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Abstract: The last decade has witnessed significant progress in the development of novel synthetic
methods for the preparation of a variety of new functionalized and condensed compounds via
reactions of organic dichalcogenides with acetylenic derivatives. The present review highlights
recent developments in the synthesis of organoselenium compounds based on the reactions of
organic diselenides with acetylenes over the past few years. The discussion mainly focuses on the
literature data for the last 5 years. It is worth noting that the lion’s share of this material is devoted to
catalytic and electrophile-mediated reactions with aromatic compounds, containing a triple bond and
nucleophilic functional groups.

Keywords: acetylenes; annulation; cyclization; iron salts; organic diselenides; Lewis acids; condensed
compounds

1. Introduction

Selenium is identified as an essential micronutrient for mammals, including
humans [1–5]. The discovery of the important physiological role of selenium in the human
body gave a powerful impact to comprehensive studies on the syntheses and properties
of various kinds of organoselenium compounds [6–11]. It is well known that selenium
deficiency in the human body increases the incidence of cardiovascular diseases, cancer,
arthritis, diathesis, and other common pathologies [1–11]. Organoselenium compounds
exhibit various types of biological activity [12–27], including antiviral (anti-HIV and anti-
SARS-CoV-2) [21,22], antibacterial [19,20], antitumor [16–19], and antioxidant glutathione
peroxidase mimetic properties [23–25].

The selenium-containing drug ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)one) ex-
hibits cytoprotective, anti-inflammatory, and glutathione peroxidase-like activities [28–33].
A catalytic mechanistic cycle of ebselen as a glutathione peroxidase-like mimic has been
investigated. This heterocyclic compound, containing a nitrogen–selenium bond, has also
been found to show antiviral properties and inhibit the replication of the SARS-CoV-2 virus
(Figure 1) [32,33]. An important property of ebselen is that it is a non-toxic compound.
Ebselen is the first organoselenium compound that has been investigated in clinical trials
as a glutathione peroxidase mimic and neuroprotective agent [28–33]. Recently, this com-
pound has been used as a therapeutic agent in clinical trials in several areas, including the
treatment of COVID-19, Meniere’s disease, and bipolar disorder [28].

One of most important classes of organoselenium compounds are organic diselenides.
These compounds are most widely used among other organoselenium reagents. Diorganyl
diselenides serve as valuable starting materials for organic synthesis. They are used as
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precursors of both electrophilic and nucleophilic selenium species, which are usually
generated from organic diselenides in situ and involved in various useful transformations.
Along with multifaceted applications in organic synthesis, organic diselenides exhibit
various biological activities, including high glutathione peroxidase mimetic properties
(Figure 1) [29,34–46].
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Figure 1. Examples of organic diselenides with glutathione peroxidase mimetic activity. 
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strated that a number of diaryl diselenides are superior to ebselen in terms of glutathi-
one peroxidase-like mimetic properties (Figure 1) [29]. For example, diphenyl diselenide 
was shown to be twice as active as ebselen [41]. 
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compounds underlies a number of the methods used in industry for the production of 
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Bis(2-anilinocarbonylphenyl) diselenide (Figure 1) was found to be a key intermediate
in the catalytic mechanistic cycle of ebselen as a glutathione peroxidase-like mimic [29].
It has been shown that the presence of a nitrogen–selenium bond is not necessary for the
manifestation of high glutathione peroxidase-like activity. It has been demonstrated that a
number of diaryl diselenides are superior to ebselen in terms of glutathione peroxidase-like
mimetic properties (Figure 1) [29]. For example, diphenyl diselenide was shown to be twice
as active as ebselen [41].

2. The Synthesis of Organoselenium Compounds Based on the Reactions of Organic
Diselenides with Acetylenes

Organic diselenides, in addition to being a source of electrophilic and nucleophilic
selenium species, serve as powerful multifaceted tools in a variety of reactions, primarily
various catalytic reactions with unsaturated and aromatic compounds. The last decade
has witnessed significant progress in the development of new synthetic methods for the
preparation of organoselenium compounds based on reactions of organic diselenides with
unsaturated and aromatic compounds. The present review discusses recent developments
in the synthesis of organoselenium compounds based on the reactions of organic diselenides
with acetylenes over the past few years. It mainly covers literature data for the last five
years. It is worth noting that the lion’s share of this material is devoted to the catalytic
reactions of organic diselenides with acetylenes and with aromatic compounds, containing
a triple bond and functional groups.

Acetylene and its derivatives are well-known versatile intermediates and building
blocks of organic synthesis [47,48]. The Favorsky reaction of acetylenes with carbonyl
compounds underlies a number of the methods used in industry for the production of
valuable reagents and materials [47]. Developing Favorsky’s scientific heritage in the A.
E. Favorsky Irkutsk Institute of Chemistry, important fundamental contributions to the
chemistry of acetylene and its derivatives were made by Trofimov and co-workers [49–56].
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A number of important previous works on this topic deserve to be cited, inclu-
ding interesting articles and reviews on the reactions of organic diselenides with
acetylenes [57–80]. A significant contribution to the research of transition metal-catalyzed reac-
tions of organic diselenides with acetylenes was achieved by Beletskaya and Ananikov [57–63],
Ogawa and Sonoda [64,65], and other scientists. A number of remarkable radical reac-
tions of acetylenes with binary systems containing organic diselenides were developed by
Ogawa [66–68].

