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Abstract: The discharge of pharma products such as paracetamol (PCT) into water has resulted in
great harm to humans and emerged as a potential threat requiring a solution. Therefore, the develop-
ment of smart and efficient materials as photocatalysts has become imperative in order to treat PCT
in wastewater. The present study demonstrates the synthesis of pristine NiWO4 and CoWO4 and a
heterojunction nanostructure, NiWO4/CoWO4, through a hydrothermal process using a Teflon-lined
autoclave at 180 ◦C for 18 h. Various spectroscopic techniques, such as X-ray diffraction (XRD),
Fourier transform infrared (FTIR), ultraviolet–visible (UV–Vis), transmission electron microscopy
(TEM), scanning electron microscopy–energy dispersive X-ray (SEM–EDX), and X-ray photoelectron
spectroscopy (XPS) were utilised to determine the lattice, structural, optical, and morphological
information of the solid nanomaterial upon heterojunction formation. The synthesised nanomaterials
were exploited for the photocatalytic degradation of paracetamol (PCT) under UV light irradiation.
Photocatalytic experiments were performed for the optimization of various reaction parameters,
such as irradiation time, pH, catalyst dose, and PCT concentration at room temperature. The results
obtained suggested that the heterojunction nanocomposite NiWO4/CoWO4 exhibited enhanced pho-
tocatalytic efficiency (97.42%) with PCT as compared to its precursors—96.50% for NiWO4 and 97.12%
for CoWO4. The photocatalytic data were best defined by the Langmuir–Hinshelwood (L–H) model
of pseudo-first-order kinetics, with apparent rates constant at 0.015 min−1 for NiWO4, 0.017 min−1

for CoWO4, and 0.019 min−1 for NiWO4/CoWO4 NC. It was observed that NiWO4/CoWO4 NC
with enhanced optical properties effected a higher rate of PCT degradation due to the improved
bandgap energy upon heterojunction formation. The scavenger test revealed the involvement of •OH
radicals as reactive oxidant species (ROS) in PCT degradation. The material was found to be highly
stable and reusable for the degradation of PCT at optimized reaction conditions.

Keywords: heterojunction; nanocomposites; tungstate; photocatalytic degradation; pharmaceuticals

1. Introduction

In recent years, pharmaceutical products, personal care products (PPCs), and pes-
ticides in water bodies have been categorized as contaminants of emerging concern
(CECs) [1]. Among these emerging pollutants, pharma products have begun to gain
researchers’ attention owing to their toxic influence on human health [2]. One of these
pharma products, paracetamol (PCT), also known as acetaminophen, is widely used in
analgesic and antipyretic drugs for treating headache, fever, etc. [3]. The high consumption
of the drug during COVID-19 has resulted in a harmful impact on ecology and human
health through its presence in wastewater effluents [4]. The main sources of PCT inclusion
into the aquatic system are the pharmaceutical industry and the excretory waste of both
humans and animals who have received medical treatment [4,5]. With each successive
year, PCT concentrations in lakes and rivers have significantly increased, which can cause
diseases such as liver failure, hepatic necrosis, nephrite toxicity, and possibly death [6,7].
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Therefore, to address this issue, there is a need to develop efficient methods and technology
to treat PCT from wastewater streams.

There are numerous methods reported in the literature for removing these pollutants
from the environment, such as electrochemical separation, liquid extraction, chemical oxi-
dation, membrane separation, biodegradation, and adsorption technology [8–10]. However,
sludge formation, slow procedures, and mass transfer properties from one phase to another
make these methods less efficient. Therefore, an advanced oxidation process (AOP) in
association with photocatalytic degradation was taken into consideration for the treatment
of these PPCPs. Due to its lack of toxicity, affordability, lack of mass transfer limitations,
chemical stability, and potential operation at room temperature, photocatalytic oxidation
has emerged as one of the most efficient and innovative technologies to trigger pharma
pollutants without causing secondary waste to enter the environment [11]. The technology
utilizes the irradiation of a catalyst material using solar energy, and depending on its optical
properties, generates reactive oxidant species (ROS), hydroxy (•OH), or superoxide (•O2

−)
radicals, which are responsible for mineralization process [12].

