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Abstract: The widespread use of bisphenol A (BPA) in industry has resulted in BPA contamination
of water bodies and even endocrine-disrupting effects on organisms and humans through water
transmission. Advanced oxidation processes based on sulfate radicals have received increasing
attention due to their ability to efficiently degrade endocrine disruptors (including BPA) in water.
In this study, powdered iron (Fe(0)) and ferrous sulfate (Fe(II)) were used as activators to activate
persulfate (PS) for the degradation of BPA. The effects of the dosage of the activator, the concentra-
tion of PS, the concentration of BPA, the initial solution pH, and the reaction temperature on the
degradation efficiency of BPA in Fe(II)/PS and Fe(0)/PS systems were investigated, and the kinetics
of BPA degradation under different reaction conditions were analyzed. The results showed that the
optimal conditions were [Fe(II)] = 0.1 g/L, [PS] = 0.4 mM, [BPA] = 1 mg/L, T = 70 ◦C and pH = 5.0 for
the Fe(II)/PS system and [Fe(0)] = 0.5 g/L, [PS] = 0.5 mM, [BPA] = 1 mg/L, T = 70 ◦C and pH = 5.0
for the Fe(0)/PS system; both systems were able to achieve equally good degradation of BPA. The
degradation of BPA in the Fe(II)/PS system satisfied the pseudo-secondary kinetic equation under
varying PS concentration conditions, otherwise the degradation of BPA in both systems conformed to
the pseudo-first-order kinetic equation.

Keywords: powdered iron; ferrous sulfate; persulfate; bisphenol A

1. Introduction

Due to the rapid development of the chemical industry, many new chemical sub-
stances are constantly being synthesized for industrial, agricultural, and pharmaceutical
use. Although these substances have brought benefits to the public, they have also caused
serious environmental pollution issues. Bisphenol A (BPA) is an important organic chem-
ical raw material used in the preparation of epoxy resins and polycarbonates which are
widely used in production and life [1]. Many products contain BPA, such as plastic con-
tainers, thermal paper, coatings on cans, disposable paper cups, etc. Trace amounts of
BPA are frequently detected in surface water due to the discharge of industrial wastewater
or domestic sewage [2]. It is now clear that BPA is an environmental hormone that has
a disruptive effect on the endocrine system of living organisms [3–5]. It is essential to
reduce the concentration of BPA in drinking water sources to ensure the safety of drinking
water. As the conventional treatment technologies (adsorption, filtration, and biochemical
oxidation) are not completely effective in removing BPA [6–9], this poses a challenge to the
treatment of BPA via advanced methods.

The removal of recalcitrant organic matter (including endocrine disruptor BPA) by
advanced oxidation processes (AOPs) has become one of the hot spots in water treatment

Catalysts 2023, 13, 36. https://doi.org/10.3390/catal13010036 https://www.mdpi.com/journal/catalysts

https://doi.org/10.3390/catal13010036
https://doi.org/10.3390/catal13010036
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/catalysts
https://www.mdpi.com
https://doi.org/10.3390/catal13010036
https://www.mdpi.com/journal/catalysts
https://www.mdpi.com/article/10.3390/catal13010036?type=check_update&version=1


Catalysts 2023, 13, 36 2 of 13

research. The AOPs mainly use highly oxidizing free radicals generated in situ to degrade
organic matters, such as hydroxyl radicals (•OH, E0 = 1.9−2.7) and sulfate radicals (SO4

•−,
E0 = 2.5−3.1 V) [10,11]. Compared with hydroxyl radicals, sulfate radicals have a higher
oxidation capacity for organic substances and are more adaptable to reaction conditions.
Therefore, sulfate radical oxidation is more advantageous than the conventional hydroxyl
radical oxidation in the treatment of recalcitrant organics [12]. Oxidants (hydrogen per-
oxide [13], ozone [14], persulfate (PS) [15], and peroxymonosulfate [16]) can be used as
precursors to generate free radicals with the help of all kinds of energies or materials [17].
The means of activation can be ultraviolet light (UV) [18], heat [19], microwaves (MW) [20],
ultrasound (US) [21], heavy metals (Fe [22], Co [23], Cu [24], Mn [25]), and carbon materi-
als [26,27]. Among the four oxidants mentioned above, PS is favored by researchers because
of its stable nature and ease of transport and storage [28]. PS alone (S2O8