The reactions of organic diselenides with acetylenes in the presence of reducing agents
often led to vinylic selenides due to the generation of intermediate organylselenolate an-
ions [69–71]. The base-catalyzed addition of diorganyl diselenides to terminal acetylenes
proceeded in a stereoselective fashion, producing (Z)-1,2-bis(organylselanyl)ethenes [72–74].
Radical and electrophilic additions of organic diselenides to acetylenes, as well as other
catalytic reactions of these reagents, were also reported [75–80].

2.1. Iron-Catalyzed and -Promoted Reactions

In the last few years, much attention has been paid to the reactions of diaryl dis-
elenides with acetylenic compounds promoted by Lewis acids (e.g., salts of iron). The
synthesis of novel organoselenium compounds based on the reactions of diorganyl dise-
lenides with acetylenic compounds in the presence of iron salts has received significant
development, and a number of diorganyl diselenide activation systems have been pro-
posed [81–99]. For example, the diorganyl diselenide/Fe/I2 system was used for the
synthesis of novel N-methyl-3-chalcogeno-indoles via the iron-facilitated iodine-
mediated electrophilic annulation reactions of 2-alkynylaniline derivatives with organic
diselenides [81]. The iron-catalyzed addition of diorganyl diselenides to acetylenes led to
(E)-1,2-bis(organylselanyl)ethenes [82].

The considerable contribution to the development of synthesis of novel organosele-
nium compounds based on iron-salt-promoted reactions of diorganyl diselenides with
acetylenic compounds was made by Zeni and co-workers [82–94]. Inter alia, the synthesis of
3-organoselenylchromenones via the intramolecular 6-endo-dig cyclization of alkynyl aryl
ketone derivatives was developed using a diorganyl diselenide-FeCl3 system [83]. Based
on the iron-promoted cyclization reaction of 1-benzyl-2-alkynylbenzenes with diorganyl
diselenides, the efficient synthesis of 9-(organoselanyl)-5H-benzo[7]annulenes was devel-
oped [84]. The authors emphasized that the mutual action between diorganyl diselenides
and iron(III) chloride was essential in order to achieve the maximal yields of the products.

A number of chromene-fused selenophene derivatives were synthesized by Zeni and
co-workers based on 1,3-diynyl propargyl aryl ethers and dibutyl diselenide (Scheme 1) [90].
This remarkable methodology provides the formation of carbon-carbon, carbon-selenium,
and selenium-carbon bonds in a one-pot protocol, using iron(III) chloride and dibutyl
diselenide as promoters.

This approach was also implemented using propargyl anilines as a substrate, which
made it possible to obtain a number of corresponding functional heterocycles containing
a selenophene ring condensed with tetrahydroquinolines (Scheme 1) [90]. A mechanism
for intramolecular electrophilic addition induced by an electrophilic selenium-containing
intermediate was proposed. It was shown that the reaction proceeded through the ionic
mechanism and did not include radical processes, and both diorganyl diselenide and FeCl3
are necessary for the reaction to occur.

Zeni and co-workers reported an elegant method which made it possible to synthesize
a series of 5-(organochalcogenyl)pyrrolo [1,2-a]quinolines based on N-(ortho-alkynyl)aryl-
pyrroles. The heteroaromatic fragment, N-substituted pyrrole, acts as the electrophilic
reaction center of intramolecular cyclization in this reaction (Scheme 2) [91].
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Scheme 2. The cyclization of N-(ortho-alkynyl)aryl-pyrroles.

The reaction was carried out in methylene chloride at room temperature in a chemose-
lective fashion, giving the target products in up to 91% yields.

In the case of arylacetylenes, containing functional nucleophilic groups in the ortho
position to the ethynyl substituent, the intramolecular cyclization reaction on the aromatic
ring did not proceed, but involved the more active nucleophilic group. Thus, Zeni and
co-workers synthesized a series of isochromene-fused selenophene derivatives based on
the cascade cyclization reaction of ortho-diynyl benzyl chalcogenides as the substrate and a
system of iron(III) chloride and diorganyl dichalcogenides under reflux in dichloroethane
(Scheme 3) [92].

The best reaction conditions were found, which include ortho-diynyl benzyl chalco-
genides (0.25 mmol), iron(III) chloride hexahydrate (2.0 equiv), and diorganyl diselenide
(2 equiv) at the reflux of dichloroethane [92]. These conditions allow for obtaining the
target products in good yields (40–83%).

A system of iron salts and diorganyl diselenides exhibits a dual action, consisting of
both the promotion of the cyclization and the introduction of a new functionalization (the
organylselanyl group) at the 3-position of chalcogenoisochromenes.

It is worth emphasizing that this methodology is highly regioselective and provides
the formation of products exclusively through selective cyclization via a 6-endo-dig mode
followed by a second 5-endo-dig cyclization. The syntheses were implemented as a one-pot
procedure, in which three new carbon-chalcogen bonds were consecutively formed [92].