Based on their high aspect ratio, smaller size, and good optical properties, nanomateri-
als have been identified as the most effective and potentially useful materials to address
this sustainability issue, offering some fundamental and practical approaches for wastewa-
ter treatment operations [13]. Among these nanomaterials, semiconductor metal oxides,
such as zirconia (ZrO2), zinc oxide (ZnO), titanium dioxide (TiO2), iron (III) oxide (Fe2O3),
tungsten trioxide (WO3), and vanadium (V) oxide (V2O5), etc., have been proved to be
promising photocatalysts for wastewater treatment processes due to their excellent physic-
ochemical properties [8,14–17]. The nanostructured metal tungstates with the empirical
formula MWO4 (M = Co, Zn, Sn, Ni, Mn etc.) have been recognized as materials with
advanced photocatalytic activity, chemical stability, low cost, and non-toxicity [18]. They
are associated with a wolframite monoclinic structure and appropriate band gap energy,
which classifies them as exemplary materials for scientific and engineering applications
such as conventional catalysis, scintillator materials, photoluminescence, optical fibers,
microwave technology, supercapacitors, and semiconductors [18,19]. NiWO4 is one of
the members of the tungstate family with intriguing structural properties, large surface
area, and photoluminescent characteristics, with an energy bandgap value of 2.97 eV [20].
However, rapid recombination of electron–hole pairs in pure substances restricts their pho-
tocatalytic activities, and to address this issue, the strategy of heterojunction formation was
taken into consideration [21]. The heterojunction formation results in spatial separation of
photogenerated electron–hole pairs, and thus enhances the photocatalytic activities [22]. In
the present study, CoWO4 was used for heterojunction formation with NiWO4 through the
hydrothermal process. CoWO4, with an energy bandgap value of 2.8 eV, exhibits excellent
photocatalytic activities [23]. The resultant nanostructured NiWO4/CoWO4 heterojunction
was used as a catalyst for photocatalytic degradation of paracetamol under mercury lamp
(Ultraviolet radiation) in photocatalytic reactor. Various reaction factors influencing the
degradation process, such as PCT concentration, irradiation time, pH, and amount of
catalyst, were optimized. The novelty of this work lies in the use of mixed metal tungstate
heterojunction (MWO4/M′WO4) nanomaterials in photocatalytic degradation processes to
remove pharmaceuticals from wastewater.

2. Results and Discussion
2.1. Material Characterization
2.1.1. FTIR Analysis

The FTIR spectrum of the prepared metals and mixed metal tungstate catalysts is
shown in Figure 1. In the FTIR spectra of Figure 1a,b, 466 and 456 cm−1 belong to Ni–O
and Co–O bonds, 537 and 523 cm−1 belong to Ni–O–W and Co–O–W bonds, 618 be-
longs to the W–O bonds, 700–880 cm−1 belongs to the W–O stretching mode of the WO4
tetrahedron, W–O–W bond vibrational modes [24–26]. The –OH group stretching and
bending vibrations as a result of moisture adsorption appeared at 3427–3446 cm−1 and
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1635–1640 cm−1 [27]. The FTIR spectra of heterojunction NiWO4/CoWO4 NC Figure 1c
exhibit most of the peaks from NiWO4 and CoWO4, but with some shifted values, which
suggest that in the wolframite monoclinic structure, both Co and Ni took the lattice position
in the solid structure.

Catalysts 2022, 12, x  3 of 20 
 

 

2.1.1. FTIR Analysis 
The FTIR spectrum of the prepared metals and mixed metal tungstate catalysts is 

shown in Figure 1. In the FTIR spectra of Figure 1 (a, b), 466 and 456 cm−1 belong to Ni–O 
and Co–O bonds, 537 and 523 cm−1 belong to Ni–O–W and Co–O–W bonds, 618 belongs 
to the W–O bonds, 700-880 cm−1 belongs to the W–O stretching mode of the WO4 tetrahe-
dron, W–O–W bond vibrational modes [24–26]. The –OH group stretching and bending 
vibrations as a result of moisture adsorption appeared at 3427-3446 cm–1 and 1635-1640 
cm–1 [27]. The FTIR spectra of heterojunction NiWO4/CoWO4 NC Figure 1(c) exhibit most 
of the peaks from NiWO4 and CoWO4, but with some shifted values, which suggest that 
in the wolframite monoclinic structure, both Co and Ni took the lattice position in the 
solid structure. 

 
Figure 1. FTIR spectra of (a) NiWO4 (b) CoWO4 and (c) mix metal tungstate NiWO4/CoWO4 NC. 

