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Abstract: A novel catalytic system for homocoupling terminal acetylenes was elaborated based on
CuCl as a catalyst (10 mol%), TMEDA as a base and CCl4 as an oxidant. The influence of the solvent,
base, amount of catalyst and CCl4 on the reaction was investigated. Methanol was found to be the
solvent of choice. The broad synthetic scope of the reaction was demonstrated. Diynes with various
substituents were prepared in up to 92% yields. The possible reaction mechanism is discussed.

Keywords: tetrachloromethane; acetylene; oxidative homocoupling; diyne; copper

1. Introduction

Several years ago, a novel catalytic olefination reaction of carbonyl compounds (COR)
was discovered in our laboratory [1,2]. It was found that N-unsubstituted hydrazones of
carbonyl compounds transform into alkenes under treatment of polyhaloalkanes (PHA) in
the presence of a base (ammonia, ethylenediamine, triethylamine) and catalytic amounts
of copper salts. The reaction is accompanied by the evolution of nitrogen, and azines
are formed as the only by-products (Scheme 1). The reaction has a broad synthetic scope
and allows the synthesis of alkenes containing various halogens and functional groups in
yields of up to 90–95% [3–6]. It is worth noting the high stereoselectivity of the reaction;
in some cases, the ratio of diastereoisomers reaches 21:1 [7] (Figure 1). The use of freons
as olefinating reagents allows the synthesis of fluorine-containing alkenes, convenient
building blocks for the synthesis of more complex fluorinated compounds with important
practical applications [8–12].

It was found that the PHA-nitrogen base-copper salt system also works for the trans-
formation of a number of other types of hydrazones. In particular, the application of this
system made it possible to oxidize isatin hydrazones to the corresponding diazoketones [13].
It was also found that N-substituted hydrazones can be converted into the corresponding
halogenated azabutadienes [14] (Figure 1).

Conjugated diynes are under intensive investigations due to their unique proper-
ties [15–18]. They are valuable materials for various synthetic transformations [19,20].
In particular, they have found application in the preparation of natural products [21,22],
pharmaceuticals [23], π-conjugated acetylene polymers [24,25], modern construction mate-
rials [26,27], heterocyclic compounds [28], electronic and optical materials [29,30]. Conju-
gated 1,3-diynes also possess biological activity [21], showing antifungal [31], antibacte-
rial [32], anti-inflammatory [33], anti-HIV [34] and anticancer properties [35].
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Scheme 1. Screening of the conditions for the dimerization of phenylacetylene. 

The most efficient method for the synthesis of conjugated diynes is the oxidative 
dimerization of terminal acetylenes, which is known as the Glaser reaction [15,36–38]. The 
original Glaser reaction used equivalent amounts of copper salts, ammonia (Glaiser [39]) 
or pyridine (Eglinton [40,41]) as the bases. Later, catalytic variants using various copper 
salts and ligands were also successfully developed. In particular, Hay proposed the O2-
TMEDA-CuCl system, which allows dimerization of terminal acetylenes using catalytic 
amounts of copper salts [42,43]. This catalytic system has become a very popular system 
for the dimerization of terminal alkynes [44]. Nevertheless, the search for novel conditions 
for the Glaser reaction is still an ongoing process. For example, a cooperative behavior of 
nickel [45–48], iron [49] and palladium [50–53] based catalysts has been reported for 
copper-catalyzed alkyne coupling. Heterogeneous catalysis has also been used for this 

Scheme 1. Screening of the conditions for the dimerization of phenylacetylene.

Catalysts 2023, 13, x FOR PEER REVIEW 2 of 14 
 

 

 
Figure 1. The use of the PHA-nitrogen base-CuCl system in the organic synthesis. 

 
Scheme 1. Screening of the conditions for the dimerization of phenylacetylene. 

The most efficient method for the synthesis of conjugated diynes is the oxidative 
dimerization of terminal acetylenes, which is known as the Glaser reaction [15,36–38]. The 
original Glaser reaction used equivalent amounts of copper salts, ammonia (Glaiser [39]) 
or pyridine (Eglinton [40,41]) as the bases. Later, catalytic variants using various copper 
salts and ligands were also successfully developed. In particular, Hay proposed the O2-
TMEDA-CuCl system, which allows dimerization of terminal acetylenes using catalytic 
amounts of copper salts [42,43]. This catalytic system has become a very popular system 
for the dimerization of terminal alkynes [44]. Nevertheless, the search for novel conditions 
for the Glaser reaction is still an ongoing process. For example, a cooperative behavior of 
nickel [45–48], iron [49] and palladium [50–53] based catalysts has been reported for 
copper-catalyzed alkyne coupling. Heterogeneous catalysis has also been used for this 

Figure 1. The use of the PHA-nitrogen base-CuCl system in the organic synthesis.

