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Abstract: In the extensive terrain of catalytic procedures for the synthesis of organic molecules,
metal–organic frameworks (MOFs) as heterogenous catalysts have been investigated in a variety
of chemical processes, including Friedel–Crafts reactions, condensation reactions, oxidations, and
coupling reactions, and utilized owing to their specific properties such as high porosity, tuneability,
extraordinary catalytic activity, and recyclability. The eminent copper-tailored MOF materials can be
exceptionally dynamic and regioselective catalysts for click reactions (1,3-dipolar cycloaddition reac-
tion). Considering the fact that Cu(I)-catalyzed alkyne–azide cycloaddition (CuAAC) reactions can
be catalyzed by several other copper catalysts such as Cu (II)-β-cyclodextrin, Cu(OAc)2, Fe3O4@SiO2,
picolinimidoamide–Cu(II) complex, and Cu(II) porphyrin graphene, the properties of sorption and
reusability, as well as the high density of copper-MOFs, open an efficient and robust pathway for
regimented catalysis of this reaction. This review provides a comprehensive description and analysis
of the relevant literature on the utilization of Cu-MOFs as catalysts for CuAAC ‘click’ reactions
published in the past decade.

Keywords: metal–organic frameworks (MOF); Cu-MOF; catalyst; 1,4-disubstituted 1,2,3-triazole;
click chemistry; heterogenous catalysis

1. Introduction

Click chemistry is one of the most robust and versatile methodologies currently
known to researchers, capable of synthesizing large complex compounds from relatively
smaller moieties [1,2]. Due to its advantageous features and facile pathway of synthesis,
the methodology has received significant interest globally. Carolyn R. Bertozzi, Morten
Meldal, and K. Barry Sharpless in 2022 were awarded the Nobel Prize in Chemistry for
their ground-breaking contribution, which was a big step in advancement. The advent of
click chemistry has led to the discovery of nitrogen-rich azole heterocycles, which have
been shown to be fascinating compounds with broad potential significantly with their
pharmacological [3] and chemosensing [4] properties. ‘Click’ reactions, specifically Cu(I)-
catalyzed cycloaddition involving a terminal alkyne and an organic azide to synthesize
1,4-disubstituted-1,2,3-triazole, have received a large amount of consideration in the fields
of material science, polymer science, peptide chemistry [5], and synthetic organic chemistry
over the past few decades. However, due to the fact that alkynes are poor 1,3-dipole accep-
tors, this reaction cannot proceed regioselectively without a suitable catalyst. Significantly,
the presence of Cu(I), which forms bonds with terminal alkynes, greatly enhances the pace,
selectivity, and overall efficiency of click reactions [6].

The catalysts tailored from transition metals have the potential to act as fabricators in
the assemblage of supplementary intricate structures, yielding complex organic structures
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with relative ease. Several metal catalysts such as Ru, Ag, and Au with enhanced catalytic ac-
tivity and selectivity have been described in the scientific literature [7,8]. In the past decade,
the 1,3 dipolar cycloaddition reaction for the synthesis of 1,2,3-triazole has received consider-
able attention and has been investigated using a variety of different types of copper catalysts
including Cu(II)-β-cyclodextrin [9], Cu(OAc)2 [10], Fe3O4@SiO2 picolinimidoamide–Cu(II)
complex [11], Cu(II) porphyrin graphene [12], bromotris(triphenylphosphine)copper(I) [13],
and Cu(II)-supported graphene quantum dots [14]. In spite of this, the majority of the
copper catalysts that were discussed before had a number of significant drawbacks, includ-
ing laborious and pricey preparation processes; the utilization of hazardous solvents and
reagents; and, most critically, challenging procedures for catalyst separation [15]. Further-
more, the intensifying public concern for environmental protection has prompted scientists
to look for more sustainable synthetic routes to overcome the challenges of recyclability of
catalysts and switching to less hazardous solvents/chemicals. To anticipate the ease of the
synthesis of 1,2,3-triazole derivatives, the area of organic synthesis has focused significantly
on the creation of novel and effective Cu(I)-based MOFs catalysts (Figure 1). Over the
past decade, scientists have made great strides to manufacture various MOFs and explore
of their use in numerous scientific domains, including energy storages [16], medicinal
technology [17], environmental pollution [18], sensing platforms, catalysis, photocataly-
sis [19], oxidation, hydrogenation [20], drug delivery [21,22], and bioimaging [23] due to
their diverse active sites [24,25].
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Figure 1. An illustration of MOF assembly and subsequent use in click chemistry.

Metal–organic frameworks are strong hybrid emerging materials due to their amenable
physical and chemical properties [26]; porous structure consisting of inorganic/
supplementary building units (atoms, molecules, and ions of metals); and organic building
blocks, known as linkers/bridging ligands (carboxylates, as well as anions such as phos-
phonate, sulfonate, and heterocyclic chemicals) [27], as shown in Figure 2. The long organic
linkers are responsible for the high porosity and great storage capacity of MOFs [28]. In
addition, they have the unique capacity to intentionally alter and adjust the form and
function of their pores. Moreover, due to the remarkable adaptability of MOF structures,
it is possible to synthesize catalytically active sites by employing defect engineering and
linker modification strategies [29,30].

The coordination number, geometry, and functional assembly in MOFs play a dom-
inant role in shaping the structure of the framework. MOFs have been found to dis-
play a wide range of supplementary binding unit (SBU) geometries, such as the octahe-
dron, the trigonal matrix, the square paddlewheel, and the triangle, each of which has
a different number of extension points [27]. As a general rule, a connecting ligand in-
teracts with a metal ion that has several available reactive sites [31]. SBU connections
and organic linkers control the ultimate topology of any given MOF such that infinitely
stretched polymers or discretely closed oligomeric structures may emerge from a given
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system [32,33]. This review aimed to assemble copper-embedded MOFs for the synthesis of
1,4-disubstituted-1,2,3-triazoles.
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2. MOFs as Heterogenous Catalysts

The transition metal complexes can be utilized as homogenous catalysts due to their
extraordinary catalytic action for a prevalent variety of organic reactions, showing regio-
and chemoselectivity [34,35]. However, this recompense comes with some drawbacks,
namely, the homogenous catalysts can be decomposed during the reaction process, mak-
ing their recovery a challenging process [36]. The various techniques for heterogeniz-
ing a homogenous catalyst involve grafting of polymers, impregnation of solid carriers,
introduction to zeolite cavities via the “ship in a bottle” method [37], and the forma-
tion of organized structured or non-organized structured mesoporous organic/inorganic
hybrid systems [30].

Researchers have primarily concentrated on heterogeneous catalysts, as opposed to homo-
geneous catalysts, due to the greater reusability and the high selectivity of the heterogenous
catalyst [38]. In catalyst research, the gold standard followed currently is a combination of
computational methods for predicting catalytic activity and novel synthesis methodologies
for creating the appropriate organized frameworks, with constant, well-defined active sites
that enable good selectivity while avoiding deactivation [39,40]. A large number of recently
discovered heterogeneous catalysts are based on metal–organic frameworks, an attractive new
field that uses metal ions as active sites in the generated crystal-like structure, metal complexes
that were part of the organic linkers, or supported metal nanoparticles. The microporous
MOF (microporous co-ordination polymer) generated as an outcome grounded on metal ion
action at nodes or at the ligands emerges instantaneously as a counterpart of the homogeneous
catalytic system [41]. Due to their potential use as contributing templates in the production of
heterogenous catalysts, metal–organic frameworks have recently been a key area of research [42].

3. Physico-Chemical Properties of MOFs

Since MOFs are composed of a metal ion bound to an organic linker chain, they
have outstanding properties in terms of their size, porosity, etc. (Table 1, Figure 3), due
to which MOFs can be used in a wide range of applications including catalysis, sensing,
and drug delivery, among others. In addition, the MOFs may be changed via regulated
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integration in conjugation with one-of-a-kind and desirable functional materials, which can
then impart the required characteristics onto the MOF structures [43,44]. Organic linkers
with conjugated structures facilitate electron transfer between ligands and metals. For use
as smart materials, MOFs with dynamic frameworks may undergo reversible structural
changes that vastly increase their intended qualities.

Table 1. Physico-chemical properties of MOFs. * Reproduced from references with permission.

Entry Property Description

1.

Surface area
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Table 1. Cont.

Entry Property Description

4.

Chirality
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4. Methods for the Synthesis of MOFs

Numerous techniques for the manufacture of MOFs have been documented in pub-
lished works. Some examples of these techniques, which are included in the table below,
are microwave-assisted synthesis [50], solvothermal synthesis, sonochemical synthesis,
electrochemical synthesis [51], among others (Table 2). The choice of solvent is often in-
fluenced by a variety of characteristics, such as the redox potential, reactivity, stability
constant, and solubility of the compound [52,53].
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Table 2. General methods for synthesis of MOFs.

Entry Method Description Examples References

1. Electrochemical
synthesis

Electrochemical synthesis involves the
addition of metal ions into a reaction mixture
consisting of organic linkers and electrolytes
via anodic dissolution. The significant benefit

of this technique is that the anions often
found with metals in salts may be eliminated,
resulting in very pure compounds, since less
time and energy are needed for reactions to

take place under more benign circumstances.

ZIF-8, HKUST-1,
MIL-100 (Fe). [51]

2.
Microwave-

assisted
synthesis

The use of microwaves to irradiate the
reaction mixture results in the creation of
nanoscale MOF crystals. There are several
benefits to this synthesis, including high
efficiency, shorter reaction times, phase
selectivity, morphological control, and

particle size reduction.