2−, E0 = 2.01 V)
has a weak ability to directly oxidize organic matters, while it can be activated to produce
free radicals to acquire better performance toward organics degradation [29]. The molecule
of PS contains an O—O bond (140 kJ/mol, 1.497 Å), which can be broken to form sulfate
radicals at external energies (UV, US, MW, and heat) above the O—O bond energy [30].
In addition, PS can also undergo redox reaction with transition metals to form sulfate
radicals [31]. As iron is a common transition metal that is abundant on earth, inexpensive,
and non-toxic, it is considered as a benign catalyst used in AOPs [32]. For example, divalent
iron (Fe(II)) could catalyze PS to generate sulfate radicals [33]. In addition, powdered iron
(Fe(0)) has also been used to activate PS in removing organic matter [34].

Although the use of Fe(II) and Fe(0) for activating PS is relatively common in research,
the economic and environmental friendliness of iron is very prominent. Iron-based PS
systems have an advantage over other transition metals-based PS systems (Co/PS, Cu/PS,
Mn/PS) in practical applications toward wastewater treatment. Fewer studies have been
conducted using Fe(II)/PS and Fe(0)/PS systems to treat endocrine disruptor BPA; therefore,
a comparative study of the two systems can provide favorable parameters for future
applications of iron-based systems in actual wastewater treatment. In this study, Fe(0) and
Fe(II) were used to remove BPA from an aqueous solution in the presence of PS. The abilities
of two systems to remove BPA under different influencing factors were investigated and
the corresponding reaction kinetic models were developed. At the same time, a profound
analysis of the mechanism was carried out in terms of catalysis and degradation in Fe(0)/PS
and Fe(II)/PS systems.

2. Results
2.1. Dosage of Activators

Figure 1a,b shows the effects of different dosages of Fe(II) and Fe(0) on activating PS
in debating BPA, respectively. It can be seen in Figure 1a that PS was able to oxidize 19.86%
of BPA without the addition of catalyst Fe(II), which meant that PS alone could oxidize
organic matter at a slower rate. The addition of 0.1 g/L of Fe(II) was able to achieve an
optimal BPA removal (C/C0 = 0.455) in the presence of PS. Subsequently, the dosage of
Fe(II) was increased from 0.2 to 0.5 g/L, which brought about a gradual decrease in the
BPA removal rate (0.5 g/L of Fe(II) corresponding to C/C0 = 0.706). This indicated that
too much Fe(II) did not favor the catalytic reaction rate. The reaction of Fe(II) activating
PS to generate SO4

•− is shown in Equation (1) [35]. From this equation, Fe(II) is able
to be oxidized to Fe(III) by PS, while PS is reduced to SO4

•− and SO4
2−. However, the

excess Fe(II) will react with the SO4
•− formed in the water, converting SO4

•− to SO4
2−

(Equation (2)) [35,36] and thus losing the ability to degrade organic matter. Therefore,
the optimization of the Fe(II) and PS dosing ratio is beneficial to the improvement of
degradation efficiency. Figure 1b exhibits the trend of BPA degradation in Fe(0)/PS system.
In contrast to the trend in Figure 1a, the residual concentration of BPA decreased gradually
as the dosage of Fe(0) was increased from 0 to 0.5 g/L. The best BPA removal (C/C0 = 0.514)
was achieved within 60 min with 0.5 g/L of Fe(0). While for the Fe(II)/PS system, the best
BPA removal was acquired at Fe(II) of 0.1 g/L (C/C0 = 0.455). Since the activation of Fe(0)
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on PS is heterophasic, whereas the activation of Fe(II) on PS is homophasic, the performance
on the optimal concentrations of the two catalysts is not consistent. In fact, the activation
of PS by Fe(0) is an indirect process. Fe(0) should first be converted to Fe(II) before the
reaction of Equation (1) occurs to activate PS. Fe(0) can be converted to Fe(II) under three
conditions, see Equations (3)–(5) [37]. Since Fe(0) catalyzes PS in a heterogeneous manner,
Fe(0) does not dissolve into solution quickly and is not easily overdosed compared to Fe(II),
which becomes an advantage of Fe(0) in activating PS. Therefore, Fe(0) is able to avoid the
problem of quenching SO4

•− by generating too much Fe(II) in the reaction.
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Figure 2a,b develops the kinetic models of BPA degradation by Fe(II)/PS and 
Fe(0)/PS, respectively. The degradation of BPA at varying dosages of Fe(II) and Fe(0) was 
in accordance with the pseudo first-order kinetic equations. The correlation coefficients 
(R2) of the established equations were all above 0.93. In Figure 2a, when Fe(II) was 0.1 g/L, 
the degradation of BPA obtained the maximum rate of 0.01171 min−1. In Figure 2b, the 
maximum BPA degradation rate occurred at 0.5 g/L of Fe(0).  