The treatment of 3-butylselanyl-2-phenylethynylindole with dibutyl diselenide and
iron(III) chloride in methylene chloride at room temperature led to 3-(butylselanyl)selenophene
indole in 68% yield (Scheme 4) [93].
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Scheme 4. The reactivity of dibutyl diselenide and diphenyl diselenide in the cyclization of 3-
butylselanyl-2-alkynylindoles.

It was found that that dibutyl diselenide was superior to diphenyl diselenide in this
reaction and produced the product in higher yield (Scheme 4) [93].

The convenient method for the preparation of 3-butylselanyl-selenophene-condensed
indoles in 55–70% yields from 3-butylselanyl-2-alkynylindoles was developed at room
temperature in methylene chloride using a iron(III) chloride/dibutyl diselenide system,
which efficiently promoted the cyclization and functionalization of this heterocyclic system
(Scheme 5) [93].
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Scheme 5. The FeCl3/dibutyl diselenide-promoted cyclization of 3-butylselanyl-2-alkynylindoles
providing 3-butylselanyl-selenophene-condensed indoles.

The reaction of 2-(butylselanyl)phenylpropynols with the iron(III) chloride/diorganyl
diselenide system was carried out in methylene chloride at room temperature, producing
4-methylene-3-(organoselanyl)-selenochromenes in 25–70% yields (Scheme 6) [94].
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Scheme 6. The synthesis of 4-methylene-3-(organoselanyl)-selenochromenes from 2-(butylselanyl)
phenylpropynols.

The results of the optimization of the reaction conditions showed that the effects of
the solvent, the iron source, and the amount of diorganyl diselenides had a significant
influence on the reaction process and yields of the products. On the basis of these studies,
it was found that the products were formed in the best yields when using iron(III) chloride
(1.5 equiv), diorganyl diselenides (1.0 equiv), and methylene chloride as the solvent, at
room temperature [94].

The authors also found that these reaction conditions were suitable for substrates
bearing electron-withdrawing and electron-donating groups in the aromatic ring at both
the propargyl and alkyne positions [94].

Although the yields of the products obtained in some cases were low, these unusual
transformations are very interesting, and these products, bearing an exo-methylene (as a
part of the butadienyl fragment) and organylselanyl group, can be used as valuable starting
materials in organic synthesis.

The authors indicated that the formation of 4-methylene-3-(organoselanyl)-
selenochromenes was carried out via the regioselective 6-endo-dig cyclization of 2-
(butylselanyl)phenylpropynols promoted by the cooperative action between diorganyl
diselenides and iron(III) chloride [94].

The synthesis of polysubstituted 4H-chalcogenochromenes based on organochalcogenyl
propargyl amines and diaryl diselenides in the presence of Fe3+ salts was developed [95].
The best results were obtained with FeCl3. Nevertheless, the possibility of using Fe(NO3)3
and Fe(acac)3 as catalysts was also shown (Scheme 7).
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Scheme 7. The synthesis of polysubstituted 4H-chalcogenochromenes.

The piperidinyl substituent was found to be the best among the amine moieties when
the effect of the leaving group R in the organoselenium propargylamine was studied [95].
A propargylamine containing the methyl group underwent decomposition when exposed
to iron(III) chloride and no starting material was recovered from this reaction.

The scope of this reaction was also explored [95]. Organoselenium propargylamines
containing electron-donating substituents at the benzene ring (methoxy and methyl groups)
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produced the products in good to excellent yields, whereas the reactions with substrates
bearing electron-withdrawing substituents were sluggish. When a substrate with a strongly
deactivating trifluoromethyl group was used, the expected product was not obtained.

The authors proposed a mechanism based on the tautomeric effect, which explains the
formation of chromene structures containing two organylselanyl substituents (Scheme 8).
The formation of a pseudo-quinoid structure with a main leaving group at the triple bond
leading to a shift in the electrophilic center in the intermediate is important (Scheme 8) [95].
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Very promising results were obtained by Koketsu and co-workers [96]. A remarkable
ensemble of four- and five-cyclic selenophene-condensed, quinoline-based heteroacenes
was synthesized based on iron-promoted intramolecular cascade cyclization reactions
(Scheme 9) [96].
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b]quinolines.

Based on the optimization of the reaction conditions, the authors found that the
process can be efficiently carried out at reflux in methylene chloride by using iron(III)
chloride hexahydrate (2.5 equiv) and dialkyl diselenides (2 equiv) [96]. These conditions
were used for the development of the synthesis of quinoline-based heteroacenes by the



Catalysts 2023, 13, 1369 8 of 29

Fe(III)-promoted linear intramolecular cascade cyclization of 3-(1,3-diynyl) quinolines. The
target selenophene-condensed thieno [2,3-b]quinolines and selenopheno [2,3-b]quinolines
were obtained in 70–88% yields (Scheme 9) [96].

In the case of using similar substrates containing one more acetylenic group (3-(1,3,5-
triynyl) quinolines), the favorable conditions for the preparation of five-cyclic selenophene-
condensed, quinoline-based heteroacenes required an increase in the content of iron(III)
chloride hexahydrate to 3 equivalents and dialkyl diselenides to 2.5 equivalents [96]. Using
this ratio of the reagents, diselenophene-condensed thieno [2,3-b]quinolines and dise-
lenopheno [2,3-b]quinolines were synthesized in 75–84% yields (Scheme 10) [96].
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Scheme 10. The synthesis of diselenophene-condensed thieno[2,3-b]quinolines and diselenopheno
[2,3-b]quinolines.