2.1.2. X-ray Diffraction (XRD) 
The crystal structures of the prepared metals and mixed metal tungstate catalysts 

were identified by X-ray diffraction (XRD) patterns. Figure 2 shows the XRD pattern of 
the catalysts synthesized through a typical reaction. The XRD spectra of CoWO4 show 
characteristic peaks at 2θ value of 2.37°, 24.91°, 24.91°, 30.75°, 36.78°, 37.93°, 48.66°, 54.53°, 
61.91°, and 65.21°, which belong to miller indices (100), (011), (110), (020), (002), (200), 
(022), (031), (310), and (040) respectively. The XRD spectra of NiWO4 show characteristic 
peaks at 2𝜃 value of 6.51°, 19.35°, 24.03°, 24.99°, 31.02°, 36.65°, 39.24°, 41.76°, 44.84°, 
46.52°, 49.09°, 52.42°, 54.74°, 62.41°, 65.82°, and 69.10°, which belong to miller indices (010), 
(100), (011), (110), (111), (021), (200), (121), (112), (211), (022), (220), (130), (202), (113), (311), 
and (041) respectively. All reflection peaks can be indexed as the monoclinic crystal sys-
tems of CoWO4 (JCPDS Card No. (96–317)) and NiWO4 (JCPDS Card No. (96–278)). Fi-
nally, the XRD pattern of NiWO4/CoWO4 NC shows peaks ascribed to the NiWO4 at 16.91° 
(010), 30.63° (111), 41.37° (121), 44.43° (112), 46.02° (211), 52.10° (202), 65.32° (311), and 
68.82 (041), and peaks ascribed to the CoWO4 at 30.81° (020), 36.32° (002), 54.25° (031), and 
61.95° (310), respectively. Moreover, some peaks ascribed to both NiWO4 and CoWO4 
show at 18.97° (100), 24.62° (011), 24.62° (110), 38.72° (200), and 48.78° (022), which sug-
gests the successful formation of NiWO4/CoWO4 heterojunctions. For further information 

4000 3600 3200 2800 2400 2000 1600 1200 800 400

%
T

Wavenumber (cm−1)

(a)

(b)

(c)

46
6

53
7

61
870

8
82

788
0

16
40

34
46

45
6

52
3

61
8

82
387

5

16
35

34
27

47
1

53
3

63
3

82
787

0

16
26

34
29

Figure 1. FTIR spectra of (a) NiWO4 (b) CoWO4 and (c) mix metal tungstate NiWO4/CoWO4 NC.

2.1.2. X-ray Diffraction (XRD)

The crystal structures of the prepared metals and mixed metal tungstate catalysts
were identified by X-ray diffraction (XRD) patterns. Figure 2 shows the XRD pattern of
the catalysts synthesized through a typical reaction. The XRD spectra of CoWO4 show
characteristic peaks at 2θ value of 2.37◦, 24.91◦, 24.91◦, 30.75◦, 36.78◦, 37.93◦, 48.66◦, 54.53◦,
61.91◦, and 65.21◦, which belong to miller indices (100), (011), (110), (020), (002), (200),
(022), (031), (310), and (040) respectively. The XRD spectra of NiWO4 show characteristic
peaks at 2θ value of 6.51◦, 19.35◦, 24.03◦, 24.99◦, 31.02◦, 36.65◦, 39.24◦, 41.76◦, 44.84◦, 46.52◦,
49.09◦, 52.42◦, 54.74◦, 62.41◦, 65.82◦, and 69.10◦, which belong to miller indices (010), (100),
(011), (110), (111), (021), (200), (121), (112), (211), (022), (220), (130), (202), (113), (311), and
(041) respectively. All reflection peaks can be indexed as the monoclinic crystal systems of
CoWO4 (JCPDS Card No. (96–317)) and NiWO4 (JCPDS Card No. (96–278)). Finally, the
XRD pattern of NiWO4/CoWO4 NC shows peaks ascribed to the NiWO4 at 16.91◦ (010),
30.63◦ (111), 41.37◦ (121), 44.43◦ (112), 46.02◦ (211), 52.10◦ (202), 65.32◦ (311), and 68.82 (041),
and peaks ascribed to the CoWO4 at 30.81◦ (020), 36.32◦ (002), 54.25◦ (031), and 61.95◦ (310),
respectively. Moreover, some peaks ascribed to both NiWO4 and CoWO4 show at 18.97◦

(100), 24.62◦ (011), 24.62◦ (110), 38.72◦ (200), and 48.78◦ (022), which suggests the successful
formation of NiWO4/CoWO4 heterojunctions. For further information about the crystallite
size and dislocation density, the Scherrer’s equation was taken into consideration. The
crystallite size and interlayer spacing were calculated using the Scherrer′s Equation:

D =
0.9λ

β cos θ
(1)
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Dislocation Density (δ) =
1

D2 (2)

Interlayer Spacing (d111) =
nλ

2Sinθ
(3)