[Cu3(btc)2(H2O)3],
HKUST-1 [50]

3. Mechanochemical
synthesis

Mechanical forces are introduced to complete
the chemical reaction. Mechanochemical

synthesis has the benefit of not requiring the
use of organic solvents, which may be

carcinogenic, poisonous, and damaging to the
environment. Metal oxides are often

employed as precursors in this procedure
rather than metal salts.

InOF-1,
Cu3(BTC)2-MOF [52,53]

4. Slow evaporation
method

This conventional method for MOF
preparation involves the use of suitable

solvents to dissolve the precursor materials
and later on slow evaporation of the solvent
at an adequate temperature. The synthesis of
MOFs using this approach is hindered by the
insolubility of the chemicals. Accordingly, a
combination of solvents may be utilised to

improve solubility.

[Cu(2,3-
pydc)(bpp)]·2.
5H2O, [Zn(2,3-
pydc)(bpp)]·2.

5H2O

[50]

5. Solvothermal
synthesis

The reaction between the organic linker and
metal ion takes place in a suitable solvent at a

temperature above the boiling point of the
solvent used. The primary benefit of this

technique is that the relatively greater yield
can be obtained.

Zn2(bpabdc)2(DMF)2
(H2O)n,
[Cu(tdc)

(H2O)]n.n(DMA)

[54,55]

6. Sonochemical
synthesis

The solution mixture was subjected to
ultrasonic radiations (20 kHz–10 MHz) to
synthesize MOF with novel morphologies.
The sonochemical technique allows for the

rapid production of MOFs with a tiny crystal
size in a very short reaction time. This

approach has the benefits of being fast, cheap,
repeatable, and eco-friendly.

HKUST-1, TMU-7,
[Zn3(btc)2] [56]

5. MOFs as Catalysts for Innumerable Reactions

MOFs are becoming an integral part of the research society since they can be utilized
as a low-cost heterogeneous catalyst in many different chemical processes [57]. This can be
attributed to MOFs having large peripheral areas, size, shape, enantioselectivity, persistent
porosity, and multifunctional ligands, with these being some of the interesting and modi-
fiable features of MOFs [45]. There are several benefits of using MOFs as heterogeneous
catalysts, including improved catalytic reactivity, flexibility, and facile tunability [52]. How-
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ever, the use of MOFs is unfavorable for reactions that need extreme conditions because
of their limited chemical and thermal stability [58]. Some of the many organic processes
for which MOFs were utilized as catalysts or catalyst support include Friedel–Crafts reac-
tions [59]; Knoevenagel condensation [60]; aldol condensation [61]; oxidation [51,62]; and
coupling reactions [63–65].

Nguyen et al. described a solvothermal acylation process using IRMOF-8 for the
Friedel–Crafts reaction, wherein 2,6-naphthalenedicarboxylic acid and zinc nitrate tetrahy-
drate are dissolved in dimethylformamide (DMF) for the synthesis of IRMOF-8. More-
over, a high yield of the product was achieved when the catalyst was employed in
the reaction and was recovered successfully [59]. Similarly, MOF-5 was synthesized by
Phan et al.—1,4-benzene dicarboxylic acid and zinc nitrate hexahydrate were combined
in dimethylformamide (DMF) under solvothermal conditions to perform a Friedel–Crafts
benzylation of toluene [66]. Gascon and teammates produced MOF with non-coordinated
sites with an aniline-like amino group for Knoevenagel condensation with 100% selectivity.
Xamena and colleagues studied the catalytic activity of IRMOF-3 and MOF-5 on the Kno-
evenagel condensation reaction [67]. The alkene oxidation of α-pinene and cyclohexene in
a solvent-free environment was investigated by Kholdeeva et al. using MOFs (Fe-MIL-101
and Cr-MIL-10), and the allylic oxidation products were produced. Both Cr-MIL-101 and Fe-
MIL-101 exhibited selectivity, with Cr-MIL-101 favoring the formation of α,β-unsaturated
ketones, and Fe-MIL-101 forming 2-cyclohexen-1-ol as the desired product [51]. Under ideal
circumstances, both catalysts demonstrated improved reusability. Torbina et al. determined
the catalytic activity of chromium-based MOFs as a heterogenous catalyst for the oxidation
reaction of propylene glycol with tert-butyl hydroperoxide [68]. In another example, Phan
et al. employed the very porous metal–organic framework MOF-199 as a heterogeneous
catalyst for the Ullmann reaction between phenols and aryl iodides to generate diaryl ethers.
After six hours at 120 ◦C, the product yield was 82%. It was shown that the MOF-199
catalyst may be used several times without significantly losing its catalytic efficiency [69].
Several MOFs are used to catalyze the different reactions reported (Table 3). From this
perspective, we focused on a few noteworthy instances that provide a balanced comparison
to currently available copper-based MOFs over other MOFs to catalyze a wide variety
of reactions.

Table 3. Several reactions catalyzed by MOF-based catalysts.

Entry Reaction Catalyzed MOF Type Metal in MOF Reference

1. Friedel–Crafts reaction

HPW@Zr-BTC Zirconium [70]

Cu-MOF-74 Copper [71]

Urea containing 2D MOF Copper [72]

4. Suzuki coupling Cu-BDC MOF Copper [63]

5. Heck coupling Pd(II)-porphyrinic MOF Palladium [73]

6. Suzuki–Miyaura coupling NPC-Pd MOF Palladium [74]

7. Knoevenagel condensation Al-MIL-101-NH2 Aluminium [75]

8. Aldol condensation Basolite F300 Iron [61]

9. CuAAC reaction Fe3O4@HKUST-1 Copper [76]

6. Reactions Catalyzed by Cu-Tailored MOFs

Cu-MOFs have gained a great deal of popularity in the area of study as a result of
their high catalytic activity, a wealth of resources, and ease of synthesis, all of which are
facilitated by the excessive natural abundance of copper. Copper-containing catalysts
provide a promising route for activating starting materials while maintaining reaction
selectivity under tunable conditions, allowing for the generation of complex scaffolds from
easily accessible building pieces [77,78]. A few of the reaction methodologies that are
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promoted by Cu(I) scaffolds are CuAAC, oxidation, coupling reactions, and Friedel craft
acylation reactions, among others.

Maleki et al. employed the hydrothermal synthesis of Cu-MOF, presenting an effective
and environmentally friendly technique of synthesizing tetrazole derivatives using Cu-
MOF as a catalyst due to the high crystallinity and purity of HKUST-1 (Cu-MOF) (Figure 4).
The structure’s face-centered cubic symmetry can be ascribed to the detail that three-dimeric
copper wheels are covalently bonded to each BTC ligand. However, two copper atoms are
octahedrally bonded to eight oxygen atoms. As a consequence of activation of the carbonyl
and ethoxy groups during synthesis, Cu-MOF demonstrated good catalytic activity in
three- and four-component processes involving aldehydes, amines, triethyl orthoformate,
-keto-esters, and 2-cyano-guanidine [79]. Using aromatic aldehydes, malononitrile, 2-
hydroxynaphthalene-1,4-dione, and cycloketone in a one-pot domino four-component
reaction using a copper-based MOF as a heterogeneous catalyst and aluminum chloride
as a Lewis acid, Taheri and co-workers examined the synthesis of tacrine derivatives. The
reaction for the synthesis of MOF was completed at room temperature in the presence of
a Cu(II) nitrate trihydrate and 1,4-benzenedioic acid in DMF. The use of Cu-MOF as the
Lewis acid catalyst might facilitate the production of pyranic intermediates, which would
then be followed by the Friedlander quinoline reaction being supplemented with AlCl3
in order to produce the desired products. In addition to higher yields, utilizing Cu-MOF
as a heterogeneous catalyst for the production of the required products (Figure 4) also
eliminates the need for a tremendous separation procedure for pyranic intermediates [80].

Ghasemzadeh et al. reported a condensation process between curcumin, aromatic alde-
hydes, and barbituric acid, used to efficiently synthesize novel pyrano [2,3-d] pyrimidine2,4-
diones in a single step. The magnetic CoFe2O4@OCMC@Cu(BDC) showed superior cat-
alytic activity in the generation of heterocyclic compounds (Figure 4) and had a remarkable
degree of reusability through at least six cycles. The CoFe2O4@OCMC@Cu(BDC) catalyst
may play a crucial role in promoting the reactions with high efficiency due to its abundance
of Lewis acid sites (Co2+, Fe3+, and Cu2+) [81]. Moreover, a green three-component reaction
carried between aldehydes, dimedone, and aryl amines/2-naphthol/urea to produce a
wide range of substituted xanthene derivatives catalyzed by CoFe2O4@OCMC@Cu(BDC)
MOF is reported by Ghasemzadeh and Ghaffarian. A metal–organic framework was shown
to have a flower-like shape with surface area, total pore volume, and average pore diame-
ters of 64,933 m2g−1, 0.186 cm3g−1, and 11.46 nm, respectively. This approach had several
benefits, including good yields, clean and ecologically friendly settings, minimal catalyst
loading, simple catalyst separation, and a short reaction time [82].

Three-component coupling and cyclization processes for the synthesis of propar-
gylamines, indoles, and imidazopyridines were developed by Corma et al. via copper-
containing MOF [Cu(2-pymo)2]. These crystal structures show that copper ions interact
with adsorption substrates more efficiently attributable to a highly deformable, three-
dimensional sodalite-like framework consisting of two Cu2+ ions attached to each hetero-
cyclic ligand (pyrimidine, imidazole, or benzene). The MOFs possessed this characteristic,
making them superior and more active than conventional N-heterocyclic copper coordi-
nation complexes. Using a three-component coupling process of amines, aldehydes, and
alkynes catalyzed by [Cu(2-pymo)2], the propargylamine derivatives were synthesized
with good yield and selectivity. On the other hand, the [Cu(BDC)] catalyst performed ad-
mirably in the 5-exo-dig cyclization of 2-aminopyiridine, aldehydes, and terminal alkynes
to produce imidazopyridines (Figure 5) [79].
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(c) imidazopyridines using various copper MOFs as the catalysts [79].