The most efficient method for the synthesis of conjugated diynes is the oxidative dimer-
ization of terminal acetylenes, which is known as the Glaser reaction [15,36–38]. The original
Glaser reaction used equivalent amounts of copper salts, ammonia (Glaiser [39]) or pyridine
(Eglinton [40,41]) as the bases. Later, catalytic variants using various copper salts and lig-
ands were also successfully developed. In particular, Hay proposed the O2-TMEDA-CuCl
system, which allows dimerization of terminal acetylenes using catalytic amounts of copper
salts [42,43]. This catalytic system has become a very popular system for the dimerization of
terminal alkynes [44]. Nevertheless, the search for novel conditions for the Glaser reaction is
still an ongoing process. For example, a cooperative behavior of nickel [45–48], iron [49] and
palladium [50–53] based catalysts has been reported for copper-catalyzed alkyne coupling.
Heterogeneous catalysis has also been used for this aim. For example, copper hydroxide
on TiO2 [54], cuprous chloride-doped zeolites [55–57], silica-supported Cu(II)-hydrazone
coordination compounds [58], Cu3(BTC)2 metal organic framework [59] and even naturally
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occurring copper-containing minerals, chalcocite (Cu2S) and bornite (Cu5FeS4) [60], have
demonstrated high efficiency as catalysts for terminal alkyne coupling. The reaction was also
performed in supercritical fluids [61,62], water [63,64], ionic liquids [65,66] and solvent-free
conditions [67,68] and under photocatalysis [69]. However, no other oxidants instead of
O2 were found in the literature. In our opinion, the use of other oxidants and performing
the reaction in homogeneous conditions could be very attractive. It should be noted that
oxidant-TMEDA-Cu systems are of great interest for the modern methodology of oxida-
tions. Thus, these systems were employed for the synthesis of hydrazine compounds from
secondary anilines via the oxidative formation of a N−N bond [70] and for the oxidation of
primary alcohols into aldehydes [71,72]. This study is devoted to the investigation of the
dimerization of terminal acetylenes using the CCl4-TMEDA-CuCl system.

2. Results

The study of the reaction mechanism of the catalytic olefination reaction showed that
the reaction starts with the oxidation of copper (I) chloride with a polyhaloalkane in the
presence of a nitrogen-containing ligand to form a complex of copper (II) chloride and a
polyhalogenated alkyl radical. The regeneration of copper (I) proceeds under the action of
either hydrazone or the addition of products of polyhaloalkyl radicals to hydrazone [73].
Thus, the PHA-nitrogen base-CuCl system works as an oxidizing agent. As a part of the
further study of the synthetic possibilities of this system, we decided to study it for the
dimerization of terminal acetylenes. TMEDA was chosen as a base and carbon tetrachloride
as an oxidant. First, we investigated the influence of the nature of the solvent on the
course of the reaction. The reaction was carried out at room temperature using 10 mol%
of CuCl. We found that under the action of the CCl4-TMEDA-CuCl system, the model
substrate (phenylacetylene) was successfully dimerized to 1,3-diyne 2a (Scheme 1). The
reaction proceeds both in polar aprotic solvents and in alcohols. The best reaction yields
(90–92%) were achieved in ethanol and methanol. In contrast, the yields in coordinating
solvents (MeCN, THF and DMSO) did not exceed 63% due to possible poisoning of the
catalytic system. Next, we studied an effect of the amount of catalyst on the reaction
outcome. It turned out that the reaction proceeds even with 1 mol% of CuCl; however,
in this case, the conversion time of phenylacetylene increases to about 2 days, and the
yield of target 1,3-diyne 2a decreases to 51%. The use of a 10 mol% catalyst turned out
to be optimal, since in this case the highest yield of 1,3-diyne 2a was observed. It should
be noted that the reaction does not take place without CuCl (Scheme 1). We also tested
several other nitrogen-containing bases in the reaction. In the case of ethylenediamine,
triethylamine and ammonia, the yield dropped to 4% due to massive tarring of the reaction
mixture. It was reported that TMEDA (which is the bidentate tertiary amine ligand)
provides enhanced solubility to the reactive copper intermediate [44]. We believe that it is a
reason for such a dramatic difference in efficiency between TMEDA and other investigated
nitrogen-containing bases. Indeed, TMEDA works effectively as both a base and a ligand
for the coordination with copper.