Figure 1. (a) Fe(II) dosage vs. BPA removal; and (b) Fe(0) dosage vs. BPA removal. [BPA] = 5 mg/L,
[PS] = 0.2 mM, T = 20 ± 1 ◦C, pH = 6.8 ± 0.2.

Fe2+ + S2O2−
8 → Fe3+ + SO2−

4 + SO•−4 (1)

Fe2+ + SO•−4 → Fe3+ + SO2−
4 (2)

Fe0 + S2O2−
8 → Fe2+ + SO2−

4 (3)

Fe0 + H2O→ Fe2+ + 2OH− + H2 (4)

Fe0 + H2O + 0.5O2 → Fe2+ + 2OH− (5)

Figure 2a,b develops the kinetic models of BPA degradation by Fe(II)/PS and Fe(0)/PS,
respectively. The degradation of BPA at varying dosages of Fe(II) and Fe(0) was in ac-
cordance with the pseudo first-order kinetic equations. The correlation coefficients (R2)
of the established equations were all above 0.93. In Figure 2a, when Fe(II) was 0.1 g/L,
the degradation of BPA obtained the maximum rate of 0.01171 min−1. In Figure 2b, the
maximum BPA degradation rate occurred at 0.5 g/L of Fe(0).
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2.2. Concentrations of PS

Figure 3a depicts the changes in BPA removal at different PS concentrations with the
addition of Fe(II). As can be seen from Figure 3a, Fe(II) had no ability to remove BPA at all
when the PS concentration was 0 mM. Unlike Fe(II), Fe(0) exhibited limited removal of BPA
(60 min, C/C0 = 0.801) in the absence of PS (Figure 3b), which should be attributed to the
adsorption and reduction of BPA by nano-sized Fe(0) possessing a large specific surface
area. In Figure 3a, as the PS concentration increased from 0.2 mM to 0.4 mM, the residual
concentration of BPA in the solution continued to decrease. However, at a PS concentration
of 0.5 mM, it was found that the change in BPA removal was not significant compared to
that at a PS concentration of 0.4 mM. This indicated that the best treatment effect of BPA
was achieved at PS of 0.4 mM. Similar results were obtained in a previous study which
showed that a high concentration PS could inhibit the degradation of organics in Fe(II)/PS
system [38]. Although PS as an oxidant could provide SO4

•− through Fe(II) catalyzing,
excess PS could react with the SO4

•− (Equations (6)) [39,40] and reduce the amount of
SO4

•− in the solution, thus inhibiting the degradation of organics. However, it was found
from Figure 3b that the increase in Fe(0) concentration from 0.1 mM to 0.5 mM did not
bring about the inhibition of BPA degradation, and the best BPA removal was achieved at
0.5 mM of PS. Compared to Fe(II) for PS catalysis, 0.5 mM of PS was not excessive in the
Fe(0) catalysis process. The reason may be that one part of the PS reacted with Fe(0) and
oxidized it to Fe(II). Another part of PS reacted with the generated Fe(II) to produce SO4

•−.
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Figure 4a demonstrates the kinetic models of BPA degradation by Fe(II)/PS at varying
PS concentrations. According to the curves in Figure 4a, 1/Ct exhibited a good linear fit to
time in the presence of PS with a high linear fit coefficient (R2 ≥ 0.87132), indicating that
the degradation of BPA followed the pseudo-secondary kinetic model well. The maximum
reaction rate of 0.01484 (mg/L)−1min−1 was achieved when the PS concentration was
0.4 mM. The curves in Figure 4b revealed that the degradation of BPA at different PS
concentrations in Fe(0)/PS conformed to the pseudo first-order kinetic equation. At a PS
concentration of 0.5 mM, the degradation rate of BPA could reach 0.02366 (mg/L)−1min−1.
BPA showed different degradation kinetics in Fe(II)/PS vs. Fe(0)/PS systems. This may be
caused by the difference in the homogeneous catalysis of Fe(II)/PS and the heterogeneous
catalysis of Fe(0)/PS.
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Figure 4. (a) Reaction kinetics of Fe(II); and (b) reaction kinetics of Fe(0). [BPA] = 5 mg/L,
[Fe(II)] = 0.1 g/L, [Fe(0)] = 0.1 g/L, T = 20 ± 1 ◦C, pH = 6.8 ± 0.2.