The use of copper-tailored metal–organic frameworks has attracted a large amount of
interest in a wide variety of processes such as condensation reactions, coupling reaction,
and oxidation, but especially in click reactions [83]. It can be concluded that the reactions
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catalyzed by Cu-MOFs are significantly more versatile and robust than other metal catalysts,
as well as the fact that Cu-MOFs have high recyclability, as depicted in Table 4. Furthermore,
Cu(I) may coordinate with both hard and soft donor ligands in its coordination sphere,
facilitating interactions between ligands of varying compositions [84,85].

Table 4. Comparison of Cu-based MOF over other catalysts used to catalyze an alkyne azide
cycloaddition reaction.

Entry Catalyst Metal Reaction Conditions Solvent Recyclability References

1. Cu(INA)2-MOF Cu(I) 1.5 h, 80 ◦C solvent free 5 times [86]

2. [Cu(CPA)(BDC)]n Cu(I) 7 h, 90 ◦C H2O-MeOH (1:4) 4 times [60]

3. Cu2(BDC)2(DABCO) Cu(I) 45 min, 60 ◦C ethanol 5 times [87]

4. CuI Cu(I) rt no solvent NA [84]

5. CuBr(PPh3)3] Cu(I) 60 ◦C, 5 h THF/TEA NA [88]

6. sf-CuS Cu(I) rt, 30 min H2O NA [89]

7. AgN(CN)2 Ag(I) rt DIPEAH
2O/ethylene glycol NA [90]

8. ZnEt2 Zn(II) rt, 18 h THF NA [91]

9. Au(RD32) Au(III) 60 ◦C, H2O EtN3 NA [92]

10. RuH2(CO)(PPh3)3 Ru(II) 80 ◦C, 2 h PTC, H2O NA [93]

11. Pd@PR Pd(0) 8–12 h, 100 °C DMF NA [94]

7. Reaction Mechanism for CuAAC Using MOF Catalyst

The CuAAC reaction stands out from other click reactions, owing to its remarkable
process that involves the rapid devising of a super-reactive coordination complex of alkynes
and azide utilizing a copper(I) catalyst [95]. However, the catalyst in CuAAC triggers the
reaction and brings the reactants together even at extremely low concentrations that are
physiologically relevant, while without the catalyst, the reaction rate and selectivity are
poor [84]. Since the deprotonation of terminal alkynes is required in the CuAAC reaction
process, to produce the Cu–alkynyl intermediate, the procedure can only be carried out
using terminal alkynes. This intermediate makes a connection with azide during the
subsequent step, which results in the formation of a six-membered cyclic intermediate that
rapidly converts into a stable triazole.

The chemical mechanism demonstrating the synthesis of 1,4-disubstituted 1,2,3-
triazole using Cu alkynyl intermediate was suggested by Sharpless and colleagues. How-
ever, in addition to increased regioselectivity, a strong yield and rapid kinetics of the
reaction are also two of the most significant advances that have been documented by a
variety of scientists. Cu in the +1 oxidation state can be generated in situ from CuSO4.5H2O
and sodium ascorbate or utilized directly as CuI, [Cu(PPh3)3Br], CuBr, Cu2O, and other
compounds [96–98]. A mononuclear mechanism for the reaction’s progression was ini-
tially reported by Sharpless and colleagues; however, as scientific knowledge expanded, a
binuclear mechanism was discovered and reported by Finn and Folkin. This mechanism
involves two copper atoms binding to the alkyne in different positions to form a complex,
which is then attacked by the nucleophilic azide to form a six-membered ring. The creation
of a new C-N bond then yields the desired result, as highlighted in Figure 6.
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Figure 6. Plausible reaction mechanism for CuAAC using Cu-MOF as a catalyst [95].

In fact, over the past several decades, A3 coupling reactions, synthesis of tetrazoles,
and condensation reactions have garnered a large amount of attention. The mechanism
for the A3 coupling reaction involves the activation of the C-H bond by the metal catalyst,
which is a key step in the reaction process for A3 coupling. The terminal alkyne is made
more acidic due to the formation of a metal complex with the alkyne proton. With a weak
base, the amines in the reaction medium deprotonate the terminal alkyne to produce the
alkynyl nucleophile. Metal acetylide interacts with iminium ions to make propargylamine,
while simultaneously the catalyst is regenerated for use in a subsequent reaction cycle [99],
as illustrated in Figure 7.
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Tetrazoles are a family of synthetic organic heterocyclic compounds that are made
up of a five-member ring that contains four nitrogen atoms and one carbon atom. The
formal [3 + 2] cycloaddition of azides and nitriles is the simplest and most efficient way to
produce tetrazoles, which are finding widespread use in pharmaceuticals as bioisosteres,
information recording systems, etc. Since the nitrile group is activated in the tetrazole
synthesis by its coordination with nitrogen and the triple bond, increasing the electrophilic
character of the cyanide group, these intermediates speed up the 3 + 2 cycloaddition process.
The complex is subsequently exposed to sodium azide, resulting in the formation of a
second intermediate that is acidified to provide the final tetrazole product (Figure 8) [100].
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The condensation reaction mechanism proceeds with the formation of Lewis acid sites
in the vacant orbitals of Zn-MOF caused by Zn(II). This is due to the interaction of Zn(II)
with the unpaired electrons on the carbonyl oxygen, suggesting that the O atom’s positive
charge may promote further polarization of the carbonyl group. Meanwhile, the hydroxyl
O atom connected to the Zn(II) ion acted as the central Lewis basic site, stimulating the
active methylene of malononitrile to donate protons and create a carbon anion near the
benzaldehyde. The carbonyl C atom of benzaldehyde was then reacted with malononitrile
to generate the final product (Figure 9) [101].
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8. Copper-Based MOFs as Click Catalysts for Spectacular CuAAC

The Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) process is one of the finest
procedures for the regioselective production of 1,4-disubstituted-1,2,3-triazoles (Figure 10)
in either aqueous or organic media. The wide variety of uses for 1,2,3-triazoles—as phar-
maceuticals, agrochemicals, and photographic materials—have attracted a large amount
of attention [95]. Furthermore, the copper (II) complex is reduceable to copper(I) in situ
in the presence of a reducing agent such as sodium ascorbate, which is one of the most
communal and unswerving methodologies used in the click reaction that occurs during
the assembly of diverse compounds. Several researchers have discovered and reported
the uses of Cu-MOFs that make them one of the great catalysts, but not much work has
been done on this topic thus far. The HKUST-1 MOF has been found to contain both Cu(II)
and Cu(I) ions, proving the existence of a mixed valence state. More importantly, many
scientists have demonstrated that the CuMOF exhibited a distribution of double pore sizes
and had excellent water stability. Indeed, these researches show the way toward a better
understanding of the catalytic activity of Cu-based MOFs [80].
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A novel and highly efficient copper-containing metal–organic framework has been
reported by Li et al. for the regioselective synthesis of 1,2,3-triazoles without the use of
solvents, yielding an excellent quantity of product, with catalyst loading being compara-
tively low. However, little efforts were required to recover the catalyst and it was further
used for up to five cycles without appreciably diminishing its reactivity (Table 5) [102].
The catalytic activity of CuBTC–PyDC by Fan et al. [103] (Table 5) was investigated in the
CuAAC reaction between benzyl azide and phenylacetylene to form 1-benzyl-4-phenyl
1,2,3-triazole. Lu et al. synthesized a unique copper(I)-based metalorganic framework
(MOF), exhibiting an intriguing 3D architecture using Keggin-type polyoxometalate anions
and a wheel-like resorcin [4]arene-based ligand (Table 5). With an abundance of solvent-
accessible empty space and possible active Cu(I) sites, Xu et al. described the Cu-MOF
(Table 5) as a catalyst from a three-anion-dependent Cu(I) coordination network (Figure 11).
The catalyst’s structure, recycling potential, and catalytic activity may be studied in relation
to anions, allowing for fine-tuning of the catalyst’s porosity and potential active metal
sites [104].
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Table 5. Copper-based MOFs for the synthesis of 1,2,3-triazole via CuAAC reaction.

