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Abstract: Advanced photocatalysts that can utilize solar energy for water purification applications
are always needed. The present article reports a facile fabrication of tungsten oxide (WO3)/bismuth
oxychloride (BiOCl) immobilized on polyaniline (PAn) (BiOCl/WO3@PAn) heterojunction nanocom-
posite photocatalyst. The designed nanocatalyst was tested for 2-chlorophenol (2-CP) decontami-
nation from the aquatic system. Synthesized WO3, BiOCl, and BiOCl/WO3@PAn nanocomposites
were distinguished via UV-DSR, photoluminescence, SEM, TEM, XRD, and XPS analysis. The combi-
nation of PAn with WO3 and BiOCl showed a synergistic impact on the photocatalytic efficiency of
the BiOCl/WO3@PAn nanocomposite. The synthesized BiOCl/WO3@PAn nanocomposite showed
higher visible light absorption behavior and bandgap energy reduction than the WO3 and BiOCl.
The obtained data shows that 2-CP photocatalysis by the BiOCl/WO3@PAn is controlled by degra-
dation time, pH, and pollutant amount in the solution. The highest photocatalytic degradation of
2-CP (99.7%) was recorded at pH 5 and 25 mg/L concentration within 240 min. The photocatalysis
mechanism and active radical scavenging study discovered that •O2

− and •OH, were responsible
for the 2-CP mineralization onto the BiOCl/WO3@PAn nanocomposite. The BiOCl/WO3@PAn
nanocomposite showed enhanced decontamination properties over pristine catalysts. The reusability
of the synthesized BiOCl/WO3@PAn nanocomposite was evaluated. It found that the photocatalyst
could be recycled for up to four cycles for 2-CP degradation without significantly losing the photocat-
alytic properties. The fabricated BiOCl/WO3@PAn nanocomposite catalyst presented exceptional
catalytic and recycling properties, indicating an effective method for scavenging hazardous organic
contaminants under solar irradiation and green technology for wastewater purification.

Keywords: photocatalysis; 2-chlorophenol; BiOCl/WO3@PAn nanocomposite; wastewater
purification

1. Introduction

Globally, natural water resources are facing contamination problems due to the mixing
of unwanted substances [1,2]. Urbanization, industrialization, and anthropogenic activ-
ities such as releasing solvents, drugs, radioactive materials, and industrial wastes are
directly or indirectly responsible for increasing water pollutants [3,4]. The wastewater
from manufacturing, petroleum refineries, and textile industries is primarily accountable
for hazardous organic pollutants, including dyes, phenol, and their derivatives [5–7]. The
2-chlorophenol is generated from oil refinery industries, and it is hazardous from 1 mg/L,
thus having harmful effects on the living organism in the aquatic environment [8]. There-
fore, reducing the concentration of 2-CP is needed to remove wastewater by applying
appropriate methods.

Different treatment methods, including catalytic oxidation, adsorption, liquid–liquid
extraction, thermal oxidation, distillation, membrane separation, photocatalysis, etc., have
been used to scavenge 2-chlorophenol from wastewater [9–12]. An appropriate treatment
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method selection depends on potential techniques’ operating cost and removal efficiency.
Photocatalytic oxidations have gained the great attention of scientists due to their removal
efficiency of organic pollutants and the capacity of water, mineral ions, and carbon diox-
ide production as the product [13,14]. Therefore, researchers are using this method for
water treatment and hydrogen production. Among other processes, photocatalysis using
semiconductor materials is considered an efficient and advanced photochemical oxidation
method for scavenging organic pollutants due to chemical stability, low cost, and capacity
for complete mineralization. [15–17].

Semiconductor photocatalysis is one of the advanced photooxidation processes in
which hydroxyl radicals are produced without using chemical reagents [18]. The hydroxyl
radical with 2.8 V as a high oxidation potential can sharply trigger contaminates in wastew-
ater for complete removal. In addition, semiconductors are promising photocatalysts
because of their narrow bandgap energy (Ebg) among conduction and valence bands (CB
and VB). To enhance the utilization capacity of visible light, the energy bandgap of potential
catalysts and visible light should be within the range of 3.0 eV [19]. Researchers are using
numerous semiconductor photocatalysts, including titanium oxide (TiO2), copper (II) oxide
(CuO), bismuth oxychloride (BiOCl), tungsten oxide (WO3), etc. [20–22].