Next, we performed a series of experiments using various amounts of CCl4. We found
that the reaction proceeds in high yield (76%) even with one equivalent of CCl4. The yield
of diyne 2a increases until the amount of PHA increases to 2–2.5 equiv., after which it
remains constant. As a proof of principle, we tested several other PHAs. It was found that
CFBr3, CF3CCl3, CBrCl3 and CBr4 are also suitable for the dimerization of alkynes to afford
diyne 2a in 78–94% yields. However, using CCl4 is preferable because of its very affordable
price. Concluding this part of the investigation, we found that the optimal condition for
the reaction is to perform it in methanol with TMEDA as a base, using 2.5 equivalents of
carbon tetrachloride and 10 mol% of CuCl.

Having found the optimal conditions for the dimerization of phenylacetylene, we
carried out a series of reactions with a number of other terminal arylacetylenes. We found
that the reaction proceeds in high yield for acetylenes bearing both acceptor and donor
substituents at the aromatic ring (Scheme 2). Sterically hindered 2-methoxyphenylacetylene
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was also successfully involved in the reaction. The corresponding 1,3-diyne 2g was obtained
in a 76% yield. We found that this catalytic system also works well for the dimerization of
alkylacetylenes. Thus, 1,3-diyne 2i was obtained in a good yield from dec-1-yne. Phenyl-
propargyl ethers were also successfully involved in the reaction to give the corresponding
1,3-diynes 2j,2k in a high yield (Scheme 2). It should be noted that the reaction is tolerated
by a carbonyl function. Thus, 1,3-diyne 2k containing carbonyl groups was isolated in a
92% yield.
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To further study the synthetic potential of the reaction, we investigated the dimeriza-
tion of substituted propargyl alcohols under the action of the CCl4-TMEDA-CuCl system.
We found that, in contrast to aryl- and alkylacetylenes, the solvent affects the reaction much
more significantly. Thus, in polar aprotic solvents, the dimerization reaction of propargyl
alcohol 3a proceeds in low yields, not exceeding 4–6%. On the contrary, in alcohols, the
reaction proceeds in good to high yields, and methanol also resulted as the optimal solvent
for dimerization, in which diyne 4a was obtained in an 89% yield (Scheme 3). More com-
plex propargyl alcohols have also been successfully involved in the dimerization. Diynes
bearing long alkyl chains (4b,4c), derivatives containing cyclic fragments (4d,4e) and aryl
substituents (4f) were obtained efficiently. It should be noted that we synthesized diyne 4a
in gram scale amounts (1.42 g), while the yield remained the same (85%). However, our
attempts to carry out dimerization of parent propargyl alcohol were not successful due to
massive tarring of the reaction.
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The diacetylene diols obtained are interesting compounds from the point of view of
medicinal chemistry. Compounds with a moiety of conjugated polyacetylene alcohols have
been isolated from various natural sources. Thus, many polyacetylene derivatives have
been isolated from Oplopanax horridus and Panax ginseng plants belonging to the Araliaceae
family, which exhibit antitumor, anti-inflammatory, antibacterial, antiviral, antifungal, im-
munomodulatory, neuroprotective, antidressing, hypoglycemic, hepatoprotective activity,
as well as activity associated with obesity control (Figure 2) [74]. Recently, three new
polyacetylene alcohols extracted from the sea sponge Siphonochalina Siphonella in Egypt
were found to have activity against a human cervical cancer cell line (HeLa), a human
breast cancer cell line (MCF-7) and a human lung cancer cell line. (A549) [75,76].
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Figure 2. Selected examples of physiologically active diacetylene diols.