%Crystallinity =
Area Under Crystalline Peaks

Total Area
× 100 (4)

where D is the crystallite size, λ is the characteristic wavelength of the X-ray, β represents
angular width in radian at intensity equal to half of its maximum of the peak, and θ is the
diffraction angle. The average particle size of CoWO4, NiWO4, and NiWO4/CoWO4 NC
were 27.16, 22.16, and 19.07 nm, respectively, calculated using Equation (2). Moreover, from
Table 1, it can be seen that the crystallinity of the heterojunction nanocomposite increased
to 38% after heterojunction formation, suggesting a successful occupation of lattice sites by
Co in the NIWO4 solid structure without producing any impurity. The process reflected a
contraction in particle size and an increase in dislocation density due to deformation in the
solid lattice of CoWO4 and NiWO4.
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2.1.3. Scanning Electron Microscopy (SEM) 
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tered NiWO4 taken at 10,000 × magnification is shown in Figure 3(a). The sample′s mor-
phology is porous. The complete coverage of the substrate is evident in the micrographs. 
These surfaces evince uneven surface morphology and irregular geometry quite clearly, 
while in the SEM image of CoWO4 shown in the Figure 3(b), the grain arrangements and 
sizes are irregular. Figure 3(c) presents a SEM image of NiWO4/CoWO4 NC, which shows 
large, irregularly sized grains. The EDX spectrum recorded for the sample, which is de-
picted in Figure 3(d), was used to explore the elements present in the sample. The presence 
of the components Co, W, Ni, and O in the mixed metal tungstate NiWO4/CoWO4 NC was 
confirmed by the EDX analysis. 

Figure 2. XRD pattern of (CoWO4, NiWO4, NiWO4/CoWO4 NC) nanomaterials.

Table 1. XRD parameter of CoWO4, NiWO4, and NiWO4/CoWO4 NC.

Component 2θ FWHM
(βhkl)

Interlayer
Spacing

(nm) at 2θ

Crystallite
Size (nm)

at 2θ

Dislocation
Density

(δ)×1015 Lines
(
m−2) Crystallinity (%)

CoWO4 30.748 0.26203 0.020414 27.16 1.35 23.60
NiWO4 31.015 0.32392 0.020587 22.16 2.03 23.25

NiWO4/CoWO4 NC 30.64 0.36296 0.020344 19.07 2.75 38.14
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2.1.3. Scanning Electron Microscopy (SEM)

The surface morphological changes in the material during the solid-state processes
were observed using scanning electron microscopy (SEM). The SEM images of the sintered
NiWO4 taken at 10,000×magnification is shown in Figure 3a. The sample′s morphology
is porous. The complete coverage of the substrate is evident in the micrographs. These
surfaces evince uneven surface morphology and irregular geometry quite clearly, while
in the SEM image of CoWO4 shown in the Figure 3b, the grain arrangements and sizes
are irregular. Figure 3c presents a SEM image of NiWO4/CoWO4 NC, which shows large,
irregularly sized grains. The EDX spectrum recorded for the sample, which is depicted
in Figure 3d, was used to explore the elements present in the sample. The presence of
the components Co, W, Ni, and O in the mixed metal tungstate NiWO4/CoWO4 NC was
confirmed by the EDX analysis.
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2.1.4. Transmission Electron Microscopy (TEM)

The optimal diameter of the mix metal tungstate was determined using transmis-
sion electron microscopy (TEM), and further investigation was carried out to establish
the crystallinity and morphology of the metal’s tungstate. Figure 4a–c presents the TEM
images of NiWO4, CoWO4, and NiWO4/CoWO4 NC synthesized nanoparticles, respec-
tively, in which NiWO4 shows rod-like morphology and CoWO4 shows a mix of rod-
and irregular-shaped particles, while after heterojunction, a new morphology appears for
NiWO4/CoWO4 NC constituted of irregular-shaped particles with mitigated monoclinic
structure (Figure 4d). The statistical gaussian distribution profile applied for average
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particle size distribution suggested an average of 20 nm particle size for NiWO4/CoWO4
NC shown in the Figure 4e, which has been found to be in close agreement with the
Scherer formula.
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2.1.5. UV/Vis Spectrophotometer

The produced catalyst′s optical characteristics can be determined by UV–Vis spectro-
scopic studies, and the spectra are shown in Figure 5. The UV–vis spectrum has a broad
line, which denotes absorption throughout the whole UV–Vis region. The existence of
numerous consecutive energy levels in the photocatalyst was attributable to the broad
absorption spectrum shown by Figure 5, in which the absorption maxima (λmax) of NiWO4,
CoWO4, and NiWO4/CoWO4 NC were observed around 263, 331, and 360 nm, respectively.
The UV spectrum of NiWO4 and CoWO4 suggested the synthesized NPs were UV light-
active only, while a broad spectrum from 200–650 nm in the case of NiWO4/CoWO4 NC
suggested UV as well as visible light activity of the heterojunction. Thus, the formation of
heterojunction results in enhancement of the light-absorption capacity of the material [28].
Tauc′s relationship was used to determine the band gap using the absorption data:

(αhν) = A
(
hν− Eg

)n (5)

where α = absorption coefficient, h = plank constant, ν = frequency of radiations,
A = constant, and n is a constant of transition variations depending on the type of electronic
transition, i.e., n = 1/2 for direct transitions and n = 2 for the indirect transitions. Energy
bandgap values were taken from the slope of a linear plot between (αhν)2 and Eg; the
intercept give rise to the value of energy band gap. Tauc′s plot specified the value of Eg
as 3.04, 2.32, and 1.14 eV for the synthesized NiWO4, CoWO4, and NiWO4/CoWO4 NC,
respectively. Thus, it is also quantitively proved that heterojunction formation results in
contraction of the energy bandgap, and thus restricts the electron–hole pair recombina-
tion rate.
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Figure 5. (a) UV–Vis plot of NiWO4, CoWO4, NiWO4/CoWO4 NC in wavelength range of
200–700 nm; (b) Tauc′s plot for the band gap energy (Eg) of the materials.

To further investigate the chemical oxidation state of the elements in the synthesized
NiWO4/CoWO4 NC material, XPS analysis was taken into consideration. Figure 6a rep-
resents the XPS survey spectra of NiWO4/CoWO4 NC, which confirm the presence of
W4f, O1s, Ni2p, and Co2p in the material. In order to observe the change in the oxidation
states of elements during heterojunction formation, the deconvoluted spectres were stud-
ied. Figure 6b represents the deconvoluted XPS spectra of W4f, which show two peaks
at 46.48 eV and 49.49 eV, corresponding to the W4f7/2 and W4f5/2 states associated with
W6+ chemical state [29]. Figure 6c represents three deconvoluted peaks for O1s, corre-
sponding to 538.44, 539.44, and 541.44 eV, associated with O1 (Co–O), O2 (W–O), and O3
(Ni–O) bonds [30,31]. The XPS spectra in Figure 6d for Co2P show two deconvoluted
peaks at 868.01 and 872.78 eV associated with two states Co2p3/2 and Co2p1/2 states of
Co2+, respectively [32]. Similarly, Figure 6e, corresponding to the XPS spectra of Ni2p,
represents the two states Ni2p3/2 and Ni2p1/2 for the Ni2+ chemical state at 884.94 eV
and 890.87 eV [33]. The outcomes of the XPS studies clearly confirm the formation of
heterojunction NiWO4/CoWO4 NC by the validation of the chemical stability of the Ni2+

and Co2+ ions in the lattice.
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2.2. Photocatalysis and Optimization of Reaction Parameters
2.2.1. Photocatalysis with Variable Paracetamol Concentration

The photocatalytic experiments were performed at different PCT concentrations in the
range of 5–60 ppm to observe the effect of PCT concentration on degradation rates using
NiWO4, CoWO4, and NiWO4/CoWO4 NC. The results obtained are shown in Figure 7a–d,
and suggest that over a span of 120 min of irradiation, the degradation efficiencies of the
synthesized nanomaterials decreased with increasing paracetamol concentration. These
findings were in close agreement with a number of studies, where the activation of the
reaction by photon absorption was often the initial step [34]. Another explanation for
the result shown in Figure 7 is that the formation of radicals and holes under irradiation
remained consistent and sufficient for the breakdown of paracetamol at low concentrations,
while at high concentrations, screening hindered their path towards the catalyst surface,
which led to a decrease in the paracetamol degradation rate [35]. Acceptable degrada-
tion rates were obtained up to 50 ppm PCT concentration, which was used in further
photocatalytic experiments.
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Figure 7. Effect of variable PCT concentration (5–60 ppm) using 5 mg prepared (a) NiWO4,
(b) CoWO4, (c) NiWO4/CoWO4 NC, and (d) Ce/Co vs. PCT conc. Plot.

2.2.2. Photocatalysis with Variable Catalyst Dosage

The photodegradation of paracetamol under irradiation is shown in Figure 8a–d as
a function of catalyst dosage at 5, 10, 15, and 20 mg. Additionally, the other reaction
conditions remained the same. As observed in Figure 8, the results showed that the
degradation rate decreased by 15–20 mg with the addition of more catalyst. The number
of active sites that could absorb additional photons rose as the catalyst dosage was raised.
However, the increase in catalyst dose appeared to result in an excess dosage, which
produced suspension turbidity in the solution. The efficiency of the photocatalytic process
also declined as a result of the lower light penetration [36,37]. After 2 h of irradiation with
the 10 mg catalyst dosage was taken as optimum for further experiments.
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Figure 8. Effect of variable catalyst dose (5–20 mg) using 50 ppm PCT for (a) NiWO4, (b) CoWO4,
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2.2.3. Photocatalysis with Variable Paracetamol Solution pH

