure 3. Purification and activity verification of soluble generated FBAs. (a) A schematic diagram of
the FBA expression vector. (b) SDS-PAGE results of the purified soluble FBAs. The protein in each
lane was diluted to a concentration in the range of the BSA standards of 0.03–0.5 mg/mL, and 8 µL
of each sample was loaded for analysis. Lane M, protein molecular mass marker; lane 1, FBA−WT;
lane 2, FBA−17; lane 3, FBA−6; lane 4, FBA−1; lane 5, FBA−29. (c) FBA activity measured via
fluorescently monitoring NADH consumption (Methods). Bovine serum albumin (BSA) was used
as a negative control, while FBA−WT was used as a positive control. (d) Another set of SDS-PAGE
results of purified soluble FBAs. Lane M, protein molecular mass marker; lane 1, FBA−WT; lane 2,
FBA−21; lane 3, FBA−23; lane 4, FBA−25; lane 5, FBA−26. (e) The activity data of the FBAs obtained
via optimizing the sequence selection strategy. BSA was used as a negative control, while FBA−WT
was used as a positive control.

Three variants, i.e., FBA−1, FBA−6, FBA−17, and FBA−WT, were purified from the
soluble fraction of the cell lysate using the Ni-NTA method, with yields ranging from
18.9 to 112.9 mg/L LB and purities ranging from 86 to 95% (Table 1, Figure 3b). The FBA
activity of the purified proteins was evaluated through monitoring NADH consumption in
a spectrophotometer using a coupled enzyme method [12,24]. The FBA gene was amplified
from the E. coli K12 genome as a control, referred to as FBA−WT [25]. FBA−6 and FBA−17
exhibited relative FBA activity of 15.58% and 13.97%, respectively, compared to the wild-
type FBA. The sequence identity relative to the closest natural FBA sequence for FBA−6
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and FBA−17 was 96.90% and 88.55%, respectively, equal to containing 11 and 41 amino
acid mutations (Figure 3c, Table S8). However, FBA−1 did not exhibit detectable enzymatic
activity in our assays.

Table 1. Expression and purification of soluble generated FBA sequences.

ID Total Protein a (mg) Yield b (mg/L) Purity c (%)

FBA−WT 2.76 27.63 91
FBA−1 11.29 112.91 95
FBA−6 7.32 73.16 93

FBA−17 1.89 18.87 86
FBA−21 3.68 36.81 89
FBA−23 1.23 12.35 87
FBA−25 2.33 23.35 85
FBA−26 3.10 31.02 86
FBA−29 0.48 4.78 88

a Total protein is the total amount of target protein obtained after purification. b Yield of target proteins after
Ni-NTA purification is measured as the amount obtained per liter of culture. c Purity is calculated as the mass
ratio of the target protein to total protein in the purified solution, estimated using densitometry analysis software
ImageJ (Version 1.8.0).

It is worth noting that only 20% (4/20) of the 20 designed FBAs were expressed in
a soluble form, which was consistent with the MDH case. Analysis of the first batch
of 20 sequences revealed that those sequences exhibiting soluble expression shared a
high degree of identity with FBA−WT from E. coli (Table S8). We hypothesized that the
solubility of recombinant proteins is correlated with their identity to endogenous genes in
the expression strain. To optimize the soluble expression ratio, a filter was implemented
during the selection process of generated sequences, ensuring that the identity to the E. coli
FBA was kept above 80%, which is higher than the highest identity to the E. coli FBA in
the first batch. Additionally, sequences with the closest identity to natural FBA sequences
ranging from 85% to 95% were chosen to introduce more diversity in the generated FBAs.
To validate the feasibility of this strategy, 10 generated FBA sequences were re-selected for
further experimentation (Table S9).

2.4. Experimental Validation of Re-Selected FBA Sequences

We successfully cloned and expressed 9 of the 10 selected sequences, of which 6 were
soluble (Figure 3b,d and Figure S8). After purification, five sequences (FBA−21, FBA−23,
FBA−25, FBA−26, and FBA−29) exhibited FBA activities ranging from 9% to 169% relative
to FBA−WT, with protein yields ranging from 4.78 to 36.81 mg/L LB and purities above 85%
(Table 1). Among these sequences, FBA−23 showed the highest activity, with an enzymatic
activity 1.69 times that of the FBA−WT. It contained 28 amino acid mutations and had an
identity of 92.98% to the closest natural FBA sequence (UniProt ID: A0A7V8PSN0) from
Pectobacterium carotovorum. FBA−29, with 47 amino acid mutations and an identity of
86.87% to the closest natural FBA sequence (UniProt ID: A0A0A0CT14) from Photorhabdus
luminescens, retained approximately 65% of the activity relative to FBA−WT (Figure 3e,
Table S9). After implementing the optimized sequence selection strategy, the solubility
expression ratio increased to 60% (6/10), and 83.33% (5/6) were functional, which was
significantly higher than the previous results. These results demonstrate the successful
application of ProteinGAN for the design of FBA, resulting in the generation of new, highly
diverse, and functional enzymes.