Eventually, we focused our attention on the possible reaction mechanism. It has pre-
viously been found that single electron transfer (SET) from CuCl to CCl4 generates Cu(II)
species and the CCl3 radical [14]. In order to check this possibility for the dimerization of
acetylenes, we performed the reaction in the presence of one equivalent of TEMPO, which
is a very effective radial scavenger. We found that TEMPO does not completely block the
consumption of phenylacetylene and the formation of diyne 2a. However, noticeable tar-
ring of the reaction was observed to give diyne 2a in a lower yield compared to the reaction
without TEMPO. Next, we carried out the reaction in the presence of one equivalent of
α-cyclopropylstyrene. It was found that diyne 2a is formed in a slightly lower yield (72%
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compared to 92%). At the same time, dehydronaphthalene 6 was found in the reaction mix-
ture by 1H NMR. However, no formation of compound 7 was detected. This product could
be formed by the addition of phenylacetylenyl radical to α-cyclopropylstyrene. Therefore,
the reaction proceeds through the participation of trichloromethyl radical (Scheme 4).
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Taking into account these results and the literature data about the Glaser reaction
mechanism, the following scheme of the reaction can be proposed (Scheme 5) [36,44,77].
Oxidation of the Cu(I) complex I under the action of CCl4 starts the catalytic cycle to form
Cu(II) II complex. Next, complex II reacts with alkyne (or the copper π-complex of alkyne)
in the presence of a base (TMEDA) to give intermediate III. The subsequent reaction of III
with another molecule of alkyne (or alkyne π-complex) results in the formation of copper
complex IV, which is a key reaction intermediate. The reductive elimination of copper from
IV provides the target bis-alkyne and Cu(I) complex I to restart the catalytic cycle.
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In conclusion, we developed a new catalytic system (CCl4-TMEDA-CuCl) for the
oxidative dimerization of terminal acetylenes. It was found that terminal acetylenes can
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be dimerized in yields up to 92% under the action of carbon tetrachloride in methanol in
the presence of TMEDA and catalytic amounts of CuCl. The reaction has a wide synthetic
scope, allowing the synthesis of conjugated diynes containing both aromatic substituents
and aliphatic substituents. Terminal acetylenes containing functional groups were also
successfully involved in the reaction to convert into conjugated diynes in up to 92% yield.

3. Materials and Methods

General remarks. 1H, and 13C NMR spectra (Supplementary Materials) were recorded
on a Bruker AVANCE 400 MHz spectrometer in acetone-d6 and CDCl3 at 400.1 and
100.6 MHz, respectively. Chemical shifts (δ) in ppm are reported with the use of the
residual CD3COCHD2 and chloroform signals (2.04, 7.25 for 1H and 29.80, 77.0 for 13C) as
internal reference. The coupling constants (J) are given in Hertz (Hz). HRMS spectra were
measured using the MicroTof Bruker Daltonics instrument. A TLC analysis was performed
on “Macherey-Nagel ALUGRAM Xtra SIL G/UV254” plates. Column chromatography was
performed on silica gel “Macherey-Nagel 0.063–0.2 nm (Silica 60)”. All reagents were of
reagent grade and were used as such or were distilled prior to use. Terminal acetylenes
were prepared by literature procedures (1b,c,d,e,h [78]; 3b,c,d,e,f [79]) or purchased from
commercial suppliers (1a,f,g,i,j,k; 3a). Melting points were determined on Electrothermal
9100 apparatus. Due to the reported toxicity [80] of CCl4, all manipulations with this
reagent should be carried out with care.

Screening of the optimal conditions for the dimerization of phenylacetylene (gen-
eral procedures). Screening of the optimal solvent. An 8 mL vial with a screw cap was charged
with phenylacetylene 1a (1 mmol), the corresponding solvent (3 mL), TMEDA (0.32 mL,
2.2 mmol), CCl4 (0.25 mL, 2.5 mmol) and CuCl (10 mg, 0.1 mmol were added at stirring by
a magnetic stirrer). The reaction mixture was stirred for 1 day at room temperature and
then broken by 0.1 M of HCl (30 mL). The product was extracted by CH2Cl2 (3 × 10 mL);
the organic phase was washed with water (10 mL) and dried over Na2SO4. Volatiles were
evaporated in vacuo; the residue formed was purified by column chromatography on silica
gel using gradient elution by hexane, followed by a hexane-CH2Cl2 mixture (3:1).

Screening of the optimal amount of CuCl. The procedure for screening the optimal solvent
was used with the only difference that the reaction was carried out in methanol and the
appropriate amount of CuCl was used instead of 0.1 mmol (10% mmol) of CuCl.

Screening of the optimal base. The procedure for screening of the optimal solvent
was used with the only difference that the reaction was carried out in methanol and the
corresponding base was used instead of TMEDA.

Screening of the optimal amount of CCl4. The procedure for screening of the optimal
solvent was used with the only difference that the reaction was carried out in methanol
and the appropriate amount of CCl4 was used instead of 0.25 mL (2.5 mmol) of CCl4.

Screening of the optimal base. The procedure for screening of the optimal solvent
was used with the only difference that the reaction was carried out in methanol and the
corresponding PHA was used instead of CCl4.