When the quinoline scaffold of the substrate contained the thiophene ring (the thien-
3-yl substituent) in position 2, selenophene-condensed thieno [2,3-c]acridine and furo
[2,3-c]acridine were successfully obtained in 71–87% yields under similar conditions
(Scheme 11) [96].
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When the quinoline scaffold of the substrate contained the thiophene ring (the thien-3-
yl substituent) in position 2, six-membered selenophene-condensed thieno [2,3-c]acridine
and furo [2,3-c]acridine were successfully obtained in 68–80% yields under similar condi-
tions (Scheme 12) [96].
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[2,3-c]acridine.

Another very interesting work by Koketsu and co-workers described the novel synthesis
of three different heterocycles: 2-arylselenopheno [2,3-b]quinoxaline, 3-(aryl/alkylselanyl)-2-
arylselenopheno [2,3-b]quinoxaline, and 6-phenyl-7-(arylselanyl)selenopheno [2,3-b]pyrazine
derivatives based on 2,3-dichloroquinoxaline and 2,3-dichloropyrazine. The annulation re-
actions of 2-(methylselanyl)-3-(arylethynyl)quinoxaline (Scheme 13) and 2-(methylselanyl)-
3-(arylethynyl) pyrazine (Scheme 14) were carried out in the presence of iron(III) chloride
hexahydrate at reflux in methylene chloride, producing corresponding condensed hetero-
cycles in 57–94% yields and 47–70% yields, respectively [97].
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The photophysical properties of 2-arylselenopheno [2,3-b]quinoxaline, 3-(aryl/alkylselanyl)-
2-arylselenopheno [2,3-b]quinoxaline, and 6-phenyl-7-(arylselanyl)selenopheno [2,3-b]
pyrazine derivatives were investigated to study the effect of heteroatoms on UV absorbance
and fluorescence properties [97].

A new route for the convenient synthesis of a selenophene-condensed quinoline-based
heterocycle was also developed by Koketsu and co-workers [98]. Iron(III) chloride and
dialkyl diselenides generated the intramolecular cascade cyclization of methyl 6-methyl-2-
(phenylbuta-1,3-diyn-1-yl)quinoline-3-carboxylate and other derivatives, which produced
the target selenophene-condensed quinoline-based heterocycle derivatives in up to 78%
yields (Scheme 15) [98].



Catalysts 2023, 13, 1369 10 of 29

Catalysts 2023, 13, x FOR PEER REVIEW 10 of 30 
 

 

 
Scheme 13. The annulation reaction of 2-(methylselanyl)-3-(arylethynyl)quinoxaline. 

N

N Se

+
FeCl3 

. 6H2O (2 equiv)
CH2Cl2, 45 oC, 3_4 h

Ar = Ph, 4-MeC6H4, 4-MeOC6H4, 3-FC6H4, 2-FC6H4

(PhSe)2

Ar
N

N Se

SePh

Ar

(47_70%)
 

Scheme 14. The annulation reaction of 2-(methylselanyl)-3-(arylethynyl) pyrazine. 

The photophysical properties of 2-arylselenopheno [2,3-b]quinoxaline, 
3-(aryl/alkylselanyl)-2-arylselenopheno [2,3-b]quinoxaline, and 
6-phenyl-7-(arylselanyl)selenopheno [2,3-b]pyrazine derivatives were investigated to 
study the effect of heteroatoms on UV absorbance and fluorescence properties [97]. 

A new route for the convenient synthesis of a selenophene-condensed quino-
line-based heterocycle was also developed by Koketsu and co-workers [98]. Iron(III) 
chloride and dialkyl diselenides generated the intramolecular cascade cyclization of 
methyl 6-methyl-2-(phenylbuta-1,3-diyn-1-yl)quinoline-3-carboxylate and other deriva-
tives, which produced the target selenophene-condensed quinoline-based heterocycle 
derivatives in up to 78% yields (Scheme 15) [98]. 

 
Scheme 15. The annulation reaction of methyl 2-(phenylbuta-1,3-diyn-1-yl)quinoline- 
3-carboxylates. 

A novel iron-catalyzed selenocyclization of N-methoxy-2-alkynylbenzamides ena-
bled by visible-light irradiation was developed. Iron tribromide was used as the catalyst 
for the reaction between N-methoxy-2-alkynylbenzamide and diselenides, affording or-
ganylselanyl isocoumarin-1-imines in up to 87% yields (Scheme 16) [99]. 
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A novel iron-catalyzed selenocyclization of N-methoxy-2-alkynylbenzamides enabled
by visible-light irradiation was developed. Iron tribromide was used as the catalyst for the
reaction between N-methoxy-2-alkynylbenzamide and diselenides, affording organylse-
lanyl isocoumarin-1-imines in up to 87% yields (Scheme 16) [99].
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Scheme 16. The annulation reaction of N-methoxy-2-alkynylbenzamide and diselenides, producing
selenated isocoumarin-1-imines.

A wide range of N-methoxy-2-alkynylbenzamides, and both aromatic and aliphatic
diselenides, can serve as useful substrates, with the reaction conditions tolerating various
functional groups (Scheme 16) [99].