2.5. Sequence Diversity Analysis of FBA−23

Compared to their closest natural sequences, the five functional FBA variants con-
tained 21–47 mutations (excluding the active site and substrate/Zn2+ binding site), pri-
marily situated at a considerable distance from the active pocket. Computational analysis
revealed all 28 mutations in the top-performing variant, FBA−23, were localized to distal
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sites (10.9–37.5 Å, averaging 22 Å; residues >10 Å from the active site were defined as
distal [26]; Figure S9). In contrast, prior engineering of E. coli FBA reported 19 mutants
(brenda-enzymes.org, accessed on 16 October 2023, 18 single mutants, 1 double mutant)
involving 16 sites, with 1 in the active site, 5 proximal sites (4 substrate/Zn2+ binding sites),
and 10 distal sites (1 substrate/Zn2+ binding site). Notably, FBA−23 only shared two sites
with these variants, with different amino acid changes.

3. Discussion

This study effectively demonstrated the successful application of ProteinGAN for
exploring the sequence space of FBA. Through combining this with experimental validation,
we were able to obtain diverse and high-performance enzymes. This methodology has
proven efficient in protein engineering.

It is worth noting that the endogenous FBA of E. coli has the potential to form het-
eromeric complexes with our designed FBA, as FBA is a dimeric enzyme [15]. However, the
impact of these heteromeric complexes can be disregarded due to the significantly higher
expression levels (several dozen to hundred times) of our designed FBAs compared to
the endogenous FBA in E. coli (Figures S7 and S8). Additionally, the designed FBAs were
purified using the His-tag strategy. Nonetheless, further meticulous verification is required
to assess the impact of endogenous proteins.

Our work is based on unsupervised learning and does not make full use of function
tag information. In future research, we can further combine unsupervised learning with su-
pervised learning through using conditional generative adversarial networks [27], applying
sequence activity or specificity functional labels to further refine boundary conditions for
generating data and controlling the model data generation direction. During the generation
process, both the generator and discriminator incorporate external conditional information,
such as sequence functional values, allowing the generator to produce authentic data under
specific circumstances. Through an adversarial training game, the generator and discrim-
inator work together to iteratively improve the quality of generated outcomes. GANs
can also be applied to a finer-grained mutation library, learning to generate more diverse
variants and providing a new sampling method for subsequent supervised learning. With
the growth and improvement of protein structure data, it will be possible to directly learn
protein structure and design sequences with new structures and functions from scratch [28].

4. Materials and Methods
4.1. Model Training
4.1.1. FBA Datasets

A total of 19,527 bacteria class II FBA (EC: 4.1.2.13) sequences were downloaded
from UniProt [29] on 25 September 2022. During the process of selecting sequences, we
filtered out sequences that were shorter than 300 amino acids (as the known length range
of natural enzymes is mostly concentrated around 300–400 amino acids, Table S6), longer
than 512 amino acids (the fixed-length input limitation of the model, as indicated by prior
study [12]), or contained non-standard amino acids. In the end, a total of 18,564 sequences
were selected to construct the FBA dataset (Table S6).

Dynamic up-sampling was applied to balance the dataset to prevent model collapse
and generate more diverse sequences [12]. First, we use the MMSeqs2 [30] tool to cluster
the sequences used for training with a threshold of 0.7, grouping these sequences into
multiple clusters with a sequence identity of 70%. Up-sampling factors were set based
on the number of sequences for each cluster (Table S5). In the FBA dataset, sequences in
clusters with fewer than 3 sequences were used for validation (160 sequences), while the
rest of the data were used for training (18,404 sequences).

4.1.2. Architecture of the Model

We use a generative adversarial network model based on ProteinGAN to carry out the
de novo design of MDH and FBA [12]. The model consists of a generator and a discriminator.
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It uses convolutional layers [31] to extract local features from protein sequences and self-
attention layers [32] to capture the global features of the sequences. Residual blocks were
used to solve the degradation problem of gradient vanishing or explosion during the
training process [33]. Spectral normalization (SN) was applied in each layer to ensure
training stability [34]. Non-saturating loss functions and R1 regularization were used to
aid model convergence [35]. The gumbel softmax trick was used to address the problem of
gradient non-backpropagation in using GANs to generate discrete data [36].