Entry MOF Catalytic Amount
(mol %)

Reaction
Conditions Solvent Yield of Triazole Recovery of

Catalyst %
Catalytic

Runs References

1. Cu-MOF 5 mol % 7 h, rt CH2Cl2 94 87 5 [102]

2. CuBTC–PyDC 5 mol % 3 h, 70 °C Ethanol - 76 4 [103]

3.
{[Cu6(bpz)6(CH3CN)3(CN)3Br]·

2OH·
14CH3CN}n

10 mol % 2 h, 60 °C DMF and DMSO
solution 99 70 6 [104]

4. Cu-MOF 5 mol % 12 h,
rt

EtOH/
H2O (2:1) 95 88 5 [105]

5. CuI@UiO-67-IM 2 mol % 80 ◦C, 2 h Water, under air
atmosphere 90 5 [106]

6. MOF-Cu (BTC)-[Pd] 2 mol % 2 h, 50 ◦C DMF 100 85 2 [107]

7. Cu2O@{[Zn(Himdc)(bipy)0.5]·
DMF} MOF 0.5 mol % 7 h, 50 ◦C t-BuOH–H2O (2:1),

Et3N 98 - 3 [108]

8. Cu(INA)2-MOF 1 mol % 1.5 h, 80 ◦C Solvent free 98 90 5 [86]

9. [Cu(I)6I6(Cu(II)-
TPPP)].2DMF 1 mol % 12 h, 50 ◦C Methanol and

water (4:1) 100 90 5 [109]

10. Fe3O4@HKUST-1 1.8 mol % 2 h, reflux H2O 92 87 5 [76]

11. Cu@Cu2O 2.3 mol % 5 h, 50 ◦C Water, t-BuOH
(2:1) 100 - - [110]

12. Cu@MOF-5 2 mol % 30 min, 79–80 ◦C Ethanol 98 - - [111]

13. [Cu(CPA)(BDC)]n 10 mol % 7 h, 90 ◦C H2O-MeOH (1:4) 93 70 4 [60]



Catalysts 2023, 13, 130 15 of 29

Catalysts 2023, 13, x FOR PEER REVIEW 14 of 29 
 

 

A novel and highly efficient copper-containing metal–organic framework has been 
reported by Li et al. for the regioselective synthesis of 1,2,3-triazoles without the use of 
solvents, yielding an excellent quantity of product, with catalyst loading being compara-
tively low. However, little efforts were required to recover the catalyst and it was further 
used for up to five cycles without appreciably diminishing its reactivity (Table 5) [102]. 
The catalytic activity of CuBTC–PyDC by Fan et al. [103] (Table 5) was investigated in the 
CuAAC reaction between benzyl azide and phenylacetylene to form 1-benzyl-4-phenyl 

1,2,3-triazole. Lu et al. synthesized a unique copper(I)-based metalorganic framework 
(MOF), exhibiting an intriguing 3D architecture using Keggin-type polyoxometalate ani-
ons and a wheel-like resorcin [4]arene-based ligand (Table 5). With an abundance of sol-
vent-accessible empty space and possible active Cu(I) sites, Xu et al. described the Cu-
MOF (Table 5) as a catalyst from a three-anion-dependent Cu(I) coordination network 
(Figure 11). The catalyst’s structure, recycling potential, and catalytic activity may be stud-
ied in relation to anions, allowing for fine-tuning of the catalyst’s porosity and potential 
active metal sites [104].  

 
Figure 11. Schematic representation of the simplified 3D network of Cu-MOF. Reproduced from 
[104] with permission from the American Chemical Society, copyright year: 2015. 

Table 5. Copper-based MOFs for the synthesis of 1,2,3-triazole via CuAAC reaction. 

Entry MOF  
Catalytic 
Amount 
(mol %) 

Reaction 
Conditions Solvent Yield of 

Triazole 

Recovery 
of Catalyst 

% 

Catalytic 
Runs References 

1. Cu-MOF 5 mol % 7 h, rt CH2Cl2 94 87 5 [102] 
2. CuBTC–PyDC 5 mol % 3 h, 70 ℃ Ethanol  - 76 4 [103] 

3. 
{[Cu6(bpz)6(CH3CN)3(CN)3Br]· 

2OH· 
14CH3CN}n 

10 mol % 2 h, 60 ℃ 
DMF and 

DMSO solu-
tion 

99 70 6 [104] 

4. Cu-MOF 5 mol % 12 h, 
rt 

EtOH/ 
H2O (2:1) 

95 88 5 [105] 

5. CuI@UiO-67-IM 2 mol % 80 °C, 2 h 
Water, under 

air atmos-
phere 

90  5 [106] 

6. MOF-Cu (BTC)-[Pd] 2 mol % 2 h, 50 °C DMF 100 85 2 [107] 

7. 
Cu2O@{[Zn(Himdc)(bipy)0.5]· 

DMF} MOF 0.5 mol % 7 h, 50 °C t-BuOH–H2O 
(2:1), Et3N 

98 - 3 [108] 

8. Cu(INA)2-MOF 1 mol % 1.5 h, 80 °C Solvent free 98 90 5 [86] 
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Murugan et al. reported the synthesis of a metal–organic framework (Cu-MOF)
(Table 5) based on ultrasmall cubic copper nanoclusters with relative ease to catalyze the
CuAAC reaction in an efficient and chemoselective manner. Selective stepwise conversion
of the terminal azide afforded the highest yields in the 70–88% range for the unsymmet-
ric bistriazoles arising from the click reaction of bifunctional azides and alkynes in the
presence of Cu-MOFs (Figure 12). The bifunctional terminal contacts through thiol and
sulfonate groups supplied the site-isolation-based active sites for selective catalysis, which
explains how Cu-MOFs may perform selective mono-click reactions. Because Cu-MOFs
may be recovered easily and reused up to five times without substantial loss of activity,
they have great potential for selective organic conversions in medicinal and industrial
formulations [105].
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Chemical Society Copyright (2020).

In order to accomplish the tandem click reactions with excellent yield under optimal
circumstances, Arnanz et al. created a bifunctional metal–organic framework catalyst
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incorporating palladium and copper(II) benzene-1,3,5-tricarboxylate MOF-Cu(BTC)-[Pd]
(Table 5). The development of thermally stable pyridine species grafted on the surface
is attributed to the CuBTC’s inherent chelating capability, which is due to its electron-
rich functional groups. A pyridine-Pd-grafted bifunctional catalyst with high activity for
one-pot click reactions was prepared [107]. In a recent study, Jayaramulu and colleagues
revealed a straightforward approach for stabilizing Cu2O nanoparticles of size 2–4 nm on
the polar pore surface of a 2D layered metal–organic framework [Zn(Himdc)(bipy)0.5]DMF
(Table 5). The 1,3,-dipolar cycloaddition reaction of terminal alkynes and aliphatic/aromatic
azides to produce 1,2,3-triazoles has been catalyzed by a Cu2O@MOF composite (Figure 13),
which will be recycled after use [108].
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The catalytic activity of Cu(INA)2-MOF in CuAAC (copper-catalyzed azide-alkyne
cycloaddition) was reported by Wiling and colleagues. The simple procedures enabled 1,2,3-
triazoles to be prepared in a solvent-free environment. Even after five catalytic cycles, the
Cu(INA)2-MOF crystal structure remained constant if the reaction could be carried out on
a gramme scale at the optimized conditions to better understand the synthetic applicability
of the catalyst [86]. On the basis of a novel premodified ligand (n-pentadecyl-attached
imidazolium (IM) decorated dicarboxylic acid) (Table 5) and ZrCl4, Hu et al. reported
the formation of a CuI-loaded and n-pentadecyl-attached, imidazolium-salt decorated,
UiO-67-type metal–organic framework (CuI@UiO-67-IM) (Figure 14) [106].

Jiang et al. described the azide–alkyne cycloaddition reactions carried out with the
help of Cu(I,II)–porphyrin networks as heterogenous catalysts that were produced and
effectively implemented. It is anticipated that the efficiency of the mixed valent MOFs as
catalysts would increase when they are implied directly. To our astonishment, however,
analogous azide–alkyne cycloaddition studies employing porphyrin-based MOFs were
investigated and were found to be the effective methodology for the synthesis of various
triazole derivatives with high yield (Table 5) [109].

Arefi et al. reported the development of a core–shell magnetic MOF catalyst by
the combination of Fe3O4 MNPs (magnetic nanoparticles) covered with metal–organic
frameworks (MOFs) composed of copper nodes and 1,3,5-benzenetricarboxylic acid linkers
(Table 5, Figure 15). Good-to-exceptional yields may be achieved when using water as the
green solvent together with the Cu moieties in MOF and shell structures to catalyze the
production of 1,2,3-triazole derivatives. In addition, the superparamagnetic characteristics
of this catalyst indicated a high degree of reusability [76].
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Figure 15. Synthesis of the catalyst Fe3O4@HKUST-1. [76].

A mesoporous 2D Cu-MOF (Figure 16) comprising a 2D sheet with a square grid
structure (Table 2) was created by Naskar et al. and supported by structural investigations.
This porous grid effectively enables organic transformations including click reactions in
the aqueous methanolic media by acting as a heterogeneous green catalytic agent with
superficial recovery and heat resistance [60].
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Figure 16. Schematic representation of synthesis of Cu-MOF [60].

The Cu(II) coordination polymer synthesized by Bikas and colleagues had an azido
bridge and a 1,3-oxazolidine-based ligand. The molecule was then used as a catalyst in
a one-pot, three-component cycloaddition process that combined epoxide, azide, and an
alkyne to generate -hydroxy-1,2,3-triazoles by employing water as the solvent in their
catalytic processes because of its non-toxic nature, inexpensive cost, and negligible effect on
the environment. The synthesized 1D azido-bridged Cu(II) coordination polymer (Table 6)
was found to be an effective catalyst for the synthesis of hydroxy-1,2,3-triazoles [112].
Likewise, another 3D Cu-based MOF (Figure 17) was reported for the smooth synthesis of
1,4-disubstituted 1,2,3-triazole [113].
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Table 6. Copper-based MOFs for the synthesis of 1,2,3-triazole via the CuAAC reaction.