The pH is an important parameter in photochemical reactions. The results, which are
presented in Figure 9, demonstrate how the effects of pH on the paracetamol degradation
were investigated at various pH ranges from 3 to 10 in order to determine the ideal pH
for the degradation process. This study included three catalysts (NiWO4, CoWO4, and
NiWO4/CoWO4 NC), which were studied separately. The particle surface was positively
charged at pH levels below 5, and negatively charged at pH levels above 5. Additionally,
paracetamol has a pKa value of 9.38, making it a weak base. In light of this, the adsorption–
desorption characteristics of the catalyst surface are significantly influenced by the pH
value [34]. The results presented in Figure 8 show that the degradation rate rose as the pH
value rose. This can be ascribed to increased hydroxide ion creation, because at high pH,
more hydroxide ions that are already present on the surface can readily be oxidized to create
new hydroxyl radicals, which in turn boosts the efficiency of paracetamol degradation [38].
Finally, in this study, we registered that the degradation was maximal at pH 9.
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2.2.4. Photocatalysis with Variable Irradiation Time and Kinetics of the Reaction

Photocatalytic experiments were carried out using 50 ppm paracetamol concentration,
pH 9, and 10 mg of catalyst under variable irradiation time from 10 to 120 min. The results
of the experiments given in Figure 10a–c show that the photocatalytic degradation of the
paracetamol similarly increased with a steady increase in the irradiation time from 10 to
120 min. This trend was caused by the valence electron of a catalyst being excited from
its ground state to its excited state, which produced a photoelectron by the absorption of
radiation. Since there was a high density of –OH groups on the catalyst surface, when
these high energy electrons coupled with them, they produced •OH radicals, which were
what caused the paracetamol to photodegrade [39]. The findings in Figure 10 show that
as the irradiation period increased, the degradation rate also decreased continually, and
typically followed the Langmuir–Hinshelwood first-order kinetic pattern, which assumes
the decomposition of the pollutant molecule at the catalyst surface to be the determining
step in heterogeneous catalysis processes. The kinetic constant linked to the decomposition
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and the adsorbate concentration are therefore considered to equal the product of the
first-order reaction rate and the adsorbate concentration [40].

r =
dC
dt

= − kKC
1 + KC

(6)

where k is the rate constant, which is affected by light intensity, K is the catalyst adsorption
constant, and C is the paracetamol concentration. (KC < 1) applies to modest low adsorption
magnitudes and concentrations. Equation (7) states that Equation (6) simplifies to the first-
order kinetics.

dC
dt

= −kKC (7)
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Integrating and separating variables between the initial conditions t = 0 and C = C0 at
time t and if Kk = k′, where k′ is the apparent rate constant for the photocatalytic degradation.

ln(
C0

C
) = kKt = k′t (8)



Catalysts 2023, 13, 152 13 of 18

Equation (3) can be plotted, and the slope represents the reaction rate constant, k′,
expressed in units of min−1. Given that C = C0/2 in Equation (8), the half-life (t1/2), which
is an important factor in photocatalytic degradation, is the period of time needed to reduce
the concentration of paracetamol by half, it may be calculated as follows by Equation (9):

t1/2 =
ln 2
k′

(9)

The obtained results are listed in Table 2, in which the value of apparent rate constant
k’ was found to be 0.015 min−1 for NiWO4, 0.017 min−1 for CoWO4, and 0.019 min−1 for
NiWO4/CoWO4 NC. The synthesized heterojunction nanocomposite exhibited a high rate
of paracetamol degradation as compared to its precursors. The corresponding half-life time
values were 46.20, 40.76, and 36.47 min for NiWO4, CoWO4, and NiWO4/CoWO4 NC. The
outcomes of the kinetic studies suggested that the heterojunction formation resulted in an
enhanced rate of PCT degradation as compared to pristine NiWO4 and CoWO4.

Table 2. Pseudo-first-order kinetic parameters for the photocatalytic degradation of paracetamol by
synthesized NiWO4, CoWO4, and NiWO4/CoWO4 NC.

