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Abstract: The oxyfunctionalization of non-activated C-H bonds has attracted considerable attention
for several years. Following the example of enzymatic systems, a multitude of catalytic systems
capable of carrying out such a transformation efficiently and selectively have been described. The
great discoveries in this area were described at the beginning of the 21st century, but due to the
growing demand for precise syntheses (e.g., for the needs of the pharmaceutical industry), new
solutions or new applications for already known catalytic systems are constantly being sought. This
review article summarizes the development of metal complex-catalyzed selective functionalization
of saturated C-H bonds since 2010. However, brief references to previous studies are also made
for clarity. There is a huge amount of literature reports in this area, so we intend to highlight only
the most important findings in the selective hydroxylation of saturated C–H bonds. Their practical
applications in synthesis will also be pointed out.
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1. Introduction

Selective oxidation of organic molecules, especially those widely available and cheap
but relatively inert chemically, is an essential process for preparing high-value-added com-
pounds such as alcohols, aldehydes, and ketones used in organic and polymer synthesis [1].
The saturated C–H bonds due to the high dissociation energy (96–105 kcal/mol), if not
activated in any manner (adjacent π electron systems, heteroatoms, etc.), are among the
less reactive in organic chemistry [2]. For years, the development of methods for direct
selective hydroxylation (oxygenation) has been a great challenge. However, this reaction
extensively occurs in the metabolism of all living aerobic organisms. Heme and nonheme
iron enzymes efficiently perform such transformations with a high level of chemo-, regio-,
and stereoselectivity using O2 or H2O2 as terminal oxidants. The goal of biomimetic studies
is to develop a catalytic system that can generate a selective metal-based oxidant analogous
to those employed, i.e., by cytochrome P450, rather than via HO• or RO• radicals that
easily initiate the radical chain of aerobic autoxidation. The paradoxical challenge lies in
discovering a catalyst that is both highly reactive and predictably selective for oxidizing the
inert C–H bonds present in each organic compound. Due to the fact that the formation of a
C-M intermediate is a key step in the reaction, the process is referred to as C–H activation
rather than C–H transformation. Structurally developed and electronically differentiated
coordination complexes of transition metals constitute a versatile platform for catalyst
designing. Several series of coordination complexes have the proven ability to catalyze
the oxidation of aliphatic C–H bonds. After the first exploitation of biomimetic oxidative
catalytic systems by Groves in the hydroxylation and epoxidation of olefins with iodosyl-
benzene as an oxidant [3], the number of reports significantly increased. In this paper, we
will focus on reviewing catalytic oxidation reports that have been published since 2010,
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with particular emphasis on the applications of iron and manganese complexes. The influ-
ence of metal, ligand structure, and particularly the oxygen donor agent has been reported.
Several available oxygen donors, which include m-chloroperoxybenzoic acid (mCPBA),
alkyl peroxides (ROOH), sodium hypochlorite (NaOCl), iodosylbenzene (PhIO), hydrogen
peroxide (H2O2), and oxygen (O2), were investigated. The latter are both definitely the
most attractive in terms of accessibility, convenient handling, and environmental impact [4].
The mainly used metal-based oxidants are transition-metal oxo species, often suggested as
reactive intermediates in various oxidation processes [5–9].

2. Tools to Evaluate the Selectivity and Usability of Catalytic Systems

A critical issue within catalytic oxidation is chemo-selectivity because the primary
products (alcohols) are typically more oxidizable than the hydrocarbon substrates and are
therefore, over-oxidized or obtained in relatively low yields. Since the catalytic system’s
selectivity and possible synthetic applications strongly depend on its mechanism of action,
the explanation of the oxidation pathway has huge importance. Obtaining useful reactivity
and chemo-, site-, and stereoselectivity in their direct transformations remains a difficult
task, both via the organometallic pathway and via a radical-mediated process. A few
tools/test procedures have been elaborated for its cognition (see Scheme 1). Oxidation of
cyclohexane is the first of the three widely used “test reactions” for catalytic systems. In
cases when the substrate was used in large excess compared to the oxidant, the experimen-
tally obtained ratio of the oxygenated products (A/K ratio means alcohol/ketone) allows
to qualitatively distinguish between free-radical or metal-mediated oxidation mechanisms.
The A/K value close to 1 indicates a radical reaction pathway involving the formation of
long-lived cyclohexyl radicals, while A/K > 1 may indicate the action of a metal-based
oxidant [7]. A more detailed discussion of these “tests” can be found in the literature [6,10].
Cyclohexane oxidation is also a convenient test reaction for quantitative evaluation of
the sensitivity of the electrophilic metal-based oxidants to electronic effects. The more
reactive and less stable high valency species are expected to be less discriminative between
cyclohexane with its strong C–H bonds (bond dissociation energy, BDE = 99.3 kcal/mol)
and cyclohexanol with its weaker C(OH)-H bond (BDE = 92.4 kcal/mol) [11,12]. The
influence of the binding force was quantified by comparing the rate of the cyclohexanol
overoxidation reaction to the rate of the primary reaction, i.e., cyclohexane oxidation. Such
measurements were performed, inter alia, for the catalytic systems based on Fe(PDP)-type
iron complexes and H2O2 in the presence of acetic acid [13]. In most cases, the observed
values varied depending on the reaction atmosphere: somewhat higher under an inert
atmosphere than under ambient air. The introduction of O2 usually altered the yields of
alcohol and ketone.