Entry MOF Catalytic Amount
(mol %)

Reaction
Conditions Solvent Yield of Triazole Recovery of

Catalyst %
Catalytic

Runs References

1. [CuI
4(SiW12O40)(L)]·6H2O·

2DMF
30 mg 12 h, 80 °C Methanol 99 99 5 [114]

2. [Cu4Cl4L]·CH3OH·1.5H2O 10 mg 8 h, 60 ◦C Water 99 - 5 [113]

3. Cu(BTC)-MOF 10 mg 16 h, RT CH3OH 91 87 3 [115]

4. Cu2(BDC)2(DABCO) 20 mg 45 min, 60 ◦C Ethanol 98 92 5 [87]

5. Cu@N-C(600) 5 mg 12 h, 50 ◦C t-BuOH/H2O
(3/1) 98 93 4 [116]

6. [Cu(H3L)(µ1,3-N3)(N3)]n 4 mg 3.5 h, 40 ◦C Water 93 - - [112]

7. IRMOF-3-PI-Cu 2 mg 20 h, 90◦C DMSO 90 80 5 [117]

8. [Cu4Cl4L]·CH3OH·1.5H2O 10 mg 8 h, 60 ◦C Water 99 97 5 [118]

9. Cu-BTC 10 mg 1 h, 60 ◦C 1,4-Dioxane, TEA - - - [119]

10. rCu-MOF 0.2 mg 4 h, 60 ◦C H2O, N2 for
20 min - - 3 [120]
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In a Huisgen 1,3-dipolar cycloaddition method, the porous MOF [Cu2(BDC)2(DABCO)]
was employed as a catalyst to create a wide range of 1,2,3-triazole derivatives. This was
done so that the technology could be used to its fullest potential, allowing the reaction
to be completed successfully. In this work, Cu2(BDC)2(DABCO) was synthesized using
1,4-benzenedicarboxylic acid, diacetyl bis(2-aminoethyl) ketone, and copper(II) acetate as
reactants. This method was executed at room temperature a in solvent-free environment.
The catalyst has a large surface area (1012 m2g−1) and a small average pore size (3.9 nm),
making it very effective for the synthesis of 1,2,3-triazole analogues with good regioselec-
tivity (Table 6). By using the microdilution approach, the determination of the synthesized
triazoles as useful skeletons was performed in order to demonstrate adequate antibacterial
and antifungal properties against a variety of pathogenic organisms, including S. aureus, E.
coli, and C. albicans [87].

Wang et al. reported a novel functionalized thiacalix [4]arenes (L), and halogen anions
were used in a solvothermal assembly of CuI-based MOFs [Cu4Cl4L]CH3OH1.5H2O (1-
Cl). In addition, the synthesized MOF has the potential to be a reusable heterogeneous
catalyst that can catalyze click reactions in water at very high efficiency (Table 6, Figure 18).
The enhanced catalytic activity may be attributed in large part to the MOF structures,
particularly the exposed active CuI sites and 1D channels [118].
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Yamane et al. reported the synthesis of metal nanoparticles that are supported on MOF-
derived carboniferous substances using the HPHT synthesis procedure (Table 6). Cu-BTC
was modified for conversion into Cu@C (copper carbon composite) at low temperatures,
and the composites were pyrolysed HPHT methods. After HPHT treatment, the composite
samples were analysed for their catalytic activity in cycloaddition reactions. Phenyacetylene
and benzyl azide were reacted in the presence of 1,4-dioxane as a solvent and triethylamine
as a base using Cu@C as the catalyst, obtaining the desired stereoselective product with
good yield (Figure 19) [119].
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Fu et al. created a copper MOF in reduced form (rCu-MOF). Many ‘click’ reactions
were carried out with high yield using this reduced Cu-MOF (Figure 20). The rCu-MOF
catalyst was shown to be more active than the traditional copper halide catalyst, with the
added benefit of being easily recyclable (Table 6). rCu-MOF is appealing as a catalytic
material for industrial applications due to these features as well as due to its simplicity of
synthesis, absence of metallic contamination, and great mechanical constancy. This research
paves the way for further exploration of rCu-MOFs in polymer chemistry [120].
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Figure 20. A simplified depiction of the steps required to make a reduced copper metal–organic
framework (rCu-MOF). (i) Benzene 1,3,5-tricarboxylate (BTC) undergoes a coordination reaction with
Cu2+. and (ii) a hydroquinone-induced Cu-BTC reduction at 150 ◦C. Reproduced from [120] with
permission from RSC, copyright year: 2016.

The one-pot click reaction was reported by Luz et al. using [Cu(2-pymo)2] MOF as a cat-
alyst for the 1,3-dipolar cycloaddition reaction between benzyl azide and phenylacetylene
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at 70 ◦C in ethanol [30]. The 3-propargyl-4H-pyrano[2,3-d] pyrimidine compounds were
synthesized through a click synthesis involving azide (tetra-O-acetyl—D-glucopyranosyl)
and the metal–organic framework Cu@MOF-5 (Table 7). The resulting 1,2,3-triazole product
was tested for its ability to inhibit the protein tyrosine phosphatase B (MtbPtpB) activ-
ity of Mycobacterium tuberculosis. The most active compound’s kinetic experiments
revealed competitive inhibition of the MtbPtpB enzyme. The strong inhibitory effect
against MtbPtpB was believed to depend on the interaction of Arg63 amino acids with an
anion-type para-hydroxyl group through a salt bridge of iminium cation, according to an
extensive structure–activity relationship (SAR) in vitro and in silico investigations. The
experimental evidence obtained by cross-docking showed that the chemical synthesized
was more potent against the mycobacterium TB protein tyrosine phosphatase B. It was
found by docking that the amino acids were inside the obligatory site and were likely
hotspots for ligand binding (Figure 21) [121].

Table 7. Copper-based MOFs for the synthesis of 1,2,3-triazole via the CuAAC reaction.

Entry MOF Catalytic
Amount (mol %)

Reaction
Conditions Solvent Yield of

Triazole %
Catalytic

Runs References

1. Cu-Bis-NHC- MOF 10 wt % - THF/MeOH - - [122]

2. {[Cu2(L)(H2O)2]·(5
DMF)(4 H2O)}n

5 wt % 4 h, 50 ◦C CH2Cl2 96 - [123]

3. [Cu(2-pymo)2] - 4 h, 70 ◦C Ethanol - 6 [30]

4. MOF-Cu-TPP - - - - 10 [124]

5. MSNs@Cu- MOF - - - - - [125]

6. Cu@MOF-5 - 4–5 h,
79−80 ◦C abs. EtOH 94 - [121]
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Click chemistry has developed into a highly effective toolbox for manipulating biolog-
ical processes in their native settings. The copper(I)-catalyzed azide–alkyne cycloaddition
(CuAAC) reaction is a common click process utilized in drug production and design. For
in vivo tumor treatment, Wang et al. built a heterogeneous copper catalyst using metal–
organic frameworks (Table 7) that preferentially accumulated in the mitochondria of live
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cells and showed significant catalytic activity, as illustrated in Figure 22. To execute the
targeted drug production in mitochondria, the catalyst may be employed to activate the
profluorophobic unit. There is no better way to reduce cytotoxic medications’ deleteri-
ous side effects while increasing their effectiveness than the in situ synthesis of active
pharmaceuticals from inert prodrugs in subcellular organelles [123].
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The reported copper metal–organic frameworks for the synthesis of 1,2,3-triazole
appended probes via CuAAC are often recyclable and have a high reusability of up
to four or five times. Additionally, the catalysts are also recoverable at an astounding
pace [111,113–116]. Depending on the reactants and the reaction conditions, the quantity of
MOF catalysts may be anywhere ranging from 0.5 mol % to 10 mol % or 0.2 mg to 30 mg.
The desired products were obtained with excellent yields of more than 90%, and in some
cases, an exceptional yield of 100% was reported, as highlighted in Table 5 (entries 6, 9, and
11) [105,107,109]. Cu-MOFs have relatively outstanding chemical stability, particularly in
organic solvents and aqueous solutions, due to the involvement of Cu(I) sites, making the
MOF a heterogeneous catalyst for the azide–alkyne cycloaddition (AAC) process [7,8].

9. Challenges in the Synthesis and Applications of Cu-Based MOFs

The challenges in the synthesis of Cu-based MOFs emerge from the need to compre-
hend and manage the inherent complexity of the many different topologies and composi-
tions of MOFs. However, Cu has dynamic stability and requires more basic compounds,
which often leads to the carboxylate products and waste disposal issues and separation
challenges [120]. Moreover, due to the microporous structure of Cu-MOFs and MOF-based
materials, mass transfer constraints occur in large molecules, which limits researchers
from advancing the field of Cu-MOF synthesis. Hierarchical porosity can be introduced to
resolve the problem of mass transfer. The key challenges in the application of Cu-MOFs
are that they are not very mechanically stable due to their increased pore size, which
sometimes hinders their use as catalysts in practical catalytic reactions [102]. This makes
it necessary to focus on increasing their mechanical and chemical stability to preserve
catalytic efficacy and selectivity [111]. After reviewing the relevant literature, we conclude
that MOFs and MOF-derived materials are promising starting points for investigating
catalytic applications, even though they provide both challenges and opportunities.