Material k1 (min−1) R2 t1/2 (min) Error

NiWO4 0.015 0.95 46.20 2.31 × 10−3

CoWO4 0.017 0.98 40.76 1.46 × 10−3

NiWO4/CoWO4 0.019 0.99 36.47 5.11 × 10−4

2.3. Scavenging Study

The main reactive species involved in the photocatalytic process for paracetamol
using NiWO4/CoWO4 NC were discovered using a variety of scavengers. Among the
reactive species, the superoxide (•O2

−), hydroxyl radical (•OH), valence band hole (h+), and
photogenerated electron (e−) are key species on which the photodegradation of organic
pollutants relies [41]. Benzoic acid (BA), acrylamide (AA), ethylenediaminetetraacetic
acid (EDTA), and triphenylphosphine (TPP) were the scavengers for •OH, h+, e−, and
•O2

−, respectively. Figure 11 represent the results of the scavengers, which show that
photogenerated (e−) and superoxide (•O2

−) radicals did not have any significant effect on
the photocatalytic performance of the system; therefore, we can conclude that electrons
do not play an important role in degradation. The degradation rate was dramatically
hindered in (•OH scavenger); as a result, it was concluded that hydroxyl radicals are the
main reactive species involved in the removal of paracetamol.
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2.5. Comparison with Literature 
Table 3 shows the photocatalytic data regarding the degradation of PCT reported in 

the literature as compared with the present study. It was found that no single study re-
ported on the synthesized material in regard to PCT degradation, which confirms the nov-
elty of this study.  
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2.4. Effect of Various Radiation and Reaction Process

Experiments were performed to observe the effects of various reaction process and
radiations on the PCT degradation by NiWO4/CoWO4 NC, such as photolysis (PCT
solution without catalyst under radiations), adsorption (PCT with catalyst agitated in
dark), and photocatalytic reactions under UV and visible radiations. The results obtained
are given in Figure 12a,b, and suggested that there is a negligible contribution from the
photolysis process. PCT removal by adsorption was found to be 81%, while under visible
light it was 69.27%. The maximum removal was obtained under UV light, i.e., 93.95%.
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2.5. Comparison with Literature

Table 3 shows the photocatalytic data regarding the degradation of PCT reported
in the literature as compared with the present study. It was found that no single study
reported on the synthesized material in regard to PCT degradation, which confirms the
novelty of this study.

Table 3. Comparison of present study with literature regarding PCT degradation.

Photocatalyst Light Source
PCT

Concentration
(ppm)

Irradiation
Time (min) % Degradation References

ZnO–Ag Visible light 5 240 92 [42]

CuO@C LED light 5 60 95 [43]

g-C3N4/(101)-(001)-TiO2 300 W xenon lamp 10 300 69.49 [44]

Cu2O/WO3/TiO2 Solar light 1 60 92.50 [45]

Bi2WO6-CNP-TiO2
LCS-100 W

solar simulator 5 180 84 [46]

NiWO4/CoWO4 NC UV light 50 120 97.42 Present study

3. Methods and Materials
3.1. Chemicals and Reagents

Acetaminophen (CH3CONHC6H4OH, Analytical grade, 99%), sodium tungstate dihy-
drate (Na2WO4·2H2O, 96%, laboratory reagent) were purchased from Merck, Darmstadt,
Germany), Nickel nitrate hexahydrate (Ni (NO3)2·6H2O 98%), cobalt nitrate hexahydrate
(Co (NO3)2·6H2O, 98%) were supplied by Thermo Fisher Scientific, Dreieich, Germany.
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General purpose reagent such as ammonia solution (NH4OH, 25%, extra pure), and ethanol
(C2H5OH, 96%, ACS grade) were supplied by Alfa Aesar, Kandel, Germany. The obtained
chemicals were employed directly without any further processing, and the solutions were
made using distilled water.

3.2. Synthesis of Nickel Tungstate (NiWO4) Nanomaterials

The hydrothermal process was taken into consideration for synthesis of the nanomate-
rials reported elsewhere [20,23]. Ni (NO3)2·6H2O (3 mmol) and Na2WO4·2H2O (5 mmol)
were taken individually in 25 mL of distilled water while being stirred magnetically for
15 min for complete dissolution. The two aqueous solutions above were then combined
using magnetic stirring for 30 min at room temperature. The mixture was then transferred
into 80 mL Teflon-lined steel autoclave and heated for 18 h at 180 ◦C in a convection oven.
After the completion of the reaction, the autoclave was left to cool normally at room temper-
ature and the precipitate was collected through centrifugation. The material was washed
with distilled water and ethanol and then dehydrated in a vacuum oven at 80 ◦C for 5 h.
The material was finally calcined at 600 ◦C for 4 h and stored in desiccator for further
characterization and applications. In a similar fashion, CoWO4 (3 mmol) was prepared,
and the heterojunction nanocomposite was prepared by adding 3 mmol of Ni (NO3)2·6H2O
and 1.5 mmol of Co (NO3)2·6H2O with 5 mmol of Na2WO4·2H2O.