2.3. Concentrations of BPA

Figure 5a,b expresses the variation of residual BPA concentration in the solution
after degradation of BPA by Fe(II)/PS and Fe(0)/PS at varying initial BPA concentrations,
respectively. Figure 5a,b shows the same trend, i.e., the BPA removal effect gradually
decreased as the initial BPA concentration increased from 1 mg/L to 5 mg/L. When the
initial concentration of BPA was 1 mg/L, the removal rate of BPA was 82.1% in Fe(II)/PS
system, and 83.4% in Fe(0)/PS system. When the initial concentration of BPA was increased
to 5 mg/L, the removal rate of BPA decreased to 55.3% in Fe(II)/PS system and 45.6% in
Fe(0)/PS system. This indicated that the increase in the concentration of the target pollutant
(BPA) decreased the BPA degradation efficiency with a constant amount of PS and catalyst
(Fe(II) or Fe(0)). Therefore, to obtain higher BPA removal, the amount of catalyst and
oxidant needs to be increased proportionally while increasing the initial concentration
of BPA.
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Figure 5. (a) BPA concentration vs. BPA removal by Fe(II); and (b) BPA concentration vs. BPA
removal by Fe(0). [PS] = 0.2 mM, [Fe(II)] = 0.1 g/L, [Fe(0)] = 0.1 g/L, T = 20 ± 1 ◦C, pH = 6.8 ± 0.2.

The kinetic models of BPA degradation were fitted in Figure 6a,b, and the BPA
degradation in both systems Fe(0)/PS and Fe(II)/PS conformed to the pseudo first-order
kinetic equation (R2 ≥ 0.93456). When the initial concentration of BPA was 1 mg/L,
the degradation kinetic constant was 0.02537 (mg/L)−1min−1 in Fe(II)/PS system and
0.02854 (mg/L)−1min−1 in Fe(0)/PS system. When BPA was increased to 5 mg/L, the
kinetic constant of BPA degradation decreased to 0.01232 (mg/L)−1min−1 in the Fe(II)/PS
system, and 0.00994 (mg/L)−1min−1 in the Fe(0)/PS system, which was consistent with
the trend of BPA residual concentration in aqueous solution in Figure 5a,b.
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Figure 7a,b, respectively. With only PS in the system, the degradation rates of BPA in Fig-
ure 7a,b all increased with the temperature rising. The degradation of BPA via PS was 
close to 40% at the temperature of 70 °C in both Figures. According to previous studies 
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Figure 6. (a) Reaction kinetics of Fe(II); and (b) reaction kinetics of Fe(0). [PS] = 0.2 mM,
[Fe(II)] = 0.1 g/L, [Fe(0)] = 0.1 g/L, T = 20 ± 1 ◦C, pH = 6.8 ± 0.2.

2.4. Reaction Temperature

Temperature is an important factor affecting the rate of chemical reactions. The effect
of varying temperatures on BPA removal in systems Fe(II)/PS and Fe(0)/PS are given
in Figure 7a,b, respectively. With only PS in the system, the degradation rates of BPA
in Figure 7a,b all increased with the temperature rising. The degradation of BPA via PS
was close to 40% at the temperature of 70 ◦C in both Figures. According to previous
studies [41–43], PS could be activated by heat to form SO4

•− (Equation (7)), which in turn
improved the degradation efficiency of organic matter. The elevation in temperature could
increase the energy of the reaction system. As this energy exceeded the peroxide bond
energy of PS, the peroxide bond broke and SO4

•− was formed. When both Fe(II) (or Fe(0))
and PS were present in the BPA solution, Fe(II) (or Fe(0)) could activate PS together with
the heat energy brought by the high temperature and produce more SO4

•−. Thus, at 70 ◦C,
the removal of BPA reached 96.7% by Fe(II)/PS and reached 94.5% by Fe(0)/PS.
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removal by Fe(0). [BPA] = 5 mg/L, [PS] = 0.2 mM, [Fe(II)] = 0.1 g/L, [Fe(0)] = 0.1 g/L, pH = 6.8 ± 0.2.