Among other semiconductor photocatalysts, WO3 has a narrow bandgap (Eb 1.5–2.8 eV)
and is a potential candidate for photocatalysis due to its exciting properties, including
chemical, electrochemical, and optical features [23]. Compared to the other catalysts, tung-
sten oxide showed excellent chemical stability in triggering solar irradiation, promising
photocorrosion resistance, and absorbing a wide range of visible spectrums [24]. On the
other hand, a layered photocatalyst, bismuth oxychloride (BiOCl), has been explored as
an eco-friendly candidate for environmental remediation because of its open crystal struc-
ture, nontoxicity, indirect-transition band, and excellent chemical stability and corrosion
resistance [25]. Some researchers reported that semiconductor photocatalysts had shown
some disadvantages, including swift recombination of electron–hole pairs, thus losing their
photocatalytic performance, even though these are considered superior photocatalysts for
the degradation of organic pollutants [26]. Therefore, to overcome such weaknesses of
conventional semiconductor photocatalysts, scientists are trying to introduce novel com-
posite photocatalysts using different catalysts, including polymer-like polyaniline (PAn).
In polymeric semiconductors, the polyaniline showed excellent optoelectronic and photo-
physical properties, including stability in excited states, tunable bandgap, extended surface
area, thermal stability, chemical inertness, and high absorption area, etc. The presence
of σ and π bond electronic cloud system in PAn shows a lower bandgap energy of 1.5
to 2.8 eV, and under light irradiation, it can act as an effective photosensitizer [14,27]. A
literature review demonstrated that few articles had been published on synthesizing the
binary composite of polyaniline/WO3 and polyaniline/BiOCl in sensing, catalysis, and
electrochromic applications [28,29]. Based on previous studies, a ternary composite of WO3,
BiOCl, and polyaniline could be an excellent semiconductor photocatalyst for decomposing
toxic chemicals in wastewater under natural solar light.

This study aimed to prepare a bismuth oxychloride/tungsten oxide@polyaniline
(BiOCl/WO3@PAn) nanocomposite for the degradation of 2-CP from wastewater under
solar light irradiation. The synthesized photocatalysts WO3, BiOCl, and BiOCl/WO3@Pan
nanocomposite were characterized using scanning electron microscopy (SEM), X-ray diffrac-
tion (XRD), energy-dispersive X-ray spectroscopy (EDX) and photoluminescence spec-
troscopy (PL). Different operational factors, including the effect of solution pH, initial
concentration, and reaction time, were evaluated for 2-CP photocatalytic degradation. The
novelty of the BiOCl/WO3@PAn nanocomposite is that integration of the semiconducting
properties of the BiOCl, WO3, and polyaniline and reduction of bandgap energy to enhance
the photocatalytic properties in solar light.
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2. Results and Discussion
2.1. Characterization of Photocatalysts

The surface morphology of synthesized photocatalysts, WO3, BiOCl, and BiOCl/
WO3@PAn nanocomposite are depicted in Figure 1. The agglomerated irregular shape
particle cluster of WO3 can be seen in Figure 1a. Similar morphology of WO3 is reported in
earlier studies [30]. The SEM image of the BiOCl (Figure 1b) demonstrates the sheet-like
morphology with different shapes and sizes. The morphology of the BiOCl/WO3@PAn
nanocomposite is depicted in Figure 1c, which shows the well-distributed BiOCl covered
with WO3@Pan, indicating successful fabrication of BiOCl/WO3@PAn nanocomposite.
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The elemental fractions of fabricated photocatalysts are also shown in Figure 1d–f.
Compositions of chemical elements in the WO3, BiOCl, and BiOCl/WO3@PAn nanocom-
posite were analyzed using energy-dispersive X-ray spectroscopy (EDX). The EDX analysis
of WO3 (Figure 2d) confirmed the existence of O and W with respective fractions of 77.94%
and 22.06% (atomic %). The chemical elements in BiOCl are O (25.15%), Cl (22.35%), and
Bi (52.50%) (Figure 2e). The elementals observed in BiOCl/WO3@PAn nanocomposite
Figure 2f showed the existence of C, N, O, Cl, W and Bi with fractions of 43.9%, 1.8%,
38.2%, 3.61%, 8.85%, and 3.31%, respectively, which assured the successful fabrication of
BiOCl/WO3@PAn nanocomposite.
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Figure 2. (a,b) TEM images, (c) HR-TEM image, and (d) SEAD pattern of BiOCl/WO3@PAn
nanocomposite.