Dimerization of terminal acetylenes 1 (general procedure). An 8 mL vial with a
screw cap was charged with corresponding acetylene 1 (1 mmol), MeOH (3 mL), TMEDA
(0.32 mL, 2.2 mmol), CCl4 (0.25 mL, 2.5 mmol) and CuCl (10 mg, 0.1 mmol were added at
stirring by a magnetic stirrer). The reaction mixture was stirred for 1 day and then broken
by 0.1 M of HCl (30 mL). The product was extracted by CH2Cl2 (3 × 10 mL); the organic
phase was washed with water (10 mL) and dried over Na2SO4. Volatiles were evaporated
in vacuo; the residue formed was purified by passing through a short silica gel pad of silica
gel using gradient eluation by hexane, followed by a hexane-CH2Cl2 mixture (3:1) for 2a–2j;
and by a hexane-CH2Cl2 mixture (3:1) followed by CH2Cl2 for 2k.

1,4-Diphenylbuta-1,3-diyne (2a). Obtained from phenylacetylene 1a (102 mg, 1 mmol).
Pale yellow solid, m.p. 86–88 ◦C, (Lit. [81] 86–88 ◦C), RF 0.55 (hexane-CH2Cl2, 3:1), yield
93 mg (92%). 1H NMR (CDCl3, 400.1 MHz): δ 7.32–7.43 (m, 3H), 7.55–7.58 (m, 2H). 13C{1H}
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NMR (CDCl3, 100.6 MHz): δ 73.9, 81.5, 121.7, 128.4, 129.2, 132.4. NMR data are in agreement
with those in the literature [82].

1,4-Bis(4-chlorophenyl)buta-1,3-diyne (2b). Obtained from 1-chloro-4-ethynylbenzene
1b (143 mg, 1.048 mmol). White powder, m.p. 259–262 ◦C, (Lit. [83] 258–259 ◦C), RF 0.63
(hexane-CH2Cl2, 3:1), yield 106 mg (75%). 1H NMR (CDCl3, 400.1 MHz): δ 7.31 (d, 2H,
J = 8.4), 7.44 (d, 2H, J = 8.4). NMR data are in agreement with those in the literature [82].
1,4-Bis(4-bromophenyl)buta-1,3-diyne (2c). Obtained from 1-bromo-4-ethynylbenzene 1c
(181 mg, 1 mmol). Pale beige powder, m.p. 262–264 ◦C, (Lit. [84] 260.1–262.3 ◦C), RF 0.68
(hexane-CH2Cl2, 3:1), yield 143 mg (79%). 1H NMR (CDCl3, 400.1 MHz): δ 7.37 (d, 2H,
J = 8.6), 7.47 (d, 2H, J = 8.6). NMR data are in agreement with those in the literature [85].

1,4-Bis(4-(tert-butyl)phenyl)buta-1,3-diyne (2d). Obtained from 1-(tert-butyl)-4-ethyn
ylbenzene 1d (149 mg, 0.943 mmol). Pale beige powder, m.p. 208–211 ◦C, (Lit. [84]
209–210 ◦C), RF 0.8 (hexane-CH2Cl2, 3:1), yield 104 mg (70%). 1H NMR (CDCl3, 400.1
MHz): δ 1.33 (s, 9H), 7.37 (d, 2H, J = 8.4), 7.48 (d, 2H, J = 8.4). 13C{1H} NMR (CDCl3, 100.6
MHz): δ 31.1, 34.9, 73.5, 81.5, 118.8, 125.4, 132.2, 152.5. NMR data are in agreement with
those in the literature [84].

1,4-Bis(4-methoxyphenyl)buta-1,3-diyne (2e). Obtained from 1-ethynyl-4-methoxyben
zene 1e (131 mg, 0.992 mmol). Pale yellow powder, m.p. 140–142 ◦C, (Lit. [84] 137.5–139.2 ◦C),
RF 0.2 (hexane-CH2Cl2, 3:1), yield 108 mg (83%). 1H NMR (CDCl3, 400.1 MHz): δ 3.80 (s, 3H),
6.85 (d, 2H, J = 8.9), 7.46 (d, 2H, J = 8.9). 13C{1H} NMR (CDCl3, 100.6 MHz): δ 55.3, 72.9, 81.2,
113.8, 114.1, 134.0, 160.2. NMR data are in agreement with those in the literature [84].