S2O2−
8

Heat−−−−−→ 2SO•−4 (7)

Figure 8a,b shows the kinetic models of BPA degradation at varying temperature
conditions in the Fe(II)/PS system and Fe(0)/PS system, respectively. The pseudo first-order
reaction kinetic equations (R2 ≥ 0.80025) were applied to the degradation of BPA at different
temperatures in both Figure 8a,b. The degradation rates of BPA by the Fe(II)/PS system and
Fe(0)/PS system at 70 ◦C reached 0.06130 (mg/L)−1min−1 and 0.03866 (mg/L)−1min−1,
respectively.
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Figure 8. (a) Reaction kinetics of Fe(II); and (b) reaction kinetics of Fe(0). [BPA] = 5 mg/L,
[PS] = 0.2 mM, [Fe(II)] = 0.1 g/L, [Fe(0)] = 0.1 g/L, pH = 6.8 ± 0.2.

In order to assess the relationship between the reaction temperature and degradation
rate of BPA, the Arrhenius equation (Equation (8)) [42] was used to fit the experimental
data to investigate the correlation.

kapp = A exp(
−Ea

RT
)⇔ ln kapp = ln A− Ea

R
1
T

(8)

where kapp is the apparent rate constant (min−1), A is the pre-exponential factor (min−1), R is
the gas constant (8.314 J/K·mol), T is the absolute temperature (K), and Ea is the activation
energy (J/mol). The established thermodynamic equations are shown in Figure 9a,b. In
the Fe(II)/PS system, R2, A and Ea were 0.94923, 1139.67 min−1, and 2.8 × 107 J/mol,
respectively, which showed that the relationship between the BPA degradation rate and the
temperature satisfied the Arrhenius equation, while in Fe(0)/PS system, R2 was 0.74757.
Compared with the homogeneous system Fe(II)/PS, the heterogeneous activation system
Fe(0)/PS acquired a low R2 when fitting into the Arrhenius equation. This may be because
the process of heterogeneous activation involves the release of Fe(0) to Fe(II), which makes
the thermodynamic laws difficult to obtain.
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[BPA] = 5 mg/L, [PS] = 0.2 mM, [Fe(II)] = 0.1 g/L, [Fe(0)] = 0.1 g/L, pH = 6.8 ± 0.2.

2.5. Initial pH

The initial pH value of solution is an important factor affecting the chemical reaction.
Therefore, the degradation of BPA by two systems under different initial pH values was
studied. Only the initial pH value of the solution was adjusted, and the pH value in the
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whole reaction process was not controlled. Figure 10a,b reflected the effect of changing
pH values on the degradation of BPA by Fe(II)/PS and Fe(0)/PS. It was found that in
Figure 10a,b, pH 5.0 was the optimal condition for both systems. The degradation of
BPA was poor in both systems under alkaline conditions. On the one hand, the oxidation
capacity of the systems was reduced due to the reaction of sulfate radicals converted to
hydroxyl radicals in the presence of hydroxide (Equation (9)) [44]. On the other hand, the
formation of Fe(OH)3 could lead to the inhibition of the catalytic reaction (Equation (10)).
In the practical application of these two systems, if 5.0 is set as the best pH value, it needs to
consume chemical regulators. In addition, the requirements for the corrosion resistance of
pipelines have also been improved. One suggestion is that under the condition that partial
removal of BPA is allowed in the pretreatment stage, it can be considered to degrade BPA
at pH 6.5.
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Figure 10. (a) Reaction temperature vs. BPA removal by Fe(II); and (b) reaction temperature vs. BPA
removal by Fe(0). [BPA] = 5 mg/L, [PS] = 0.2 mM, [Fe(II)] = 0.1 g/L, [Fe(0)] = 0.1 g/L, T = 20 ± 1 ◦C.

SO•−4 + OH− → SO2−
4 + OH• (9)

Fe3+ + 3OH− → Fe(OH)3 (10)

The kinetic equations for the degradation of BPA by the Fe(II)/PS and Fe(0)/PS
systems at different pH values are given in Figure 11a,b, respectively. The BPA degra-
dation curves satisfied the pseudo first-order kinetic equation (R2 ≥ 0.89857) except for
the degradation of BPA by the Fe(0)/PS system at pH 9. The maximum kinetic constant
(0.02818 (mg/L)−1min−1) appeared in the Fe(0)/PS system at pH 5.
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2.6. Quenching Experiments and Mechanism Analysis