The interaction and interfaces between the BiOCl, WO3, and PAn in BiOCl/WO3@PAn
nanocomposite were further observed using the TEM. The TEM images of the BiOCl/WO3@PAn
nanocomposite are shown in Figure 2. The distribution of the BiOCl, WO3, and PAn in
BiOCl/WO3@PAn nanocomposite can be seen in Figure 2a, showing some sheet-like struc-
ture surrounded by the WO3 and PAn particles. Figure 2b shows the better morphology
of the BiOCl/WO3@PAn nanocomposite, demonstrating the good interactions between
large BiOCl nanosheets and elongated WO3 particles and PAn particles well matching
with the SEM results. The HR-TEM images in Figure 2c show the lattice fringes of (020)
planes belonging to WO3 surrounded by a noncrystalline PAn matrix. The SEAD pat-
tern of the BiOCl/WO3@PAn nanocomposite shows the polycrystalline nature of the
synthesized catalyst.

The phase structure of the fabricated photocatalysts WO3, BiOCl, and BiOCl/WO3@PAn
nanocomposite were analyzed using X-ray powder diffraction (XRD). The obtained spec-
trum is illustrated in Figure 3. The XRD pattern of WO3 reflected peaks at 2 θ◦ indexed
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panels are 14.08 (100), 23.03 (001), 24.19 (020), 27.02 (101), 28.08 (200), 36.64 (201), 50.08 (220),
55.80 (221), 58.12 (400) and 63.33 (401) those are matching with the JCPDS-card number
00-035-1001 in the form of tungsten oxide hydrate. The XRD pattern of BiOCl showing
the peaks at corresponding 2 θ◦ planes is 11.98 (001), 24.16 (002), 25.82 (101), 32.51 (110),
33.41 (102), 40.86 (112), 46.64 (200), 48.40 (201), 49.61 (113), 52.43 (202), 54.05 (211), 58.62
(212), 60.66 (114), 75.16 (301) and 77.67 (310) those are in the form of bismoclite, bismuth
oxide chloride matching with JCPDS card number-00-003-1126, 00-006-0249, 00-003-1125,
respectively [31]. The obtained peaks for BiOCl/WO3@PAn nanocomposite illustrated
in Figure 2 detected at 2 θ◦ are 11.98 (001), 22.95 (001), 24.19 (020), 25.86 (101), 27.7 (120),
32.51 (110), 33.55 (102), 36.63 (030), 44.44 (230), 46.63 (200), 49.76 (040), 54.16 (211) and 55.79
(041) belongs to the BiOCl and WO3 in the BiOCl/WO3@PAn nanocomposite. The XRD
pattern of WO3/BiOCl/PAn nanocomposite showed similar reflection peaks as observed
for tungsten oxide, bismoclite, and bismuth oxide chloride, with a little shift in the peak
position and intensity. The peak for the polyaniline was not observed due to its amorphous
nature and small amount [2].
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Figure 3. XRD patterns of BiOCl, WO3, and BiOCl/WO3@PAn nanocomposite.

