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Water is the source of life on Earth. Sustainable society development heavily relies on
a healthy water ecosystem. However, fast urbanization, industrialization and the extensive
use of chemical fertilizers, pesticides and other synthetic chemicals have posed great threats
to clean water systems by discharging large amounts of non-biodegradable wastewater.
Increasing public attention to water crises and the emission of pollutants has driven a huge
motivation to develop advanced catalytic technologies in recent decades. Among various
water technologies, catalytic transformation with novel materials offers the opportunity to
efficiently detoxify and remove pollutants for deep water purification. In this account, we
organized this Special Issue with the aim of providing new findings in areas of designing
novel advanced catalysts, developing new catalytic processes, recycling raw materials, etc.,
for water and wastewater treatment.

In total, there are 22 articles published in this Special Issue, including 20 experimental
research articles and 2 review articles. Six of them focus on photocatalytic materials
and processes. Xu et al. studied the photocatalytic degradation of tetracycline under
visible light irradiation with dual Z-scheme CuBi2O4/Bi2Sn2O7/Sn3O4 photocatalysts, and
found that the construction of the Z-scheme heterojunction could effectively promote the
separation and migration of photogenerated carriers [1]. Peng et al. prepared a Mn-Co-
MCM-41 molecular sieve using a thermo-sensitive template, and showed good catalytic
performance on the degradation of RhB [2]. Hou et al. reported the Fenton-like degradation
of tetracycline with a Co-CNK-OH photocatalyst, and revealed that Co(III)/Co(II) redox
was able to accelerate the generation of 1O2, ·O2

− and h+ in the reaction system [3]. Qiu et al.
found that carbon quantum dot modification could enhance the photocatalytic activity of
ZnIn2S4 nanoflowers for chlorophenol degradation [4]. Du et al. made a high-energy TiO2
nano photocatalyst with co-exposed {001} and {120} facets, and verified that the anatase
structure, particle size and surface area and exposed facets of the nanocrystal all contributed
to its photocatalytic performance [5]. Zhao et al. fabricated a core–shell ZnO-C/MnO2
material with an all-solid state Z-scheme heterojunction structure and a high photocatalytic
reactivity [6].

Moreover, eleven papers seek to provide more insightful results in the field of Fenton-
like advanced oxidation. Yang et al. discovered that reducing sulfur species includ-
ing SO3

2−, HSO3
−, S2− and HS− could significantly accelerate the Fe(III)/Fe(II) cycle in

Fe(III)/PS systems even at a low concentration [7]. Wang et al. investigated the treatment
of coking wastewater via the α-MnO2/PMS process, and found that this catalytic treatment
can significantly improve the biodegradability of wastewater [8]. Tian et al. reported large-
scale synthesis of iron ore and biomass-derived biochar to activate the persulfate oxidation
of tetracycline hydrochloride [9]. Additionally, Qi et al. constructed a Bi2WO6/PMS system
where carbamazepine could be efficiently degraded with the assistance of visible light
irradiation [10]. Li et al. proved a synergistic effect between nickel ferrite and microwaves
in activating persulfate for organic pollutants’ degradation [11]. Also, the influence of some
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ionic components on the performance of Fenton-like processes was studied. Tang et al.
demonstrated the adverse effects of sulfate on brilliant red oxidation by Fe2+-activated
persulfate, and indicated that this negative influence could be counteracted either via batch
addition of ferrous or by adding Ba2+ to remove SO4

2− in the system [12]. On the contrary,
Feng and Li discovered that chloride could enhance the removal of ammonia nitrogen and
organic matter from landfill leachate in a microwave/peroxymonosulfate system [13]. In
addition to persulfate or peroxymonosulfate, He et al. found that sludge biochar obtained
at an increased pyrolysis temperature was able to activate periodate and degrade sul-
famethoxazole through an electron-mediated transfer mechanism [14]. Ling et al. validated
the effectiveness of S-nZVI/H2O2 Fenton-like systems toward the synchronous removal
of Cr(VI) and bisphenol A [15]. Furthermore, Sun et al. [16] and Li et al. [17] summarized
the recent research progress in a persulfate-based advanced oxidation system. The authors
included discussions regarding the electrochemical-assisted and metal catalytic activation
of persulfate, mechanisms, types of catalysis reactions, as well as future directions.

Additionally, some interesting results in the area of catalytic reduction and adsorp-
tion were also achieved. Anum et al. synthesized bimetallic sulfides/MOF-5@graphene
oxides, which can quickly eliminate hazardous moxifloxacin [18]. Liao et al. found that
FeMgAl/MoS4 LDH could remove Se(IV) and Se(VI) in high capacities of 483.9 mg/g
and 167.2 mg/g, respectively, and the existence of Fe in LDH layers obviously enhances
the removal process [19]. Elmansouri et al. developed an almond shell material which
can economically and effectively remove urban wastewater pollutants [20]. Huang et al.
modified SBA-15 with dithiocarbamate chitosan and achieved a significant improvement
in the catalytic removal of vanadium [21]. Demirci et al. functionalized magnetic γ-Fe2O3
with leucyl-glycine and then coated it with polydioxanone to form novel γ-Fe2O3-CA-Leu-
Gly-PDX nanoparticles, which showed excellent antifouling properties when being used to
modify a polyethersulphone membrane [22].

Finally, I would like to thank all the authors for their interesting contributions, the
reviewers for their precious remarks and also the Editorial Office for their constant support
of this Special Issue.
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