Using this approach, several selenium-containing seven- and eight-membered-ring
heterocycles were also synthesized [99].
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2.2. Transition Metal-Catalyzed Reactions

The efficient synthesis of bis- and tris-selanyl alkenes based on alkynyl carboxylic
acids and organic diselenides was developed. The reaction of alkynyl carboxylic acids with
diaryl diselenides in a mixture of CuI, Cs2CO3, and toluene under white-light LEDs at
120 ◦C produced bis-selanyl alkenes in 65–86% yields (Scheme 17), whereas tris-selanyl
alkenes were obtained in the CuI/Cs2CO3/N-methyl-2-pyrrolidone system at 120 ◦C in
72–86% yields (Scheme 17) [100].
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Scheme 17. The reaction of alkynyl carboxylic acids with diaryl diselenides in the presence of
CuI/Cs2CO3/toluene under white-light LEDs.

It is known that N-methyl-2-pyrrolidone is an aprotic bipolar solvent which accelerates
the nucleophilic and some other reactions.

Copper(I) iodide and diorganyl dichalcogenides were found to be valuable cyclization
promoters of propargylpyridines in preparing 2-(organochalcogenyl)-indolizines in up to
80% yields (Scheme 18) [101].
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Scheme 18. The synthesis of 3-aryl-2-(arylselanyl)indolizin-1-yl acetates.

The obtained results pointed out that the mutual action between copper(I) iodide and
diorganyl dichalcogenides is essential for the formation of indolizines in good yields and
avoiding the undesirable formation of hydrogenated indolizine. The standard reaction
conditions were compatible with many functional groups in the substrates, such as methyl,
chlorine, fluorine, methoxy, and trifluoromethyl moieties. It is worth noting that this
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methodology (Scheme 18) was efficient with diorganyl diselenides and ditellurides, but
ineffective with diorganyl disulfides [101].

An efficient method for the preparation of functionalized indolizinone heterocycles
based on the copper-catalyzed cascade reaction of pyridine, isoquinoline, and quinoline
ynones in the system CuI/Na2CO3/NMP was developed (Scheme 19) [102]. The reaction
occurred via 5-exo-dig cyclization.
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Scheme 19. Copper(I)-catalyzed diorganoselanyl-substituted indolizinone synthesis from substituted
pyridine homologated ynones.

The obtained substituted indolizinones were involved in the reduction reaction. These
compounds were converted into 1-(organylchalcogenyl)indolizin-2-ols, which are impor-
tant building blocks in organic synthesis.

The cascade annulation reaction of terminal alkynyl amides with organic diselenides,
leading to the construction of 3-arylselenenyl spiro [4.5]trienones, was realized under mild
conditions (reflux in acetonitrile) with Selectfluor as the sole oxidant. 3,4-Bis(arylselanyl)
spiro [4.5]trienones were synthesized by a cascade annulation reaction using copper bro-
mide as a catalyst (Scheme 20) [103].
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A gold-catalyzed reaction of aryl diselenides with alkynes and allenes was stud-
ied. The reactions with alkynes gave (E)-1,2-bis(arylselanyl)ethenes in up to 98% yields
(Scheme 21). Excellent regio- and stereoselectivity (the formation of trans-adducts), as well
as good to excellent yields, were achieved with a wide range of substrates and 2% catalyst
loading [104].
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Scheme 21. The gold-catalyzed reaction of aryl diselenides with alkynes.

Based on the investigation of reaction mechanisms, the authors revealed the for-
mation of a vinyl gold(I) intermediate followed by an intermolecular selenium cation
migration [104].

The gold-catalyzed reaction of aryl diselenides with allenes produced corresponding
vinyl selenides in 40–94% yields (Scheme 22).

The reactions of the dithyilation and diselenylation of unsaturated compounds pro-
moted by hexafluoroisopropanol (HFIP) were studied. The reactions of disulfides or
diselenides with unactivated alkyne, alkene, and allene in HFIP led to corresponding
1,2-bis(organylchalcogenyl)ethenes, 1,2-bis(organylchalcogenyl)ethanes, and vinyl chalco-
genides, respectively, in good to excellent yields (up to 96%). In contrast, other solvents,
such as isopropanol and dichloroethane, could not promote the same reaction. These results
exhibit examples of interesting HFIP-promoted transformations under mild conditions,
which demonstrated the high reactivity and unique properties of this special solvent [105].

An interesting electrochemical approach for the oxidative generation of benzyne and
its successful involvement in the reaction with diphenyl diselenide was recently described
(Scheme 23) [106].
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Scheme 23. The electrochemical approach for the oxidative generation of benzyne and its reaction
with diphenyl diselenide.

A very promising area of research is the development and application of nickel-based
metal–organic frameworks as catalysts for the addition reactions of organic dichalco-
genides [63].

2.3. Radical and Electrochemical Reactions

The oxidative difunctionalization of aryl alkynoates, providing stereodefined fully
substituted α,β-unsaturated acids bearing a chalcogen functionality in high yields (up to
95%), was developed (Scheme 24) [107]. This radical-based cascade reaction was carried
out at room temperature in the presence of tert-butyl hydroperoxide (TBHP) and studied
with the use of devices.

This methodology can be used in the synthesis of vinyl selenides and 1,1-dichalcogenyl
olefins [107,108].