1,4-Bis(3-methoxyphenyl)buta-1,3-diyne (2f). Obtained from 1-ethynyl-3-methoxyben
zene 1f (141 mg, 1.068 mmol). White powder, m.p. 92–93 ◦C, (Lit. [64] 92–93 ◦C), RF 0.3
(hexane-CH2Cl2, 3:1), yield 105 mg (75%). 1H NMR (CDCl3, 400.1 MHz): δ 3.80 (s, 3H), 6.93
(ddd, 1H, J = 8.0, J = 2.5, J = 1.0), 7.05 (dd, 1H, J = 2.5, J = 1.4), 7.13 (dt, 1H, J = 8.0, J = 1.2),
7.46 (t, 1H, J = 8.0). 13C{1H} NMR (CDCl3, 100.6 MHz): δ 55.2, 73.6, 81.5, 116.0, 117.0, 122.6,
125.0, 129.5, 159.2. NMR data are in agreement with those in the literature [84].

1,4-Bis(2-methoxyphenyl)buta-1,3-diyne (2g). Obtained from 1-ethynyl-2-methoxybe
nzene 1g (132 mg, 1 mmol). White powder, m.p. 137–139 ◦C, (Lit. [64] 137–138 ◦C), RF 0.5
(hexane-CH2Cl2, 1:1), yield 100 mg (76%). 1H NMR (CDCl3, 400.1 MHz): δ 3.88 (s, 3H),
6.86–6.92 (m, 2H), 7.13 (td, 1H, J = 7.9, J = 1.7), 7.47 (dd, 1H, J = 7.6, J = 1.7). 13C{1H} NMR
(CDCl3, 100.6 MHz): δ 55.7, 77.9, 78.6, 110.6, 111.2, 120.4, 130.5, 134.3, 161.3. NMR data are
in agreement with those in the literature [84].

1,4-Bis(3,4-dimethylphenyl)buta-1,3-diyne (2h). Obtained from 4-ethynyl-1,2-dimeth
ylbenzene 1h (130 mg, 1 mmol). White powder, m.p. 164–166 ◦C, RF 0.65 (hexane-CH2Cl2,
3:1), yield 96 mg (74%). 1H NMR (CDCl3, 400.1 MHz): δ 2.25 (s, 3H), 2.28 (s, 3H), 7.09 (d,
1H, J = 7.8), 7.28 (dd, 1H, J = 7.7, J = 1.4), 7.31 (s, 1H). 13C{1H} NMR (CDCl3, 100.6 MHz): δ
19.6, 19.9, 73.2, 81.6, 119.0, 129.7, 129.9, 133.4, 136.8, 138.3. NMR data are in agreement with
those in the literature [86].

Icosa-9,11-diyne (2i). Obtained from dec-1-yne 1i (137 mg, 0.992 mmol). Pale brown
oil, yield 76 mg (56%). 1H NMR (CDCl3, 400.1 MHz): δ 0.87 (t, 6H, J = 6.8), 1.22–1.36 (m,
20H), 1.46–1.54 (m, 4H), 2.23 (t, 4H, J = 7.0). 13C{1H} NMR (CDCl3, 100.6 MHz): δ 14.1, 19.2,
22.6, 28.3, 28.8, 29.05, 29.14, 31.8, 65.2, 77.6. NMR data are in agreement with those in the
literature [60].

1,6-Diphenoxyhexa-2,4-diyne (2j). Obtained from (prop-2-yn-1-yloxy)benzene 1i (135 mg,
1.023 mmol). Pale beige powder, m.p. 78–80 ◦C, (Lit. [87] 77–79 ◦C), RF 0.2 (hexane-CH2Cl2, 3:1),
yield 84 mg (63%). 1H NMR (CDCl3, 400.1 MHz): δ 4.75 (s, 2H), 6.96–6.99 (m, 2H), 7.02–7.05
(m, 1H), 7.31–7.36 (m, 2H). 13C{1H} NMR (CDCl3, 100.6 MHz): δ 56.0, 70.9, 74.6, 114.7, 121.7,
129.5, 157.3. NMR data are in agreement with those in the literature [88].