The XPS analysis of BiOCl/WO3@PAn nanocomposite, presented in Figure 4, exhibited
the existence of C1s, O1s, W4f, N1s, Bi4f, Cl2p, etc., with the corresponding peaks and
the percentage of chemical elements—carbon (49.7%), oxygen (32.3%), tungsten (7.8%),
nitrogen (5.8%), bismuth (3.3%), and chlorine (1.1%)—as depicted in the wide survey scan
in Figure 4a. The C1s spectra can be deconvoluted into 284.59, 285.84, and 288.95 eV peaks,
as illustrated in Figure 4b. The O1s spectra contain two corresponding peaks at 530.91 and
532.21 eV, as depicted in Figure 4c. On the other hand, two peaks at 34.05 and 36.14 eV
were recorded for W4f, as presented in Figure 4d. In addition, the other two peaks were
deconvoluted into 401.88 and 403.91 eV for N1s spectra, as illustrated in Figure 4e. The
Bi 4f spectrum is exhibited in Figure 4f with corresponding four spectra at 158.90, 159.89,
164.22, and 165.09 eV [32]. The Cl2p spectra were shown in Figure 4g of three peaks at
198.54, 200.01, and 201.61 eV. The chemical elements of C, O, N, W, Bi, and Cl, with their
corresponding peaks and spectrum, confirm the successful fabrication of BiOCl/WO3@PAn
nanocomposite [33].
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The light absorption properties of the BiOCl, WO3, and BiOCl/WO3@PAn nanocom-
posite were observed using UV-visible absorbance and photoluminescence spectroscopy.
The UV-visible absorption spectra of the BiOCl, WO3, and BiOCl/WO3@PAn nanocom-
posite are depicted in Figure 5a. The observed spectra reveal that BiOCl/WO3@PAn
nanocomposite showed the highest absorption of light in the visible region, while BiOCl
and WO3 showed absorption edges around 380 nm and 410 nm. The absorption peak
edge for BiOCl/WO3@PAn nanocomposite is around 580 nm, indicating that coupling of
the BiOCl, WO3, and PAn enhances the light absorption properties of the catalyst, which
may favor the decomposition of the organic pollutants. A continuous increase in light
absorption is mainly due to the polyaniline, which helps in the absorption of more photons
from the solar spectrum, separates the produced electrons and holes, and generates more
active radical species for the decomposition of the pollutant molecules [34]. The reduction
in the bandgap energy of the BiOCl/WO3@PAn nanocomposite compared to BiOCl and
WO3 indicates that the nanocomposite could be a more effective photocatalyst (Figure 5b,c).
To confirm the reduction in the charge recombination, PL analysis of the BiOCl, WO3, and
BiOCl/WO3@PAn nanocomposite was performed, and the results are demonstrated in
Figure 5d. The PL spectrum indicated the highest intensity for BiOCl and lowest intensity
for BiOCl/WO3@PAn nanocomposite, suggesting a reduction in the recombination rate of
the photogenerated species [35].

2.2. Photocatalytic Studies

Photocatalytic degradation of 2-CP was evaluated under sunlight illumination using
0.05 g of catalyst in 100 mL of 25 mg/L 2-CP concentration at pH-5 for 4 h reaction time.
The adsorption was conducted for the initial 30 min to establish the equilibrium under the
dark condition. Parallel photolysis of 2-CP (without catalysts) was also investigated under
sunlight irradiation. The experimental results are displayed in Figure 6a, the 2-CP degrada-
tion using BiOCl, WO3, and BiOCl/WO3@PAn nanocomposite was significantly higher
than the photolysis. About 99.58% 2-CP removal efficiency was attained by fabricated
BiOCl/WO3@PAn nanocomposite, which is much higher than the BiOCl, and WO3. The
BiOCl/WO3@PAn photocatalyst shows high removal capacity due to enhanced visible light
absorption properties and narrow bandgap energy than BiOCl, and WO3 [33]. The bandgap
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energy of the BiOCl, WO3, and BiOCl/WO3@PAn nanocomposite were observed from
plot 5b as 3.42 eV, 2.9 eV, and 2.33 eV. The lower bandgap energy of the BiOCl/WO3@PAn
nanocomposite suppresses the recombination of the electron–hole pair and produces a
large number of active radicals for the decomposition of the 2-CP molecules [36]. The
interfacial contact between BiOCl, WO3, and PAn considerably enhances the surface charge
separation and plays a synergistic effect to enhance the photocatalytic property of the
BiOCl/WO3@PAn nanocomposite. Under solar light irradiation, photogenerated electrons
moved from the valance band (VB) to the conduction band (CB) of the semiconductor pho-
tocatalyst and moved quickly to the CB of BiOCl and WO3, thus successfully suppressing
the recombination of the charged electrons and holes [33,36].