The synthesis of 1,1-diselanyl alkene derivatives and selenium-containing α,β-
unsaturated carboxylic acid was achieved by a visible-light-induced selenium radical-
mediated domino reaction of aryl alkynoates with organic diselenides (Scheme 25) [109].
The process is mild, metal-free, easy to handle, and scalable.
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Chalcogenated quinoxalines were prepared via efficient photoinduced cyclization 
reactions of o-diisocyanoarenes with organic diselenides or thiols. The cyclization reac-
tion with organic diselenides is believed to proceed via radical mechanisms. The devel-
oped methodology can be used to obtain a library of organylselanyl-substituted quinox-

Scheme 25. The synthesis of 1,1-diselenide alkene derivatives and selenium-containing α,β-
unsaturated carboxylic acids.

A simple and direct method for synthesizing 3-arylselanyl benzothiophenes was
developed [110]. The reaction did not require any catalysts or additives, and the desired
products were obtained under mild visible-light irradiation (5 W). This method provides a
valuable alternative for the synthesis of 3-arylselanyl benzochalcogenophenes, which are
important scaffolds of various bioactive compounds (Scheme 26) [110].
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Scheme 26. The synthesis of 3-arylselanyl benzochalcogenophenes. 

Chalcogenated quinoxalines were prepared via efficient photoinduced cyclization 
reactions of o-diisocyanoarenes with organic diselenides or thiols. The cyclization reac-
tion with organic diselenides is believed to proceed via radical mechanisms. The devel-
oped methodology can be used to obtain a library of organylselanyl-substituted quinox-

Scheme 26. The synthesis of 3-arylselanyl benzochalcogenophenes.

Chalcogenated quinoxalines were prepared via efficient photoinduced cyclization reac-
tions of o-diisocyanoarenes with organic diselenides or thiols. The cyclization reaction with
organic diselenides is believed to proceed via radical mechanisms. The developed method-
ology can be used to obtain a library of organylselanyl-substituted quinoxalines, which are
known to be potential oxidants with promising biological activity (Scheme 27) [111].
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zo[b]furans derivatives from available starting materials [112]. The possibility of using 
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(Scheme 29) [113]. 

Scheme 27. The synthesis of organylselanyl-substituted quinoxalines.

A series of electrochemical methods, including the direct electrooxidative selenyla-
tion/cyclization of alkynes [112] and the versatile electrochemical synthesis of selenyl-
benzo[b]furan derivatives [113], were developed.

An efficient electrochemical protocol for the formation of valuable organylselenylated
benzo[b]furan derivatives via the cyclization of 2-alkynylanisoles through an electrooxida-
tive process was developed. Various 3-substituted benzofurans were obtained in good to
excellent yields under metal- and oxidant-free mild reaction conditions (Scheme 28) [112].
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This approach exhibited good functional group tolerance and could be easily scaled
up with good efficiency, providing access to a diverse range of selenylated benzo[b]furans
derivatives from available starting materials [112]. The possibility of using this method-
ology for a gram scale procedure was shown and a conceivable reaction mechanism was
proposed.

An efficient regioselective electrochemical synthesis of 3-(organylselanyl) benzo[b]furan
derivatives was achieved based on the cyclization of 2-alkynylphenols (Scheme 29) [113].
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2-alkynylphenols.

This procedure, driven by galvanostatic electrolysis using platinum electrodes assem-
bled in an undivided cell, provided efficient transformation under oxidant-free, base-free,
and transition metal-free conditions at room temperature. The method proved to be reliable
and can be applied to gram scales. In addition, the wide applicability of this method was
noted, since it can be used in the synthesis of 2,3-bis(organochalcogenyl)benzo[b]chalcogeno
phenes [113].

An intermolecular selenoamination reaction of alkynes with diphenyl diselenide and
N-fluorobenzenesulfonimide (NFSI) proceeded in a regio- and stereoselective fashion and
produced vinyl selenides, containing the benzenesulfonamide group, in 62–99% yields
(Scheme 30) [114].
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N-Fluorobenzenesulfonimide played the role of both the oxidant and the amination
reagent. The reaction features mild conditions, selectivity, high yields of the products, and
a broad substrate scope (Scheme 30) [114].

Mechanistic studies indicate that the in situ generated chalcogen imidates are the real
reactive species, which clarified the mechanisms of related transformations [114]. These
reactions represent a significant contribution to the development of the highly selective
amino bisfunctionalization of alkynes.

The combination of organic diselenides with N-fluorobenzenesulfonimide made it
possible to carry out a smooth decarboxylative tri- or tetrafunctionalization reaction of
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alkynylcarboxylic acids under catalyst-free conditions at room temperature. A number of
diseleno-substituted enamine derivatives were efficiently prepared in good to excellent
yields (Scheme 31) [115].
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This methodology offers a useful strategy for the simultaneous creation of one C–N
bond and two or three C–Se bonds, and may be of practical value. The reaction opens up a
new and simple way with which to obtain enamine derivatives containing two or three
organylselanyl substituents [115].