4.1.3. Training Process

In the process of FBA de novo design, we selected 4 final hyperparameter sets,
each training 3 parallel models for a total of 12 models (Table S7). The optimal model
was chosen based on computational performance metrics. Its configuration was as fol-
lows: Adam optimizer parameters of 0.0 and 0.9; 3 × 3 convolutional kernel size; batch
size of 64; BLAST [37] sequence identity and BLOSUM45 matrix scoring against train-
ing/validation sets every 1200 steps; 2,500,000 training steps over ~10 days. The model had
58,990,542 total trainable parameters, with 29,258,456 in the generator and 29,732,086 in the
discriminator. Starting from training step 100,000, the learning rates for both the generator
and discriminator decreased from 5 × 10−4, with a ratio of 3:2, until reaching 5 × 10−5

without further changes (Figure S1b).

4.1.4. Interpolation

The controllability and interpretability of the generator indicate its ability to control
specific features of generated samples through adjusting the latent space. We assessed
these using the interpolation method [12], which evaluates correlations between statistical
sequence analysis and the biophysical properties of interpolated latent vectors. Evaluated
properties included percentages of standard amino acids, identity to the closest training
sequence, sequence length, etc. [12]. First, uniform interpolation was performed in the
input latent vector space, interpolating 1024 values from −1 to 1 for each of the 128 dimen-
sions while holding others at 0, generating 128 × 1024 vectors. These were input to the
generator, producing 128 × 1024 sequences. The biophysical properties of each sequence
were computed and analyzed statistically. Finally, Pearson’s correlation coefficient between
the input value and property value was calculated for each dimension, yielding a corre-
lation interpolation matrix. Statistical analysis of correlations between latent dimensions
and primary/secondary sequence features evaluated the controllability of the generated
sequence distribution through altering latent vector variances.

4.2. Computational Evaluation
4.2.1. Amino Acids and a Group of Amino Acids Composition

The trained model was used to generate sequences matching the training set size.
Amino acid and amino acid group proportions were statistically compared between gener-
ated and natural sequences using box plots with matplotlib. Amino acid groupings were
based on shared biochemical properties [12].

4.2.2. Shannon Entropy

The trained model was used to generate sequences matching the training set size.
Generated and natural sequences were aligned using Clustal Omega [38]. Alignments were
separated into generated and natural sets. Columns with >70% gaps were excluded to
avoid bias. The Shannon entropy (SE) of each column was calculated as in [12]:

SE = −∑20
i=1 p(xi)log20 p(xi) (1)

In the formula, p(xi) denotes the frequency of amino acids appearing in a column
of sequence alignment. For both the generated and natural sequences, we analyze the SE
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values at each position, along with the occurrence of peaks (high entropy) and valleys
(low entropy).

4.2.3. Sequence Logo

Utilizing the multiple sequence alignment results, we create sequence logos to visually
assess the distribution of amino acid types at crucial positions within both the generated
and natural sequences.

First, we queried the essential key positions of the positive controls, such as binding
sites, active sites, and others, from the UniProt database [29]. Then, based on the positions
of the wild-type key sites, we analyzed the sequence alignment results at those locations.
Subsequently, we created separate sequence logos for both the natural and generated
sequences and marked the key positions relative to the Shannon entropy.

4.2.4. Sequence Diversity

We utilized the well-trained model to generate a set of sequences equivalent in size
to natural sequences. Next, we performed separate clustering analyses on the sequences
generated by the model and the natural sequences using thresholds ranging from 0.1 to
0.95 in increments of 0.05, with the help of the MMSeqs2 [30] tool. The clustering results
were visualized using Matplotlib, and we calculated the ratio of the number of sequences
at each threshold for both the generated and natural sequences.

Equal numbers of generated and natural sequences were clustered at the 0.8 threshold
with MMSeqs2 [30]. Representative sequences and cluster sizes were obtained. Representa-
tives were aligned in Clustal Omega [38] to create distance matrices. The post-clustering
distance matrix was input to t-SNE [19] for dimensionality reduction and visualization
using Scikit-learn (default settings) and an embedding generation perplexity of 7. The
visualization was then plotted using the Matplotlib library, with the point radius correlated
to cluster size.