10. Conclusions and Future Aspects

There has been exponential growth in recent years in the synthesis and application of
novel MOFs with exciting new architectures and functionalities. Thus, it is reasonable to
anticipate that MOFs will continue to provide increasingly more efficient responses to issues
in contemporary organic chemistry and modern organometallic catalysis, since the catalytic
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processes they mediate have grown more pervasive over the previous years. Copper-
tailored metal–organic frameworks have gained a large amount of attention in the diversity
of reactions, especially in CuAAC, since the MOF catalysts can be easily recovered and used
multiple times, owing to their structure, durability, and porosity. This review focused on
the copper-based MOFs that have been widely employed for the synthesis of 1,2,3-triazoles
across a wide range of reaction conditions, with benefits including improved yield and
reduced reaction time, as well as the effective recovery of the catalyst. MOF catalysts
enhance the synthesis of such compounds that would otherwise be difficult to produce
without the aid of a catalyst, or for which reaction improvements would be beneficial. Since
MOFs are capable of catalysis, future research and industrial development stand to benefit
from the synthesis of ever more creative and recyclable MOFs in the forthcoming years.
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Abbreviations

MOF Metal–organic framework
Im Imidazolate
BTC Benzene tricarboxylate
BDC Benzene dicarboxylate
PyDC Pyridine-3,5-dicarboxylate
TPP Triphenylphosphonium
CPA 4-Chloro-phenyl)-pyridin-4-ylmethylene-amine
Himdc 4,5-Imidazoledicarboxylate
Bipy 4,4′-Bipyridine
DABCO 1,4-Diazabicyclo [2.2.2] octane
2-pymo 2-Hydroxypyrimidinolate
SBU Supplementary building units
OCMC O-Carboxymethyl chitosan
IM Imidazolium
HPHT High pressure and high temperature
MtbPtpB Mycobacterium tuberculosis protein tyrosine phosphatase B
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61. Kikhtyanin, O.; Kubička, D.; Čejka, J. Toward Understanding of the Role of Lewis Acidity in Aldol Condensation of Acetone and
Furfural Using MOF and Zeolite Catalysts. Catal. Today 2015, 243, 158–162. [CrossRef]

62. Zhao, T.; Dong, M.; Yang, L.; Liu, Y. Synthesis of Stable Hierarchical MIL-101(Cr) with Enhanced Catalytic Activity in the
Oxidation of Indene. Catalysts 2018, 8, 394. [CrossRef]

63. Rostamnia, S.; Alamgholiloo, H.; Liu, X. Pd-grafted Open Metal Site Copper-benzene-1,4-dicarboxylate Metal Organic Frame-
works (Cu-BDC MOF’s) as Promising Interfacial Catalysts for Sustainable Suzuki Coupling. J. Colloid Interface Sci. 2016, 469,
310–317. [CrossRef] [PubMed]

http://doi.org/10.1002/er.5807
http://doi.org/10.1039/C5CY01847A
http://doi.org/10.1021/acs.chemrev.0c01060
http://www.ncbi.nlm.nih.gov/pubmed/33350813
http://doi.org/10.1007/s11705-020-1959-0
http://doi.org/10.1093/nsr/nwv023
http://doi.org/10.1016/j.ccr.2018.02.009
http://doi.org/10.1070/RCR4554
http://doi.org/10.1039/C9SC04249K
http://doi.org/10.1038/s41467-020-17755-8
http://doi.org/10.1016/j.jhazmat.2020.122765
http://www.ncbi.nlm.nih.gov/pubmed/32438242
http://doi.org/10.1039/C6SC00563B
http://www.ncbi.nlm.nih.gov/pubmed/30155098
http://doi.org/10.1021/ac403674p
http://www.ncbi.nlm.nih.gov/pubmed/24380495
http://doi.org/10.1039/C8TA10394A
http://doi.org/10.1016/j.cej.2017.05.169
http://doi.org/10.1016/j.cattod.2014.01.010
http://doi.org/10.1016/j.ces.2016.11.009
http://doi.org/10.1016/j.micromeso.2011.02.003
http://doi.org/10.1016/j.molstruc.2016.12.005
http://doi.org/10.1016/j.inoche.2016.04.015
http://doi.org/10.1016/j.matchemphys.2017.10.034
http://doi.org/10.1039/b804680h
http://doi.org/10.1107/S2052520613029557
http://www.ncbi.nlm.nih.gov/pubmed/24441122
http://doi.org/10.1016/j.molcata.2011.08.011
http://doi.org/10.3390/molecules26175296
http://doi.org/10.1016/j.cattod.2014.08.016
http://doi.org/10.3390/catal8090394
http://doi.org/10.1016/j.jcis.2016.02.021
http://www.ncbi.nlm.nih.gov/pubmed/26897567


Catalysts 2023, 13, 130 27 of 29

64. Liu, L.; Tai, X.; Zhou, X. Au3+/Au0 Supported on Chromium(III) Terephthalate Metal Organic Framework (MIL-101) as an
Efficient Heterogeneous Catalystfor Three-Component Coupling Synthesis of Propargylamines. Materials 2017, 10, 99. [CrossRef]
[PubMed]

65. Hajiashrafi, T.; Karimi, M.; Heydari, A.; Tehrani, A.A. Erbium-Organic Framework as Heterogeneous Lewis Acid Catalysis for
Hantzsch Coupling and Tetrahydro-4H-Chromene Synthesis. Catal. Lett. 2017, 147, 453–462. [CrossRef]

66. Phan, N.T.S.; Le, K.K.A.; Phan, T.D. MOF-5 as an Efficient Heterogeneous Catalyst for Friedel–Crafts Alkylation Reactions. Appl.
Catal. Gen. 2010, 2, 246–253. [CrossRef]

67. Gascon, J.; Aktay, U.; Hernandez Alonso, M.; van Klink, G.; Kapteijn, F. Amino-Based Metal Organic Frameworks as Stable,
Highly Active Basic Catalysts. J. Catal. 2009, 261, 75–87. [CrossRef]

68. Torbina, V.; Salaev, M.; Vodyankina, O. Effect of Solvent Nature on Propylene Glycol Oxidation with Tert-Butyl Hydroperoxide
over Metal–Organic Framework Cr-MIL-101. RSC Adv. 2019, 9, 25981–25986. [CrossRef] [PubMed]

69. Phan, N.T.S.; Nguyen, T.T.; Nguyen, C.V.; Nguyen, T.T. Ullmann-Type Coupling Reaction Using Metal-Organic Framework
MOF-199 as an Efficient Recyclable Solid Catalyst. Appl. Catal. Gen. 2013, 457, 69–77. [CrossRef]

70. Ullah, L.; Zhao, G.; Xu, Z.; He, H.; Usman, M.; Zhang, S. 12-Tungstophosphoric Acid Niched in Zr-Based Metal-Organic
Framework: A Stable and Efficient Catalyst for Friedel-Crafts Acylation. Sci. China Chem. 2018, 61, 402–411. [CrossRef]

71. Calleja, G.; Sanz, R.; Orcajo, G.; Briones, D.; Leo, P.; Martínez, F. Copper-based MOF-74 material as effective acid catalyst in
Friedel–Crafts acylation of anisole. Catal. Today 2014, 227, 130–137. [CrossRef]

72. Zhu, C.; Mao, Q.; Li, D.; Li, C.; Zhou, Y.; Wu, X.; Luo, Y.; Li, Y. A Readily Available Urea Based MOF That Act as a Highly Active
Heterogeneous Catalyst for Friedel-Crafts Reaction of Indoles and Nitrostryenes. Catal. Commun. 2018, 104, 123–127. [CrossRef]

73. Zhu, Y.; Chen, J.; Kaskel, S. Porphyrin-Based Metal-Organic Frameworks for Biomedical Applications. Angew. Chem. Int. Ed.
2020, 60, 5010–5035. [CrossRef]

74. Dong, W.; Zhang, L.; Wang, C.; Feng, C.; Shang, N.; Gao, S.; Wang, C. Palladium Nanoparticle Embedded in Metal Organic
Framework Derived Porous Carbon: Synthesis and Application for Efficient Suzuki-Miyaura Coupling Reaction. RSC Adv. 2016,
6, 37118–37123. [CrossRef]

75. Hartmann, M.; Fischer, M. Amino-functionalized basic catalysts with MIL-101 structure. Microporous Mesoporous Mater. 2012, 164,
38–43. [CrossRef]

76. Arefi, E.; Khojastehnezhad, A.; Shiri, A. A Magnetic Copper Organic Framework Material as an Efficient and Recyclable Catalyst
for the Synthesis of 1,2,3-Triazole Derivatives. Sci. Rep. 2021, 11, 20514. [CrossRef]

77. Konnerth, H.; Matsagar, B.M.; Chen, S.S.; Prechtl, M.H.G.; Shieh, F.-K.; Wu, K.C.-W. Metal-Organic Framework (MOF)-Derived
Catalysts for Fine Chemical Production. Coord. Chem. Rev. 2020, 416, 213319. [CrossRef]

78. Luz, I.; i Xamena, F.L.; Corma, A. Bridging Homogeneous and Heterogeneous Catalysis with MOFs: Cu-MOFs as Solid Catalysts
for Three-Component Coupling and Cyclization Reactions for the Synthesis of Propargylamines, Indoles and Imidazopyridines.
J. Catal. 2012, 285, 285–291. [CrossRef]

79. Kal-Koshvandi, A.T.; Maleki, A.; Tarlani, A.; Soroush, M.R. Synthesis and Characterization of Ultrapure HKUST-1 MOFs as
Reusable Heterogeneous Catalysts for the Green Synthesis of Tetrazole Derivatives. ChemistrySelect 2020, 5, 3164–3172. [CrossRef]

80. Mollabagher, H.; Taheri, S.; Mojtahedi, M.M.; Seyedmousavi, S. Cu-Metal Organic Frameworks (Cu-MOF) as an Environment-
Friendly and Economical Catalyst for One Pot Synthesis of Tacrine Derivatives. RSC Adv. 2020, 10, 1995–2003. [CrossRef]

81. Ghaffarian, F.; Ghasemzadeh, M.; Aghaei, S. An efficient synthesis of some new curcumin based pyrano[2,3-d]pyrimidine-2,4(3H)-
dione derivatives using CoFe2O4@OCMC@Cu(BDC) as a novel and recoverable catalyst. J. Mol. Struct. 2019, 1186, 204–211.
[CrossRef]

82. Ghasemzadeh, M.A.; Ghaffarian, F. Preparation of Core/Shell/Shell CoFe2O4/OCMC/Cu (BDC) Nanostructure as a Magnetically
Heterogeneous Catalyst for the Synthesis of Substituted Xanthenes, Quinazolines and Acridines under Ultrasonic Irradiation.
Appl. Organomet. Chem. 2020, 34, e5580. [CrossRef]