In order to identify which type of free radicals appeared in the reaction, methanol
(Me(OH)) and tert-Butyl alcohol (TBA) were used as extinguishing agents to investigate
the degree of inhibition of the chemical reaction. MeOH is an effective scavenger for both
•OH (k = 9.7 × 108 M−1 s−1) and SO4

•− (k = 1.1 × 107 M−1 s−1), while TBA is an effective
scavenger for •OH (k = 6.0 × 108 M−1 s−1), but not for SO4

•− (k = 9.1 × 105 M−1 s−1) [45].
Figure 12a,b exhibits BPA degradation in the presence of either MeOH or TBA in the
Fe(II)/PS and Fe(0)/PS systems, respectively. Both MeOH and TBA were found to inhibit
BPA degradation in both systems. The inhibitory effect of Me(OH) on the two systems
was greater than that of TBA. It suggested that both SO4

•− and •OH played roles in the
oxidation of BPA in the two systems.
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[BPA] = 5 mg/L, [PS] = 0.2 mM, [Fe(II)] = 0.1 g/L, [Fe(0)] = 0.1 g/L, T = 20 ± 1 ◦C.

Figure 13 depicts the mechanism of PS activation and BPA degradation in the presence
of Fe(II) and [Fe(0)] catalysts. In the Fe(0)/PS system, Fe(0) is first transformed into Fe(II)
through three pathways (Equations (3)–(5)), thus playing the role of activating PS. In
the Fe(II)/PS system, the dissolved Fe(II) directly undergoes a redox reaction with PS to
generate SO4

•− and Fe(III) (Equation (2)). Fe(III) can be transformed into Fe(II) with the
gain of an electron. Therefore, Fe(II) and Fe(III) in solution can stably activate PS if they
are in a sustainable equilibrium. At the same time, when the OH− concentration in the
solution is high, it can react with SO4

•− to generate hydroxyl radicals, which also has a
good oxidation effect on organic matter. Therefore, under the combined action of SO4

•−

and •OH, BPA can be oxidized and the final products will be H2O and CO2.
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2.7. Comparison of This Study with Other Studies

There are also some previous studies on the degradation of pollutants by Fe(II)/PS
and Fe(0)/PS systems. Some examples of representative literature were selected and are
listed in Table 1, and they were compared with the research results of this paper. From
the perspective of the removal rate of target pollutants, the removal rates obtained in
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these studies are all concentrated at about 70%. The degradation efficiency of the two
systems for BPA in this paper is also comparable to other systems. These target pollutants
are recalcitrant organic substances. Thus, to achieve 100% degradation, it is necessary to
increase the amount of oxidant and catalyst and control the temperature and pH of the
reaction within an appropriate range. During the pretreatment of source water, it can also
be considered to control the BPA removal rate at around 70%.

Table 1. Comparison with related process treatment effects in the relevant literature.

System Reaction Conditions and Pollutant Removal Rate Ref.

Fe(II)/PS [acetaminophen (ACT)] = 0.05 mM, [Fe(II)] = 1 mM,
[PS] = 0.8 mM, pH = 3.0, T = 20 ◦C, t = 30 min, 70% ACT removed. [45]

Fe(II)/PS [carbamazepine (CBZ)] = 0.025 mM, [Fe(II)] = 0.25 mM, [PS] = 0.25 mM, pH = 3.0, t = 40 min,
57% CBZ removed. [46]

Fe(II)/PS [diatrizoate (DTZ)] = 5 mg/L, [Fe(II)] = 1 mM,
[PS] = 10 mM, pH = 3.0, T = 25 ◦C, t = 120 min, 69% DTZ removed. [47]

Fe(II)/PS [trimethoprim (TMP)] = 0.05 mM, [Fe(II)] = 4 mM,
[PS] = 4 mM, pH = 3.0, T = 25 ◦C, t = 240 min, 73% TMP removed. [48]

Fe(II)/PS [propachlor] = 10 mg/L, [Fe(II)] = 2.5 mM,
[PS] = 5 mM, pH = 4.0, T = 30 ◦C, t = 32 h, 60% propachlor removed. [49]

Fe(II)/PS [BPA] = 5 mg/L, [Fe(II)] = 0.1 g/L,
[PS] = 0.2 mM, pH = 5.0, T = 20 ◦C, t = 60 min, 65% BPA removed. this study

Fe(0)/PS [p-chloroaniline (PCA)] = 0.05 mM, [Fe(0)] = 0.7 g/L,
[PS] = 2.5 mM, pH = 7.0, T = 25 ◦C, t = 300 min, 65% PCA removed. [50]