Catalysts 2023, 13, 175 7 of 16 
 

 

Figure 5d. The PL spectrum indicated the highest intensity for BiOCl and lowest intensity 

for BiOCl/WO₃@PAn nanocomposite, suggesting a reduction in the recombination rate of 

the photogenerated species [35]. 

 

Figure 5. (a) UV-visible absorbance spectra, (b,c) plots for the bandgap energy analysis, and (d) 

photoluminescence spectra of the BiOCl, WO₃ and BiOCl/WO₃@PAn nanocomposite. 

2.2. Photocatalytic Studies 

Photocatalytic degradation of 2-CP was evaluated under sunlight illumination using 

0.05 g of catalyst in 100 mL of 25 mg/L 2-CP concentration at pH-5 for 4 h reaction time. 

The adsorption was conducted for the initial 30 min to establish the equilibrium under the 

dark condition. Parallel photolysis of 2-CP (without catalysts) was also investigated under 

sunlight irradiation. The experimental results are displayed in Figure 6a, the 2-CP degra-

dation using BiOCl, WO₃, and BiOCl/WO₃@PAn nanocomposite was significantly higher 

than the photolysis. About 99.58% 2-CP removal efficiency was attained by fabricated Bi-

OCl/WO₃@PAn nanocomposite, which is much higher than the BiOCl, and WO₃. The Bi-

OCl/WO₃@PAn photocatalyst shows high removal capacity due to enhanced visible light 

absorption properties and narrow bandgap energy than BiOCl, and WO₃ [33]. The 

bandgap energy of the BiOCl, WO₃, and BiOCl/WO₃@PAn nanocomposite were observed 

from plot 5b as 3.42 eV, 2.9 eV, and 2.33 eV. The lower bandgap energy of the Bi-

OCl/WO₃@PAn nanocomposite suppresses the recombination of the electron–hole pair 

Figure 5. (a) UV-visible absorbance spectra, (b,c) plots for the bandgap energy analysis, and
(d) photoluminescence spectra of the BiOCl, WO3 and BiOCl/WO3@PAn nanocomposite.



Catalysts 2023, 13, 175 8 of 15Catalysts 2023, 13, 175 9 of 16 
 

 

 
Figure 6. (a) Photocatalytic properties of BiOCl, WO₃ and BiOCl/WO₃@PAn for the decomposition 

of 2-CP under solar light irradiation. (b) Pseudo-first-order kinetic plot of 2-CP degradation. (c) 

Degradation of the 2-CP onto BiOCl/WO₃@PAn over a wide range of solution pH. (d) Effect of 2-CP 

Figure 6. (a) Photocatalytic properties of BiOCl, WO3 and BiOCl/WO3@PAn for the decomposi-
tion of 2-CP under solar light irradiation. (b) Pseudo-first-order kinetic plot of 2-CP degradation.
(c) Degradation of the 2-CP onto BiOCl/WO3@PAn over a wide range of solution pH. (d) Effect of
2-CP concentration on the BiOCl/WO3@PAn efficiency. (e) Photocatalytic degradation of 2-CP onto
BiOCl/WO3@PAn in the presence of active radical scavengers.
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The photocatalytic degradation kinetics of 2-CP onto BiOCl, WO3, and BiOCl/WO3@PAn
nanocomposite was investigated by fitting the kinetics data to the pseudo-first-order
kinetic model:

−ln (C/C0) = kap t (1)

where C0 and C are the 2-CP concentration (mg/L) at initial and after time t. kap is
the apparent rate constant. Figure 6b shows the kinetic plot of the 2-CP degradation.
The rate constant kap values are 0.0061, 0.0076, and 0.021 min−1 for BiOCl, WO3, and
BiOCl/WO3@PAn nanocomposite. The most effective rate constant kap value was obtained
for BiOCl/WO3@PAn nanocomposite, indicating that synthesized nanocomposite is the
most suitable catalyst for the degradation of 2-CP.