83. Barea, E.; Navarro, J.A.R.; Salas, J.M.; Masciocchi, N.; Galli, S.; Sironi, A. Mineralomimetic Sodalite- and Muscovite-Type
Coordination Frameworks. Dynamic Crystal-to-Crystal Interconversion Processes Sensitive to Ion Pair Recognition. J. Am. Chem.
Soc. 2004, 126, 3014–3015. [CrossRef]

84. Meldal, M.; Diness, F. Recent Fascinating Aspects of the CuAAC Click Reaction. Trends Chem. 2020, 2, 569–584. [CrossRef]
85. Basu, P.; Bhanja, P.; Salam, N.; Dey, T.K.; Bhaumik, A.; Das, D.; Islam, S.M. Silver Nanoparticles Supported over Al2O3@Fe2O3

Core-Shell Nanoparticles as an Efficient Catalyst for One-Pot Synthesis of 1,2,3-Triazoles and Acylation of Benzyl Alcohol. Mol.
Catal. 2017, 439, 31–40. [CrossRef]

86. Willig, J.C.M.; Granetto, G.; Reginato, D.; Dutra, F.R.; Poruczinski, F.; de Oliveira, I.M.; Stefani, H.A.; de Campos, S.D.;
de Campos, A.; Manarin, F.; et al. A Comparative Study between Cu(INA)2-MOF and [Cu(INA)2(H2O)4] Complex for a Click
Reaction and the Biginelli Reaction under Solvent-Free Conditions. RSC Adv. 2020, 10, 3407–3415. [CrossRef]

87. Tourani, H.; Naimi-Jamal, M.R.; Panahi, L.; Dekamin, M.G. Nanoporous Metal-Organic Framework Cu2(BDC)2(DABCO) as an
Efficient Heterogeneous Catalyst for One-Pot Facile Synthesis of 1,2,3-Triazole Derivatives in Ethanol: Evaluating Antimicrobial
Activity of the Novel Derivatives. Sci. Iran. 2019, 26, 1485–1496. [CrossRef]

88. Singh, G.; Mangat, S.S.; Sharma, H.; Singh, J.; Arora, A.; Singh Pannu, A.P.; Singh, N. Design and Syntheses of Novel Fluorescent
Organosilicon-Based Chemosensors through Click Silylation: Detection of Biogenic Amines. RSC Adv. 2014, 4, 36834–36844.
[CrossRef]

http://doi.org/10.3390/ma10020099
http://www.ncbi.nlm.nih.gov/pubmed/28772462
http://doi.org/10.1007/s10562-016-1913-4
http://doi.org/10.1016/j.apcata.2010.04.053
http://doi.org/10.1016/j.jcat.2008.11.010
http://doi.org/10.1039/C9RA05003E
http://www.ncbi.nlm.nih.gov/pubmed/35531019
http://doi.org/10.1016/j.apcata.2013.02.005
http://doi.org/10.1007/s11426-017-9182-0
http://doi.org/10.1016/j.cattod.2013.11.062
http://doi.org/10.1016/j.catcom.2017.10.010
http://doi.org/10.1002/anie.201909880
http://doi.org/10.1039/C6RA00378H
http://doi.org/10.1016/j.micromeso.2012.06.044
http://doi.org/10.1038/s41598-021-00012-3
http://doi.org/10.1016/j.ccr.2020.213319
http://doi.org/10.1016/j.jcat.2011.10.001
http://doi.org/10.1002/slct.201904637
http://doi.org/10.1039/C9RA10111J
http://doi.org/10.1016/j.molstruc.2019.03.029
http://doi.org/10.1002/aoc.5580
http://doi.org/10.1021/ja039472e
http://doi.org/10.1016/j.trechm.2020.03.007
http://doi.org/10.1016/j.mcat.2017.05.005
http://doi.org/10.1039/C9RA10171C
http://doi.org/10.24200/sci.2018.50731.1841
http://doi.org/10.1039/C4RA02270J


Catalysts 2023, 13, 130 28 of 29

89. Velpuri, V.R.; Muralidharan, K. Multicomponent Click Reaction Catalyzed by Organic Surfactant-Free Copper Sulfide (Sf-CuS)
Nano/Micro Flowers. J. Organomet. Chem. 2019, 884, 59–65. [CrossRef]

90. Beghdadi, S.; Miladi, I.A.; Addis, D.; Romdhane, H.B.; Bernard, J.; Drockenmuller, E. Synthesis and Polymerization of C-Vinyl-
and N-Vinyl-1,2,3-Triazoles. Polym. Chem. 2012, 3, 1680–1692. [CrossRef]

91. Ju, C.; Meng, C.; Ma, J.; Zhang, X.; Ding, S. Construction of Sequence-Defined Polytriazoles by IrAAC and CuAAC Reactions.
Chem. Commun. 2020, 56, 3955–3958. [CrossRef]

92. Chinchilla, R.; Nájera, C. Recent Advances in Sonogashira Reactions. Chem. Soc. Rev. 2011, 40, 5084–5121. [CrossRef] [PubMed]
93. Bozorov, K.; Zhao, J.; Aisa, H.A. 1,2,3-Triazole-Containing Hybrids as Leads in Medicinal Chemistry: A Recent Overview. Bioorg.

Med. Chem. 2019, 27, 3511–3531. [CrossRef] [PubMed]
94. Shil, A.K.; Kumar, S.; Sharma, S.; Chaudhary, A.; Das, P. Polystyrene Resin Supported Palladium(0) (Pd@PR) Nanocomposite

Mediated Regioselective Synthesis of 4-Aryl-1-Alkyl/(2-Haloalkyl)-1H-1,2,3-Triazoles and Their N-Vinyl Triazole Derivatives
from Terminal Alkynes. RSC Adv. 2015, 5, 11506–11514. [CrossRef]

95. Meldal, M.; Tornøe, C.W. Cu-Catalyzed Azide−Alkyne Cycloaddition. Chem. Rev. 2008, 108, 2952–3015. [CrossRef]
96. Guo, X.; Lin, C.; Zhang, M.; Duan, X.; Dong, X.; Sun, D.; Pan, J.; You, T. 2D/3D Copper-Based Metal-Organic Frameworks for

Electrochemical Detection of Hydrogen Peroxide. Front. Chem. 2021, 9, 743637. [CrossRef] [PubMed]
97. Benjamin, R.B.; Sandra E., D.; Harry, H. Experimental Evidence for the Involvement of Dinuclear Alkynylcopper(I) Complexes in

Alkyne–Azide Chemistry. Chem. Eur. J. 2010, 16, 6278–6284. [CrossRef]
98. Worrell, B.T.; Malik, J.A.; Fokin, V.V. Direct Evidence of a Dinuclear Copper Intermediate in Cu(I)-Catalyzed Azide-Alkyne

Cycloadditions. Science 2013, 340, 457–460. [CrossRef]
99. Mo, J.-N.; Su, J.; Zhao, J. The Asymmetric A3(Aldehyde–Alkyne–Amine) Coupling: Highly Enantioselective Access to Propargy-

lamines. Molecules 2019, 24, 1216. [CrossRef]
100. Swami, S.; Sahu, S.N.; Shrivastava, R. Nanomaterial Catalyzed Green Synthesis of Tetrazoles and Its Derivatives: A Review on

Recent Advancements. RSC Adv. 2021, 11, 39058–39086. [CrossRef]
101. He, Z.; Zhao, X.; Pan, X.; Li, Y.; Wang, X.; Xu, H.; Xu, Z. Ligand Geometry Controlling Zn-MOF Partial Structures for Their

Catalytic Performance in Knoevenagel Condensation. RSC Adv. 2019, 9, 25170–25176. [CrossRef]
102. LiLi, P.; Regati, S.; Huang, H.; Arman, H.D.; Zhao, J.C.-G.; Chen, B. A Metal–Organic Framework as a Highly Efficient and

Reusable Catalyst for the Solvent-Free 1,3-Dipolar Cycloaddition of Organic Azides to Alkynes. Inorg. Chem. Front. 2015, 2, 42–46.
[CrossRef]

103. Fan, Z.; Wang, Z.; Cokoja, M.; Fischer, R.A. Defect Engineering: An Effective Tool for Enhancing the Catalytic Performance of
Copper-MOFs for the Click Reaction and the A 3 Coupling. Catal. Sci. Technol. 2021, 11, 2396–2402. [CrossRef]

104. Xu, Z.; Han, L.; Zhuang, G.; Bai, J.; Sun, D. In Situ Construction of Three Anion-Dependent Cu(I) Coordination Networks as
Promising Heterogeneous Catalysts for Azide–Alkyne “Click” Reactions. Inorg. Chem. 2015, 54, 4737–4743. [CrossRef]

105. Murugan, R.; Reddy, M.B.; Pandurangan, P.; Anandhan, R. Gold-like Thiolate-Protected Ultrasmall Cubic Copper Nanocluster-
Based Metal–Organic Framework as a Selective Catalyst for Stepwise Synthesis of Unsymmetric Bistriazole by Click Reaction.
ACS Appl. Mater. Interfaces 2020, 12, 56004–56016. [CrossRef]

106. Hu, Y.-H.; Wang, J.-C.; Yang, S.; Li, Y.-A.; Dong, Y.-B. CuI@UiO-67-IM: A MOF-Based Bifunctional Composite Triphase-Transfer
Catalyst for Sequential One-Pot Azide–Alkyne Cycloaddition in Water. Inorg. Chem. 2017, 56, 8341–8347. [CrossRef]

107. Arnanz, A.; Pintado-Sierra, M.; Corma, A.; Iglesias, M.; Sanchez, F. Bifunctional Metal Organic Framework Catalysts for Multistep
Reactions: MOF-Cu(BTC)-[Pd] Catalyst for One-Pot Heteroannulation of Acetylenic Compounds. Adv. Synth. Catal. 2012, 354,
1347–1355. [CrossRef]