Fe(0)/PS [aniline] = 0.05 mM, [Fe(0)] = 0.3 g/L,
[PS] = 2.5 mM, pH = 7.0, T = 25 ◦C, t = 300 min, 72% aniline removed. [51]

Fe(0)/PS [imidacloprid (IMI)] = 30 mg/L, [Fe(0)] = 1 g/L,
[PS] = 5 mM, pH = 7.0, T = 25 ◦C, t = 60 min, 87% IMI removed. [52]

Fe(0)/PS [chloramphenicol (CAP)] = 0.05 mM, [Fe(0)] = 0.125 mM,
[PS] = 1 mM, pH = 5.4, T = 25 ◦C, t = 80 min, 69% CAP removed. [53]

Fe(0)/PS [Acid Orange 7 (AO7)] = 30 mg/L, [Fe(0)] = 0.5 g/L,
[PS] = 0.3 g/L, pH = 5.8, T = 22 ◦C, t = 20 min, 38% AO7 removed. [54]

Fe(0)/PS [BPA] = 5 mg/L, [Fe(0)] = 0.1 g/L,
[PS] = 0.2 mM, pH = 5.0, T = 20 ◦C, t = 60 min, 85% BPAremoved. this study

3. Materials and Methods
3.1. Materials

The chemicals used in the experiment are summarized in Table 2. The purity of the
chemicals is at least analytically pure. The solutions used in the experiments were prepared
using ultrapure water.

Table 2. Chemicals used in this study.

Chemical Molecular
Formula Provider

Bisphenol A C15H16O2 McLean Biochemical Technology Co., Ltd., Shanghai, China
Iron powder Fe McLean Biochemical Technology Co., Ltd., Shanghai, China

Ferrous sulfate heptahydrate FeSO4·7H2O Silong Science Co., Ltd., Shantou, China
Sodium persulfate Na2S2O8 National Pharmaceutical Group Chemical Reagent Co., Ltd., Shanghai, China
Sodium hydroxide NaOH Jindong Tianzheng Fine Chemical Reagent Factory, Tianjin, China

Sulfuric acid H2SO4 Beijing Chemical Reagents Factory, Beijing, China
Methanol CH3OH Chengdu Kolon Chemical Co., Ltd., Chengdu, China

tert-Butyl alcohol C4H10O Chengdu Kolon Chemical Co., Ltd., Chengdu, China

3.2. Methods

A BPA stock solution of 1000 mg/L was prepared with ultrapure water and then
diluted according to the concentration needed for the experiment. A beaker with a certain
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concentration of BPA solution was placed on a magnetic stirrer (200 r/min) and stirred for
20 min (to allow the solution to reach the desired initial temperature), and then a certain
amount of Fe(II) (or Fe(0)) and PS was added to the beaker to initiate the reaction. At
this point, the time was started and samples were taken every 10 min. The sample was
filtered through a 0.22 µm filter membrane and injected into a sample vial, to which 0.5 mL
of methanol was added to terminate the reaction. The sample vials were put into high
performance liquid chromatography (HPLC, G7121A, Agilent Technologies Inc., Beijing,
China) to detect the concentration of BPA. Sulfuric acid and sodium hydroxide were used
to adjust pH of BPA solution, and different temperatures were achieved by activating the
heating button on the magnetic stirrer.

4. Conclusions

In this study, PS activated by the homogeneous catalyst Fe(II) and heterogeneous
catalyst Fe(0) were used to degrade the representative endocrine disruptor BPA in water,
and the following conclusions were drawn.

1. The degradation effect of BPA was similar for both systems (Fe(II)/PS and Fe(0)/PS),
and the Fe(0)/PS system had an advantage in the slow release of Fe(II), which was
less likely to cause Fe(II) overload resulting in the consumption of free radicals.

2. The concentrations of oxidant, catalyst, and substrate had a large influence on the reac-
tion, and the concentration ratio among them was very important for the degradation
of BPA.

3. Temperature and pH were important factors affecting the reaction. A lower pH (5.0)
was very suitable for the degradation of BPA in both systems. High temperature
could enhance the degradation of BPA due to the synergistic activation of PS by an
iron catalyst and thermal energy.

4. Most of the kinetic equations for BPA degradation under different conditions followed
pseudo first-order kinetic equations and were highly correlated.
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