4.3. Experimental Validation of Generated Enzymes

MDH experimental validation methods can be found in the supplementary method.
The FBA gene was amplified from the E. coli K12 genome as a natural control, referred

to as FBA−WT. The sequences generated by ProteinGAN were codon-optimized and
synthesized by Beijing Ruiboxingke Biotechnology Co., Ltd. (Beijing, China). The synthetic
sequence was cloned into the pET32a expression vector with a 6×His tag at the N-terminus
for downstream affinity purification. The constructs were transformed into the E. coli BL21
(DE3) expression strain, and the transformants were inoculated into 3 mL Luria Broth (LB)
medium containing 100 µg mL−1 ampicillin and incubated overnight at 37 ◦C with shaking
at 220 rpm. Then, 2 mL of the overnight culture was transferred to 100 mL fresh LB medium
with the same resistance (1:50 dilution) and grown at 37 ◦C for 2 h until the cell density
reached 0.6–0.8 at 600 nm, followed by induction with 0.1 mM IPTG at 16 ◦C with shaking
at 200 rpm overnight.

Cells were harvested via centrifugation at 4000× g and 4 ◦C for 10 min, resuspended
at 50 OD600/mL in a binding buffer (0.1 M sodium phosphate buffer, 0.5 M NaCl, 30 mM
imidazole, pH 7.4), and sonicated on ice with 30% amplitude for a total of 15 min (3 s on/off,
power 30%) in a 50 mL centrifuge tube. The cell debris was removed via centrifugation
at 15,000× g and 4 ◦C for 20 min, and the supernatant was filtered through a 0.22 µm
low protein binding filter membrane and purified using a HisTrapTM HP 5 mL affinity
chromatography column (Activa) for soluble recombinant FBA mutants. The column was
washed with a binding buffer, and the protein was eluted with an elution buffer (0.1 M
sodium phosphate buffer, 0.5 M NaCl, 500 mM imidazole, pH 7.4) gradient. The purified
protein was dialyzed against a 0.1 M Tris-HCl buffer (pH 7.4) containing 300 µM ZnCl2.
The purified protein was further characterized via SDS-PAGE using bovine serum albumin
(BSA) standard for quantification.
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Under the action of propanose phosphate isomerase and α-glycerol phosphate dehy-
drogenase, NADH and dihydroxyacetone phosphate are catalyzed to generate NAD+ and
glycerol 3-phosphate. We monitored FBA activity using the coupled enzyme method, which
involved a fructose-1,6-bisphosphate aldolase activity assay kit (Solarbio, Beijing, China)
containing both propanose phosphate isomerase and α-glycerol phosphate dehydrogenase.
The reaction mixture (final volume of 200 µL) containing equal amounts of purified protein
(20 µL) and freshly prepared assay kit reaction mixture (180 µL) was incubated in a 96-well
UV-transparent plate (UV-Star microplate, Greiner Bio-One, Frickenhausen, Germany) at
25 ◦C [39]. The absorbance was continuously read at 340 nm for 5 min using an Infinite
M200 Pro microplate reader (TECAN). The extinction coefficient for NADH at 340 nm was
6.22 mM cm−1 (εM), and the path length (l) in the microplate was 0.5. One unit of enzyme
activity was defined as the amount of enzyme required to consume 2 µmol of NADH per
minute under these conditions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/catal13121457/s1, Figure S1: Learning rate schedules during the
training process; Figure S2: Training process of the selected MDH model; Figure S3: Evaluation
of MDH training process and generated sequences; Figure S4: SDS-PAGE results for expression of
recombinant MDHs; Figure S5: Purification and activity verification of soluble generated MDHs;
Figure S6: Training process of the selected FBA model; Figure S7: SDS-PAGE results for expression of
recombinant FBAs (FBA−1 to FBA−20); Figure S8: SDS-PAGE results for expression of recombinant
reselected FBAs (FBA−21 to FBA−30); Figure S9: The distribution of differential sites in FBA−23
relative to FBA−WT; Table S1: Sequence Length Distribution of Malate Dehydrogenase Dataset;
Table S2: Up-sampling Factor for MDH Dataset; Table S3: Sequence identity, solubility, and activity
information of the selected 20 generated MDHs; Table S4: Sequence alignment results of MDH−8,
MDH−11, and MDH−18 with 13 functional sequences generated by Repecka et al.; Table S5: Up-
sampling Factor for Class II FBA Dataset; Table S6: Sequence Length Distribution of Class II FBA
Dataset; Table S7: Evaluation and comparison of the 12 FBA models using interpolation methods;
Table S8: Sequence identity, solubility, and activity information of the selected 20 generated FBAs;
Table S9: Sequence identity, solubility, and activity information of the 10 reselected FBAs.
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