2.4. Reactions with the Use of Oxone® and Iodine

A variety of efficient and very promising synthetic methods with the use of Oxone®

were recently developed [116–124]. Oxone® is a commercially available reagent, consisting
of 2KHSO5, KHSO4, and K2SO4. This triple salt contains 50% (mol) of the active oxidant
potassium peroxymonosulfate (KHSO5) and can be used in various oxidation reactions,
including oxidations of functional groups.

In the past few years, the use of Oxone® (potassium peroxymonosulfate) as an ox-
idizing agent and promoter of some reactions in organic synthesis has significantly in-
creased [116]. This cheap and environmentally friendly reagent is an important alternative
to many other commercially available oxidizing agents due to its useful chemical prop-
erties, availability, non-toxicity, and ease of handling. Over the past few decades, this
green oxidative reagent has become a powerful tool in organic synthesis [116]. Recently,
potassium peroxymonosulfate was successfully used in a number of promising transforma-
tions with the formation of valuable organoselenium compounds including heterocyclic
products [118–128].

A review summarizing advances in the Oxone®-mediated synthesis of N-, O-, and
chalcogen-containing heterocyclic compounds was recently published by Lenardão, Perin,
and co-workers [116]. Various reactions starting from several types of substrates were
discussed in this review, highlighting major synthetic differences, advantages, applications,
and limitations. Some works using organic diselenides as substrates are included in the
published review and therefore are not discussed in the present survey.

An important example is the selective synthesis of a number of new benzo[b]chalcogeno
phenes (chalcogens are oxygen, sulfur, and selenium) via the reaction of diorganyl dise-
lenides with 2-organylchalcogenyl-functionalized chalcogenoalkynes promoted by Oxone®

under reflux in ethanol (Scheme 32) [124].
The environmentally friendly synthesis, mild reaction conditions, efficacy, and gener-

ality of the reaction are important features of this new approach.
The obtained compound, 2-(butylselanyl)-3-(phenylselanyl)benzofuran, was involved

in the Pd-catalyzed reaction with phenylacetylene to produce Sonogashira’s coupling
product in 50% yield [124].

Perin, Lenardão, and co-workers reported a new method for the preparation of 4-
organylselanyl-1H-isochromen-1-ones in 82–95% yields from 2-alkynylaryl esters and
diorganyl diselenides (Scheme 33) [125].
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Scheme 33. The Oxone®-promoted synthesis of 4-organylselanyl-1H-isochromen-1-ones from 2-
alkynylaryl esters and diorganyl diselenides.

The reactions with the diselenides were carried out under mild conditions in ethanol,
using Oxone® as a green oxidant under microwave irradiation. Organic ditellurides were
also involved in the similar reaction in glycerol to produce 4-organylchalcogenyl-1H-
isochromen-1-ones in 78–90% yields [125].

The possible mechanism of the reaction with diorganyl diselenides in a simplified
form is shown in Scheme 34 [125]. The reactions proceeded via the 6-endo-dig electrophilic
cyclization of 2-alkynyl aryl esters and diorganyl diselenide or ditelluride promoted by
Oxone®. The main role of Oxone® is to generate electrophilic species in situ from diorganyl
diselenides via the oxidative cleavage of the chalcogen−chalcogen bond. These electrophilic
species react with 2-alkynylaryl esters to form selenirenium intermediates followed by an
intramolecular nucleophilic attack of the carbonyl group at the selenirenium cation. In the
last step, the substitution of the methyl group occurs to produce the target products [125].
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example of the synthesis of isochromenethione analogues via the thionation reaction of 

Scheme 34. The proposed mechanism for the formation of 4-organylselanyl-1H-isochromen-1-ones.

Additionally, taking into account the importance of selenophene derivatives in material
sciences and biochemistry, this protocol was used to the synthesis of novel isochromenones
condensed to selenophenes via the Oxone®-promoted reaction of methyl 2-(4-phenylbuta-
1,3-diyn-1-yl)phenyl ester and methyl 2-(octa-1,3-diyn-1-yl)phenyl ester with diorganyl
diselenides (Scheme 35) [120].
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2-(1,3-diynyl)aryl esters and diorganyl diselenides.

Finally, the synthetic potential of this class of compounds was demonstrated by the
example of the synthesis of isochromenethione analogues via the thionation reaction of the
products obtained with Lawesson’s reagent under microwave irradiation and solvent-free
conditions.

Perin, Lenardão, and co-workers developed a transition metal-free method for the
synthesis of 3,4-bis(butylselanyl)selenophenes via the electrophilic cyclization of 1,3-diynes
with dibutyl diselenide using Oxone® as a green oxidant and acetonitrile as the solvent
(Scheme 36) [126].
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The synthesis of 3-(butylselanyl)-4-alkoxyselenophenes was developed for the first
time starting from several 1,3-diynes and dibutyl diselenide (Scheme 36) [126]. The reaction
was carried out in the presence of Oxone® using aliphatic alcohols as the solvent and
nucleophilic reagents.

The reaction path included the 5-endo-dig electrophilic cyclization of 1,3-diynes pro-
moted by electrophilic organoselenium species, generated in situ through the oxidative
cleavage of the selenium-selenium bond of dibutyl diselenide by Oxone® as a green oxidant.
This protocol was found to be sensitive to the electronic effect in the 1,3-diynes, as well as
to the steric effects of the alkyl chain of the alcohols [126].