The solution pH is one of the vital parameters of photocatalysis. The pH influences the
degradation of targeted pollutants due to photocatalyst interaction and surface charges [36].
The surface interactions between the BiOCl/WO3@PAn nanocomposite and 2-CP molecules
affect the degradation process under solar light illumination. To evaluate the effect the
solution pH on 2-CP degradation onto BiOCl/WO3@PAn nanocomposite, the photocat-
alytic activity was investigated at the pH value (3, 5, 7, 9) at an initial 2-CP concentration
of 25 mg/L and 0.05 g of photocatalyst for a 100 mL sample. The experimental results in
Figure 5c showing the maximum 2-CP degradation were recorded at pH 3–7. Thereafter,
the degradation decreases with increases of pH value up to 9. The mechanism behind the
higher decomposition at acidic and neutral pH can be interpreted based on the pKa of 2-CP,
which is ≈8.5. The 2-CP molecules exist as neutral species at the pH below pKa values and
do not show any repulsion with BiOCl/WO3@PAn nanocomposite [37]. With the rise in
the solution pH above 8.5, a negative charge is generated on 2-CP due to deprotonation,
which showed the electrostatic repulsion with the BiOCl/WO3@PAn nanocomposite [38].
Therefore, less decomposition was recorded due to the lack of interaction between 2-CP
and BiOCl/WO3@PAn nanocomposite.

The photocatalytic activity of BiOCl/WO3@PAn nanocomposite was examined at dif-
ferent concentrations of 2-CP (25 to 100 mg/L). The experiment was conducted at pH 5 with
0.05 g BiOCl/WO3@PAn mass in 100 mL of solution. The 2-CP degradation decreased with
increases in concentration, as displayed in Figure 6d. The lower concentration (25 mg/L)
of 2-CP was favorable for maximum degradation (99.7%), and degradation gradually
decreased with increases in pollutant concentration. BiOCl/WO3@PAn nanocomposite
activity declined as higher pollutant concentration increased the viscosity and decreased op-
tical density, which reduced the penetration of the photons into the solution, subsequently
decreasing the photoexcitation of electrons [39].

To evaluate the effect of active radical scavengers on 2-CP degradation with the
BiOCl/WO3@PAn nanocomposite, an experiment was conducted in the presence of ethanol
and potassium persulfate (K2S2O8) at pH 5 and 25 mg/L of concentration and 0.05 g
catalyst in a 100 mL sample [40]. The results illustrated in Figure 6e indicated that the
2-CP degradation dramatically decreased in the presence of K2S2O8, as only 26% removal
occurred while 99.7% degradation was attained without any scavengers. On the other hand,
90% of 2-CP degradation was recorded in the presence of ethanol, which was closer to the
actual degradation of 2-CP using BiOCl/WO3@PAn nanocomposite. K2S2O8 is an •O2

−

scavenger (superoxide radical), and ethanol is an •OH scavenger (hydroxyl radical). The
results demonstrated that photocatalytically produced superoxide radicals absorbed by the
K2S2O8 resulted in a noticeable reduction in the degradation process, while the presence of
ethanol slightly decreased the photocatalysis of 2-CP. These results suggested that •O2

−

radicals are the main active species involved in decomposition process.

2.3. Reusability of BiOCl/WO3@PAn Nanocomposite

The reusability of photocatalysts is one of the vital characteristics of commercial use.
The reusability of BiOCl/WO3@PAn nanocomposite was evaluated for 2-CP degradation
under optimum conditions. The used BiOCl/WO3@PAn nanocomposite was washed with
deionized water and dried at 80 ◦C before reuse. Experimental results are shown in Figure 7,
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indicating that BiOCl/WO3@PAn nanocomposite is effective after fourfold reuse. The
efficacy of the BiOCl/WO3@PAn nanocomposite in 2-CP degradation negligibly decreased
with the number of cycles. These results suggest that BiOCl/WO3@PAn nanocomposite is
stable and can be used several times.
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Figure 7. The reusability of BiOCl/WO3@PAn nanocomposite for 2-CP degradation (conc. 25 mg/L,
pH-5, catalyst mass 0.05 g, volume 100 mL, time 4 h.).