3.3. Characterization of the Synthesized Nanomaterials

Fourier Transform Infrared Spectroscopy (FTIR) system spectrum BX (Perkin Elmer,
Akron, OH, USA) which operates in the 4400–400 cm−1 range, was used to explore the
various types of bonding and functional group contained in the material. The XRD diffrac-
tometer, (A Rigaku Ultima) (Rigaku, Austin, TX, USA) was employed to identify the
crystalline structure, crystalline size and lattice phase of synthesized nanoparticles. SEM
integrated with EDX (SEM; JEOL GSM 6510LV, Tokyo, Japan) was used to examine the
surface morphology of the material in order to learn more about its elemental composition
as well as the chemical composition and homogeneity of its manufactured NiWO4/CoWO4
NC. Through the use of a transmission electron microscope, the particle size and distribu-
tion were evaluated (TEM, TEM: JEM 2100, Tokyo, Japan). UV-1800 spectrophotometer
(SHIMADZU, Kyoto, Japan), was used for the analysis of synthesized nanoparticles before
and after the photocatalytic reaction in the range of 200–700 nm. The chemical state of the
elements in the synthesized material was analyzed by X-ray photoelectron spectroscopy
(XPS, PHI 5000 Versa Probe III, Physical Electronics, Chanhassen, MN, USA).

3.4. Photocatalysis Experiment

The photocatalytic technique was utilized to observe the degradation of paracetamol
under ultraviolet radiation. Accordingly, 20 mL aliquots of variable concentration of
paracetamol (5–60 ppm), solution pH (3–10), and (5–20 mg) of catalyst were subjected to
magnetic stirring time (10–120 min) under mercury lamp irradiation using a photocatalytic
reactor. The percentage of paracetamol (%) that was degraded in an aqueous solution
was varied to determine the photocatalyst′s effectiveness. The UV–Vis spectrophotometer
was used to examine the paracetamol effluents following the photocatalytic reaction at
the highest absorption wavelength (λmax = 243 nm). Equation (10) was used to assess the
percentage of paracetamol degradation.

% Degradation =
Co −Ct

Co
× 100 (10)

where Co is the initial paracetamol concentration and Ct is the concentrations of paracetamol
after the photocatalysis reaction.
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4. Conclusions

The present study considers the use of a hydrothermal reaction to synthesize NiWO4,
CoWO4, and their heterojunction NiWO4/CoWO4 nanocomposite materials. The synthe-
sized materials were subjected to various structural, morphological, and optical tests to
confirm their correct formation and to test the hypothesis of the research. The FTIR analysis
confirmed the formation of the heterojunction through electrostatic interactions between
CoO6 and NiO6 octahedra in the corners with a WO6

6− frame in a wolframite monoclinic
lattice. The outcomes of the FTIR studies were further supported by the XRD studies, with
an increase in dislocation density to 2.75 in NiWO4/CoWO4 from 1.35 in CoWO4 and
2.03 NiWO4. The heterojunction formation also resulted in a contraction in Scherer particle
size to 19.07 nm for NiWO4/CoWO4, which was also found to be in close agreement
with the TEM analysis. The SEM–TEM analysis resulted in the formation of a mitigated
wolframite monoclinic structure for the synthesized heterojunction nanocomposite, with
an average particle size of around 20 nm. The EDX analysis confirmed the presence of
Ni, Co, W, and O in the synthesized nanocomposite material. The UV–Vis spectroscopy
revealed the values of the energy band gap for NiWO4 (3.04 eV), CoWO4 (2.32 eV), and
NiWO4/CoWO4 (1.14 eV), which supported the conclusion that the formation of hetero-
junction results in a contraction in the energy bandgap. The synthesized materials were
explored as photocatalysts for the degradation of the paracetamol drug under UV light
radiation. The optimized operational parameters were found be to 120 min irradiation time,
pH 9, and 10 mg of catalyst dose with 50 ppm of paracetamol. At optimized conditions,
the photocatalytic efficiencies of the synthesized nanocatalysts were calculated as 96.50%
for NiWO4, 97.12% for CoWO4, and 97.42% for NiWO4/CoWO4 NC. The values of the
apparent rate constant obtained from the Langmuir–Hinshelwood model were found to
be 0.015 min−1 for NiWO4, 0.017 min−1 for CoWO4, and 0.019 min−1 for NiWO4/CoWO4
NC. The high values of the rate constant suggested the high photocatalytic efficiency of
the heterojunction NC NiWO4/CoWO4. The outcomes of this study suggest that the
heterojunction NiWO4/CoWO4 NC can be used for photocatalytic degradation of other
pharmaceutical pollutants with high efficiency.
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