4,4’-(Hexa-2,4-diyne-1,6-diylbis(oxy))dibenzaldehyde (2k). Obtained from 4-(prop-2-
yn-1-yloxy)benzaldehyde 1k (159 mg, 0.994 mmol). Pale beige powder, m.p. 154–158 ◦C,
yield 145 mg (92%). 1H NMR (CDCl3, 400.1 MHz): δ 4.83 (s, 4H), 7.03 (d, 4H, J = 8.8), 7.84
(d, 4H, J = 8.8), 9.89 (s, 2H). 13C{1H} NMR (CDCl3, 100.6 MHz): δ 56.2, 71.4, 73.9, 115.1,
130.7, 131.9, 162.0, 190.7. NMR data are in agreement with those in the literature [87].
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Dimerization of terminal acetylenes 3 (general procedure). An 8 mL vial with a
screw cap was charged with corresponding acetylene 3 (1 mmol), MeOH (3 mL), TMEDA
(0.32 mL, 2.2 mmol), CCl4 (0.25 mL, 2.5 mmol) and CuCl (10 mg, 0.1 mmol were added at
stirring by a magnetic stirrer). The reaction mixture was stirred for 1 day and then broken
by 0.1 M of HCl (30 mL). The product was extracted by CH2Cl2 (3 × 10 mL); the organic
phase was washed with water (10 mL) and dried over Na2SO4. Volatiles were evaporated
in vacuo; the residue formed was purified by passing through a short silica gel pad of silica
gel using gradient eluation by CH2Cl2, followed by CH2Cl2-MeOH mixture (30:1).

2,7-Dimethylocta-3,5-diyne-2,7-diol (4a). Obtained from 2-methylbut-3-yn-2-ol 3a
(84 mg, 1 mmol). White powder, m.p. 124–126 ◦C, yield 74 mg (89%). 1H NMR (acetone-d6,
400.1 MHz): δ 1.43 (s, 12H, 4CH3), 4.59 (s, 2H, 2OH). 13C{1H} NMR (acetone-d6, 100.6 MHz):
δ 31.4, 65.0, 66.0, 85.5. NMR data are in agreement with those in the literature [45].

5,10-Diethyltetradeca-6,8-diyne-5,10-diol (4b). Obtained from 3-ethylhept-1-yn-3-
ol 3b (143 mg, 1.021 mmol). Yellow-brown oil, yield 77 mg (54%). 1H NMR (CDCl3,
400.1 MHz): 0.91 (t, 6H, 2CH3, J = 7.3), 1.02 (t, 6H, 2CH3, J = 7.3), 1.29–1.38 (m, 4H, 2CH2),
1.41–1.49 (m, 4H, 2CH2), 1.57–1.73 (m, 8H, 4CH2), 2.01 (s, 2H, 2OH). 13C{1H} NMR (CDCl3,
100.6 MHz): δ 8.5, 14.0, 22.8, 26.3, 34.7, 41.1, 68.4, 72.2, 82.0.

8,13-Dimethylicosa-9,11-diyne-8,13-diol (4c). Obtained from 3-methyldec-1-yn-3-ol
3c (169 mg, 1.004 mmol). Pale brown oil, yield 138 mg (82%). 1H NMR (CDCl3, 400.1 MHz):
δ 0.87 (t, 6H, 2CH3, J = 6.9), 1.21–1.34 (m, 16H, 8CH2), 1.40–1.52 (m, 10H, 2CH2, 2CH3),
1.59–1.71 (m, 4H, 2CH2), 2.02 (s, 2H, 2OH). 13C{1H} NMR (CDCl3, 100.6 MHz): δ 14.1, 22.6,
24.6, 29.2, 29.5, 29.6, 31.8, 43.5, 67.4, 68.7, 83.2. HRMS (ESI-TOF): m/z [M-OH]+ Calcd for
C22H37O+: 317.2839; found: 317.2848.

1,1’-(Buta-1,3-diyne-1,4-diyl)bis(cyclohexan-1-ol) (4d). Obtained from 1-ethynylcyclo
hexan-1-ol 3d (124 mg, 1 mmol). Colorless oil, yield 88 mg (72%). 1H NMR (CDCl3,
400.1 MHz): δ 1.15–1.30 (m, 2H, CH2), 1.44–1.75 (m, 14H, 7CH2), 1.83–1.95 (m, 4H, 2CH2),
2.23 (s, 2H, 2OH). 13C{1H} NMR (CDCl3, 100.6 MHz): δ 23.1, 25.0, 39.6, 68.7, 69.1, 83.0.
NMR data are in agreement with those in the literature [89].

2,2’-(Buta-1,3-diyne-1,4-diyl)bis(adamantan-2-ol) (4e). Obtained from 2-ethynylada
mantan-2-ol 3e (175 mg, 0.994 mmol). White solid, m.p. 240–242 ◦C, yield 124 mg (71%). 1H
NMR (acetone-d6, 400.1 MHz): δ 1.48–1.53 (m, 4H), 1.70–1.80 (m, 12H), 1.87–1.92 (m, 4H),
2.03–2.08 (m, 4H, 3CH), 2.16–2.23 (m, 4H), 2.97 (s, 2H, 2OH). 13C{1H} NMR (acetone-d6,
100.6 MHz): δ 27.57, 27.64, 32.0, 35.8, 38.1, 39.3, 69.0, 72.6, 85.2. HRMS (ESI-TOF): m/z
[M-OH]+ Calcd for C24H29O+: 333.2213; found: 333.2223.