2.4. Photocatalysis Mechanism

The photocatalytic decomposition mechanism of the 2-CP onto BiOCl/WO3@PAn
nanocomposite is shown in Figure 8. The optical analysis results demonstrated that
BiOCl/WO3@PAn nanocomposite has the lowest bandgap energy (2.33 eV) compared
to BiOCl (3.42 eV) and WO3 (2.9 eV). Under solar light illumination, the photogenerated
electrons and holes move according to the scheme presented in Figure 8. The photogen-
erated electrons from HOMO of PAn migrated to its LUMO [41]. These electrons further
shifted to the conduction band of BiOCl. The electrons from CB of BiOCl transferred to the
CB of WO3. At the same time, h+ from VB of WO3 went to VB of BiOCl and to HOMO
of the PAn. The separation and transfer of the charge species are very fast and give the
active radical species. The •O2

− are produced by the interaction of excited e− with O2 on
BiOCl/WO3@PAn nanocomposite surface. Similarly, •OH radicals are produced by the h+

after the reaction with H2O molecules [42,43]. A detailed reaction mechanism for the active
radical generation is shown in the following equations.

BiOCl/WO3@PAn + hv→ BiOCl/WO3@PAn (e− + h+)

BiOCl/WO3@PAn (e−) + O2 → •O2
−

BiOCl/WO3@PAn (h+) + H2O→ •OH
•OH/•O2

− + 2-CP→ decomposed products
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2.5. Comparison of Photocatalytic Properties

The comparison of the photocatalytic properties of various photocatalysts with the
BiOCl/WO3@PAn nanocomposite for 2-CP decomposition is summarized in Table 1. Pho-
tocatalysis is highly dependent on experimental conditions. Therefore, a comparison of
the photocatalytic properties of various photocatalysts and experimental conditions is
included in Table 1. The results demonstrated that BiOCl/WO3@PAn nanocomposite is
highly efficient compared to previously reported photocatalysts.

Table 1. Comparison of the various catalysts’ photocatalytic properties for 2-CP decomposition.

Photocatalysts/Materials Photocatalytic
Efficiency (%)

Conditions

Ref.
Source of light pH Mass

(g)
Time
(min.)

Conc.
(mg/L)

NiO@Pani-MoS2 thin film 90 Solar light 7.0 0.03 60 25 [44]

Carbon nitride-titania nanotubes 70.25 Visible light 7.0 0.05 180 40 [45]

Carbon nitride-titania nanotubes 25.02 UV light 7.0 0.05 180 40 [45]

5% Ag-doped TiO2 74 UV light 10.5 0.005 150 50 [45]

0.2% Ru/TiO2 53 UV light 6.0 0.002 - 100 [46]

ZnO/Clay 88 Solar light 8.7 0.2 - 20 [47]

CuO–GO/TiO2 68 Visible light 5.0 0.5 180 100 [48]

Rb0.27WO3 39 Visible light 7.0 0.05 210 80 [49]

NiFe-CLDH 45 Visible light 7.0 0.05 210 80 [49]

Carbon nanomaterials (CNMs) 79.64 Solar light 6.3 0.01 160 5 [50]

BiOCl/WO3@PAn 99.7 Solar light 5 0.05 240 25 This study
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3. Materials and Methods
3.1. Chemicals and Instrumentation

The polyaniline was prepared using the pure grade of aniline (Sigma-Aldrich Co.,
USA) and ammonium persulfate (NH4)2S2O8 (BHD Chemical, Poole, England). The other
chemicals, such as sodium bismuthate (NaBiO3) and sodium tungstate (Na2WO4·2H2O),
were purchased as analytical grade (Sisco Research Laboratories Pvt. Ltd. India). The
initial pH of 2-CP was adjusted by 1.0 M NaOH and/or HCl using a sensoin + PH3 m
(Spain). Photocatalytic studies were performed under continuous stirring with a Scilogex
LED magnetic digital stirrer under visible solar illumination. Surface morphology and
texture of WO3, BiOCl, and BiOCl/WO3@PAn nanocomposite were characterized by
scanning electron microscopy using JSM-7500 F, JEOL, Japan. The crystal structure of
photocatalysts was analyzed by X-ray powder diffraction (XRD) using a Rigaku Ultima
IV, Tokyo, Japan. The chemical characterization and elemental analysis of materials were
recorded using energy-dispersive X-ray spectroscopy (EDX). Photoluminescence spectra
(PLS) of WO3, BiOCl, and BiOCl/WO3@PAn nanocomposite were measured with an
RF-5301PC Shimadzu, Kyoto, Japan, spectrofluorophotometer.