108. Jayaramulu, K.; Suresh, V.M.; Maji, T.K. Stabilization of Cu2O Nanoparticles on a 2D Metal–Organic Framework for Catalytic
Huisgen 1,3-Dipolar Cycloaddition Reaction. Dalton Trans. 2014, 44, 83–86. [CrossRef]

109. Jiang, W.; Yang, J.; Liu, Y.-Y.; Ma, J.-F. Porphyrin-Based Mixed-Valent Ag(I)/Ag(II) and Cu(I)/Cu(II) Networks as Efficient
Heterogeneous Catalysts for the Azide–Alkyne “Click” Reaction and Promising Oxidation of Ethylbenzene. Chem. Commun.
2016, 52, 1373–1376. [CrossRef]

110. Kim, A.; Muthuchamy, N.; Yoon, C.; Joo, S.H.; Park, K.H. MOF-Derived Cu@Cu2O Nanocatalyst for Oxygen Reduction Reaction
and Cycloaddition Reaction. Nanomaterials 2018, 8, 138. [CrossRef]

111. Thanh, N.D.; Hai, D.S.; Bich, V.T.N.; Hien, P.T.T.; Duyen, N.T.K.; Mai, N.T.; Dung, T.T.; Toan, V.N.; Van, H.T.K.; Dang, L.H.; et al.
Efficient Click Chemistry towards Novel 1H-1,2,3-Triazole-Tethered 4H-Chromene−d-Glucose Conjugates: Design, Synthesis
and Evaluation of in Vitro Antibacterial, MRSA and Antifungal Activities. Eur. J. Med. Chem. 2019, 167, 454–471. [CrossRef]

112. Bikas, R.; Ajormal, F.; Noshiranzadeh, N.; Emami, M.; Kozakiewicz, A. 1D Azido Bridged Cu(II) Coordination Polymer with
1,3-oxazolidine Ligand as an Effective Catalyst for Green Click Synthesis of 1,2,3-triazoles. Appl. Organomet. Chem. 2020, 34.
[CrossRef]

113. Lu, B.-B.; Yang, J.; Che, G.-B.; Pei, W.-Y.; Ma, J.-F. Highly Stable Copper(I)-Based Metal–Organic Framework Assembled with
Resorcin[4]Arene and Polyoxometalate for Efficient Heterogeneous Catalysis of Azide–Alkyne “Click” Reaction. ACS Appl. Mater.
Interfaces 2018, 10, 2628–2636. [CrossRef] [PubMed]

114. Tourani, H.; Naimi-Jamal, M.R.; Dekamin, M.G. Preparation of 5-Substituted-1H-Tetrazoles Catalyzed by MOFs via Two Strategies:
Direct Condensation of Aryl Nitriles with SodiumAzide, and Tri-Component Reaction Method. ChemistrySelect 2018, 3, 8332–8337.
[CrossRef]

http://doi.org/10.1016/j.jorganchem.2019.01.016
http://doi.org/10.1039/C1PY00446H
http://doi.org/10.1039/D0CC00421A
http://doi.org/10.1039/c1cs15071e
http://www.ncbi.nlm.nih.gov/pubmed/21655588
http://doi.org/10.1016/j.bmc.2019.07.005
http://www.ncbi.nlm.nih.gov/pubmed/31300317
http://doi.org/10.1039/C4RA15133J
http://doi.org/10.1021/cr0783479
http://doi.org/10.3389/fchem.2021.743637
http://www.ncbi.nlm.nih.gov/pubmed/34692641
http://doi.org/10.1002/chem.201000447
http://doi.org/10.1126/science.1229506
http://doi.org/10.3390/molecules24071216
http://doi.org/10.1039/D1RA05955F
http://doi.org/10.1039/C9RA04499J
http://doi.org/10.1039/C4QI00148F
http://doi.org/10.1039/D0CY01946A
http://doi.org/10.1021/acs.inorgchem.5b00110
http://doi.org/10.1021/acsami.0c17324
http://doi.org/10.1021/acs.inorgchem.7b01025
http://doi.org/10.1002/adsc.201100503
http://doi.org/10.1039/C4DT02661F
http://doi.org/10.1039/C5CC08456C
http://doi.org/10.3390/nano8030138
http://doi.org/10.1016/j.ejmech.2019.01.060
http://doi.org/10.1002/aoc.5826
http://doi.org/10.1021/acsami.7b17306
http://www.ncbi.nlm.nih.gov/pubmed/29320156
http://doi.org/10.1002/slct.201801392


Catalysts 2023, 13, 130 29 of 29

115. Jia, X.; Xu, G.; Du, Z.; Fu, Y. Cu(BTC)-MOF Catalyzed Multicomponent Reaction to Construct 1,4-Disubstituted-1,2,3-Triazoles.
Polyhedron 2018, 151, 515–519. [CrossRef]

116. Wang, Z.; Zhou, X.; Gong, S.; Xie, J. MOF-Derived Cu@N-C Catalyst for 1,3-Dipolar Cycloaddition Reaction. Nanomaterials 2022,
12, 1070. [CrossRef] [PubMed]

117. Maity, T.; Saha, D.; Koner, S. Aromatic N-Arylations Catalyzed by Copper-Anchored Porous Zinc-Based Metal-Organic Framework
under Heterogeneous Conditions. ChemCatChem 2014, 6, 2373–2383. [CrossRef]

118. Wang, X.-X.; Yang, J.; Xu, X.; Ma, J.-F. Highly Stable Copper(I)–Thiacalix[4]Arene-Based Frameworks for Highly Efficient Catalysis
of Click Reactions in Water. Chem.-Eur. J. 2019, 25, 16660–16667. [CrossRef]

119. Yamane, I.; Sato, K.; Otomo, R.; Yanase, T.; Miura, A.; Nagahama, T.; Kamiya, Y.; Shimada, T. Ultrahigh-Pressure Preparation and
Catalytic Activity of MOF-Derived Cu Nanoparticles. Nanomaterials 2021, 11, 1040. [CrossRef]

120. Fu, Q.; Xie, K.; Tan, S.; Ren, J.M.; Zhao, Q.; Webley, P.A.; Qiao, G.G. The Use of Reduced Copper Metal–Organic Frameworks to
Facilitate CuAAC Click Chemistry. Chem. Commun. 2016, 52, 12226–12229. [CrossRef]

121. Thanh, N.D.; Hai, D.S.; Ha, N.T.T.; Tung, D.T.; Le, C.T.; Van, H.T.K.; Toan, V.N.; Toan, D.N.; Dang, L.H. Synthesis, Biological
Evaluation and Molecular Docking Study of 1,2,3-1H-Triazoles Having 4H-Pyrano[2,3-d]Pyrimidine as Potential Mycobacterium
Tuberculosis Protein Tyrosine Phosphatase B Inhibitors. Bioorg. Med. Chem. Lett. 2019, 29, 164–171. [CrossRef]

122. Shinde, K.S.; Michael, P.; Fuhrmann, D.; Binder, W.H. A Mechanochemically Active Metal-Organic Framework (MOF) Based on
Cu-Bis-NHC-Linkers: Synthesis and Mechano-Catalytic Activation. Macromol. Chem. Phys. 2022, 223, 2200207. [CrossRef]

123. De, D.; Pal, T.K.; Neogi, S.; Senthilkumar, S.; Das, D.; Gupta, S.S.; Bharadwaj, P.K. A Versatile CuII Metal–Organic Framework
Exhibiting High Gas Storage Capacity with Selectivity for CO2: Conversion of CO2 to Cyclic Carbonate and Other Catalytic
Abilities. Chem.-Eur. J. 2016, 22, 3387–3396. [CrossRef] [PubMed]

124. Wang, F.; Zhang, Y.; Liu, Z.; Du, Z.; Zhang, L.; Ren, J.; Qu, X. A Biocompatible Heterogeneous MOF–Cu Catalyst for In Vivo Drug
Synthesis in Targeted Subcellular Organelles. Angew. Chem. Int. Ed. 2019, 58, 6987–6992. [CrossRef]

125. Zeng, F.; Pan, Y.; Luan, X.; Gao, Y.; Yang, J.; Wang, Y.; Song, Y. Copper Metal-Organic Framework Incorporated Mesoporous Silica
as a Bioorthogonal Biosensor for Detection of Glutathione. Sens. Actuators B Chem. 2021, 345, 130382. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.poly.2018.05.058
http://doi.org/10.3390/nano12071070
http://www.ncbi.nlm.nih.gov/pubmed/35407188
http://doi.org/10.1002/cctc.201400056
http://doi.org/10.1002/chem.201903966
http://doi.org/10.3390/nano11041040
http://doi.org/10.1039/C6CC06890A
http://doi.org/10.1016/j.bmcl.2018.12.009
http://doi.org/10.1002/macp.202200207
http://doi.org/10.1002/chem.201504747
http://www.ncbi.nlm.nih.gov/pubmed/26833880
http://doi.org/10.1002/anie.201901760
http://doi.org/10.1016/j.snb.2021.130382

	Introduction 
	MOFs as Heterogenous Catalysts 
	Physico-Chemical Properties of MOFs 
	Methods for the Synthesis of MOFs 
	MOFs as Catalysts for Innumerable Reactions 
	Reactions Catalyzed by Cu-Tailored MOFs 
	Reaction Mechanism for CuAAC Using MOF Catalyst 
	Copper-Based MOFs as Click Catalysts for Spectacular CuAAC 
	Challenges in the Synthesis and Applications of Cu-Based MOFs 
	Conclusions and Future Aspects 
	References