Lenardão, Perin, and co-workers recently reported very promising metal-free meth-
ods for the preparation of organylselanyl-functionalized dibenzocycloheptenones and
selenospiro [5.5]trienones (Scheme 37) based on the radical cyclization of biaryl ethynyl
ketones in the presence of diorganyl diselenides and Oxone® as an oxidizing agent [127].

These reactions were promoted by radical organoselenium species generated in situ
from diorganyl dichalcogenides under the action of Oxone®. The processes were carried
out in acetonitrile as the solvent in a sealed tube at 100 ◦C [127].

The reactions showed high regioselectivity and made it possible to synthesize
24 products in up to 99% yields. Additional synthetic transformations such as oxidation
and reduction reactions were realized [127]. The developed method opened up opportu-
nities to study the chemical and pharmacological properties of these new molecules. The
deselenization of the prepared compounds can also lead to compounds with biological
activity.

Very interesting regiodivergent syntheses of diversely functionalized azaspiro [4,5]tetrae
nones (26–92% yields, Scheme 38) and quinolines (38–99% yields, Scheme 39) via the radical
cyclization reaction of trifluoromethyl propargyl imines with organic diselenides under the
action of Oxone® were recently developed [128]. In the case of the preparation of azaspiro
[4,5]tetraenones, the starting substrates contained a strong electron-donating 4-methoxy
substituent (Scheme 38).
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The method provided the dual incorporation of both selenium and trifluoromethyl
groups into heterocyclic molecules via a one-pot procedure. The synthetic utility of this
method was shown by a scale-up reaction and the further modification of the obtained
products [128].

An example of an iodo-promoted reaction is the synthesis of 3-iodo-selenophene-
condensed indole and 3-butylseleno-selenonophene-condensed indole from 2-phenylethyny
lindole and dibutyl diselenide (Scheme 40). The formation of the former product was
achieved via the selenation of the 3-position of indoles, followed by an iodine elec-
trophilic cyclization, whereas the latter product was formed via the selenation of 2-
alkynylindole with the subsequent electrophilic cyclization with BuSeI acting as the elec-
trophilic source [93].
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The synthesis of 3-iodo-selenophene-condensed indoles in 39–89% yields via the
intramolecular electrophilic cyclization of 3-organoselanyl-2-alkynylindoles was also devel-
oped (Scheme 41) [93].
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On the basis of the studies undertaken, the authors found the optimal conditions for
the preparation of 3-iodochalcogenophene-fused indoles, which include the addition of
iodine (I2, 1.1 equiv) to a solution of 3-butylselanyl-2-alkynylindole (0.25 mmol) in THF at
room temperature [93].

This method was extended to the synthesis of 3-iodo-thiophene-condensed indoles
in a one-pot procedure consisting of the iodine-promoted thiolation of 2-alkynylindoles,
followed by the electrophilic cyclization reaction [93].

Based on the results of additional experiments, a plausible mechanism of the reaction
was proposed. The reaction was assumed to proceed through the formation of an iodonium
ion, followed by a selenium 5-endo-dig cyclization to lead to the target products [93].

The 3-iodo-selenonophene-condensed indoles obtained were involved as substrates in
copper-catalyzed cross-coupling reactions with thiols to produce 3-arylsulfanyl-selenophene-
condensed indoles in good yields [93].

3. Conclusions

Significant progress in the synthesis of organoselenium compounds based on the
reactions of diorganyl diselenides with acetylenes was achieved in the past few years. A
number of remarkable interesting reactions and very promising results in this area have



Catalysts 2023, 13, 1369 24 of 29

been developed by Zeni, Lenardão, Perin, Ogawa, Koketsu, and other scientists. Depending
on the structures of substrates, the reaction conditions, the substituents in substrates and
diselenides, and the nature of heteroatoms, the reactions of organic diselenides with
acetylenic compounds can lead to diverse products.

This very promising area of research is based on iron-catalyzed and -promoted reac-
tions, which produce a variety of valuable products. These reactions are simple to run,
occur under mild conditions (often at room temperature), and usually have a wide scope.
Among the synthetic methods discussed, there are a number of excellent examples of
reactions that are carried out under mild and environmentally friendly conditions in a
very selective fashion, producing the target products in high yields. Dibutyl diselenide
often outperformed diphenyl diselenide in these reactions, producing the products in
higher yields.

Examples of efficient reactions proceeding with substrates bearing both electron-
donating and electron-withdrawing groups in the aromatic ring were reported [94]; how-
ever, in the case of organoselenium propargylamines with electron-withdrawing sub-
stituents at the benzene ring, the reaction was sluggish [95]. When this substrate contained
a strongly deactivating trifluoromethyl group, the expected product was not obtained.

The studies on reactions with the use of Oxone® have also made great achievements
in the last decade. The Oxone®-promoted reactions are very efficient and usually have a
wide scope. It is important that iron salts as well as Oxone®, which are used as catalysts or
promoters, are readily available reagents.

A very promising reagent is N-fluorobenzenesulfonimide, which plays the role of
being both an oxidant and amination reagent. The reactions with this reagent are charac-
terized by mild conditions, selectivity, high yields of the products, and a broad substrate
scope [114].

In the future, this area can expect to discover new remarkable reactions and develop
novel functionalized and condensed compounds.
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