3.2. Synthesis of BiOCl/WO3@PAn Nanocomposite

The polyaniline was prepared by adding 1.1 mL pure aniline in 40 mL of HCl (0.25 M)
in an ice bath. An equimolar of ammonium persulfate prepared in 0.25 M HCl was
mixed dropwise under continuous stirring for four hours. After some time, a blue-green
precipitate of polyaniline was formed. A solution of sodium tungstate (0.9 g) and sodium
bismuthate (0.4 g) prepared in 20 mL of 0.25 M HCl in a separated beaker was subsequently
mixed with polyaniline solution under stirring for 40 min. Afterward, the material was
heated at 120 ◦C for 30 min. Finally, the resultant photocatalyst was washed several times
with deionized water and acetone, dried at 80 ◦C, and stored for photocatalytic studies.
The dried mass of the BiOCl/WO3@PAn nanocomposite was about 1.3 g, containing about
23.09% BiOCl, 34.61% WO3, and 42.30% PAn.

3.3. Photocatalytic Studies

Photodegradation studies were conducted with 0.05 g of photocatalysts in a 100 mL
solution of 25 mg/L 2-CP concentration under natural sunlight illumination, continuous
aeration, and shaking conditions. The dark adsorption experiments were also performed to
find the equilibrium time by mixing 0.05 g of catalyst in 100 mL 2-CP solution of 25 mg/L
concentration. The photolysis and photocatalysis of 2-CP degradation were investigated un-
der continuous stirring and aeration conditions in solar light. The temperatures (31 ± 2 ◦C),
humidity (42 ± 7%), and solar radiation intensity (822 × 102 ± 92 lux) were recorded
during experiments. The consequences of solution pH on 2-CP photocatalytic degradation
were evaluated in the pH range of 3–9 using 0.05 g catalyst in 100 mL of 2-CP solution
(25 mg/L) under continuous aeration and shaking conditions for 240 min. The effect of
contact times was considered to optimize the reaction time of photocatalytic degradation of
2-CP up to 240 min at pH 4.9 and 25 mg/L of 2-CP concentration. The effect of 2-CP concen-
tration on its degradation onto BiOCl/WO3@PAn nanocomposite was tested by varying the
concentration between 25 to 100 mg/L at pH 4.9 for 240 min of solar light irradiation time.
The decomposition of 2-CP in the presence of active radical scavengers was conducted by
mixing the 0.05 mmol of ethanol and K2S2O8 while 2-CP concentration was 25 mg/L, pH
4.9 and irradiation time was 240 min. The experimental samples were collected periodically
and filtered using a 0.22 µm PTFE syringe membrane to avoid the remaining catalysts. The
analysis of 2-CP was performed on a UV-visible DR 6000 spectrophotometer.

4. Conclusions

Herein, a BiOCl/WO3@PAn nanocomposite photocatalyst was successfully fabricated.
The synthesized photocatalyst was applied for degradation of 2-CP from wastewater un-
der sunlight irradiation. The photocatalytic degradation of 2-CP onto BiOCl/WO3@PAn
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nanocomposite showed 99.7% at solution pH 5 and 25 mg/L concentration, which was
significantly higher than the photolysis as well as pure WO3 and BiOCl. Optical property
analysis demonstrated incorporation of BiOCl and WO3 with PAn enhanced the visible light
absorption and suppressed the charged species’ recombination rate. Active radical scav-
enging studies revealed that •O2

− is the most active species in 2-CP decomposition. The
composite photocatalyst was found to be a reusable catalyst for up to four successive regen-
erations for 2-CP photocatalysis under sunlight illumination. Therefore, BiOCl/WO3@PAn
nanocomposite is considered a promising photocatalyst for degrading organic pollutants
from wastewater.
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