2,7-Bis(4-chlorophenyl)octa-3,5-diyne-2,7-diol (4f). Obtained from 2-(4-chlorophenyl)
but-3-yn-2-ol 3f (181 mg, 1 mmol). Yellow-brown oil, yield 115 mg (64%). 1H NMR (CDCl3,
400.1 MHz): δ 1.77 (s, 6H, 2CH3), 2.62 (s, 2H, 2OH), 7.32 (d, 4H, 4CH, J = 8.6), 7.53 (d, 4CH,
J = 8.6). 13C{1H} NMR (CDCl3, 100.6 MHz): δ 32.9, 69.0, 70.0, 82.9, 126.3, 128.6, 133.9, 142.9.
NMR data are in agreement with those in the literature [90].

Dimerization of terminal acetylene 3a in gram scale. A 50 mL round-bottomed flask
was charged with 2-methylbut-3-yn-2-ol 3a (1684 mg, 20.05 mmol), MeOH (60 mL), TMEDA
(6.4 mL, 44 mmol), CCl4 (5 mL, 50 mmol) and CuCl (20 mg, 2 mmol were added at stirring
by a magnetic stirrer). The reaction mixture was stirred for 1 day; volatiles were evaporated
in vacuo. The residue was dispersed between 0.1 M of HCl (30 mL) and CH2Cl2 (20 mL).
The organic layer was separated; the water phase was extracted by CH2Cl2 (20 mL). The
combined organic phase was washed with water (10 mL) and dried over Na2SO4. Volatiles
were evaporated in vacuo; the residue formed was by passing through a short silica gel
pad of silica gel using gradient eluation by CH2Cl2, followed by CH2Cl2-MeOH mixture
(30:1). White powder, m.p. 124–126 ◦C, yield 1420 mg (85%). 1420 mg (85%). For NMR
spectral data see above.

Dimerization of phenylacetylene 1a in the presence of TEMPO. An 8 mL vial with
a screw cap was charged with phenylacetylene 1a (57 mg, 0.56 mmol), MeOH (1.5 mL),
TMEDA (0.16 mL, 1.1 mmol), CCl4 (79 mg, 0.51 mmol), TEMPO (77 mg, 0.49 mmol) and
CuCl (5.2 mg, 0.052 mmol), which were added at stirring by a magnetic stirrer. The reaction
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mixture was stirred for 1 day and then broken by 0.1 M of HCl (30 mL). The product was
extracted by CH2Cl2 (3 × 10 mL); the organic phase was washed with water (10 mL) and
dried over Na2SO4. Volatiles were evaporated in vacuo; the residue formed was purified
by passing through a short silica gel pad of silica gel using gradient eluation by hexane,
followed by hexane-CH2Cl2 mixture (3:1). White powder, yield 16 mg (28%). For NMR
spectral data see above.

Dimerization of phenylacetylene 1a in the presence of α-cyclopropylstyrene. An
8 mL vial with a screw cap was charged with phenylacetylene 1a (107 mg, 1.05 mmol),
MeOH (3 mL), TMEDA (0.32 mL, 2.2 mmol), CCl4 (174 mg, 1.13 mmol), α-cyclopropylstyrene
(155 mg, 1.07 mmol) and CuCl (9 mg, 0.09 mmol), which were added at stirring by a mag-
netic stirrer. The reaction mixture was stirred for 1 day and then broken by 0.1 M of HCl
(30 mL). The product was extracted by CH2Cl2 (3 × 10 mL); the organic phase was washed
with water (10 mL) and dried over Na2SO4. Volatiles were evaporated in vacuo; the residue
formed was purified by passing through a short silica gel pad of silica gel using gradient
eluation by hexane, followed by hexane-CH2Cl2 mixture (3:1). White powder, yield 76 mg
(72%). For NMR spectral data see above. Compound 6 was observed in the NMR spectra of
crude product 2a. The yield of 6 was calculated by comparison with the amount of 2a in the
1H NMR of crude 2a. The NMR data of 6 are in agreement with those in the literature [14].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal13101330/s1, Copies of all NMR spectra.
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