Direct functionalization of saturated C–H bonds through the formation of M-C bonds
is an attractive strategy in organic synthesis. Therefore, there has been a clear increase
in interest in the development of metal catalysts that are sufficiently reactive and show
significant selectivity, taking into account different types of carbons (e.g., 1◦, 2◦, 3◦, or allyl)
in a substrate molecule. Adamantane is the second model substrate in CH oxidations (see
Scheme 1), used to test the sensitivity of electrophilic oxidants to electronic factors and
selectivity in the hydrogen transfer process. The latter is reflected by the regioselectivity
3◦/2◦ of adamantane oxidation (indicated by the ratio), which shows a preference for the
oxidation of more electron-rich 3◦ CH groups (to yield 1-adamantanol) compared to less
electron-rich 2◦ CH bonds (to yield 2-adamantanol and 2-adamantanone), corrected for
the 3-fold statistical prevalence of the CH bonds. The low values of this ratio (3◦/2◦ < 6)
indicate a free-radical mechanism, while 30/20 ratios higher than 13–15 strongly indicate
a metal-based mechanism. For cytochrome P450 and heme catalysts, the adamantane
regioselectivity can be as high as 48:1 [6]. The oxidation of the cis and trans isomers of
1,2-dimethylcyclohexane is the third way to probe the catalyst nature and the lifetime of the
nascent alkyl radical in alkane hydroxylation reactions. The ratio of cis and trans tertiary
alcohol products after oxidation depends on the competition between the epimerization of



Catalysts 2023, 13, 121 3 of 26

the putative tertiary alkyl radical intermediate and the “oxygen rebound” step (C-O bond
formation). Reactions that give rise to long-lived free radicals (higher than ~10−9 s) afford
comparable amounts of both cis and trans alcohols with a cis: trans ratio close to 1.2. It
is estimated that the tertiary carbon radical epimerizes with a first-order rate constant of
109 s−1 [14]. On the other hand, short-lived alkyl radicals, where the “oxygen-rebound”
step is extremely fast, should afford a tertiary alcohol where the original configuration
is retained. Therefore, stereospecific hydroxylation (with stereo retention) is observed
with such catalysts. Metal-based oxidation provides mostly high configuration retention
(RC: 90–99%).
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3. Oxidation with Metalloporphyrin Complexes

Metalloporphyrin catalysts were intended to mimic natural processes in the laboratory
and have been exploited for a long time [15,16]. Several characteristics of metallopor-
phyrins increase their importance as effective catalysts for the selective functionalization
of saturated C–H bonds, including the ability to decorate the ligand with bulky groups
or functional groups, modifying the electronic properties, and even chiral components,
resulting in different types of selectivity, a high product turnover number (TON), etc. [17].
Moreover, metalloporphyrins are coordinated and thermally stable. After the formation of
the complex molecule, dissociation of the metal ion is difficult or almost impossible under
most reaction conditions. This significantly extends the lifetime of the catalyst and facili-
tates the elimination of metal contamination in the products. Various oxidants have been
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successfully used in catalytic hydroxylation attempts to produce alcohols using different
metalloporphyrins as catalysts. In summary, the catalytic abilities of metalloporphyrins
depend on the type of metal center, the three-dimensional structure of macrocycle rings, the
type and amount of substituents on the porphyrin ring, and sometimes on the presence and
type of axial ligand. Experimental evidence suggests the involvement of porphyrin metal-
oxo complexes as key intermediates in catalytic processes [18,19]. The general mechanism
for alkane oxidation by the high-heme-FeV-oxo catalyst can be separated into two steps.
The C–H bond cleavage and hydrogen atom transfer (HAT) step is followed by the oxygen
rebound to the radical cage and the C-O bond formation step, as depicted in Scheme 2.
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These two steps can occur simultaneously, or alternatively, the C–H bond is cleaved
to form an alkyl radical, which is very quickly captured to form the C–O bond [6]. The
mechanism of the C–H bond activation by manganese-oxo analogs is not so well understood
and fully explained. An exhaustive discussion of the reaction mechanisms covering both iron
and manganese complexes was presented in a review from 2019 [20]. The iron-porphyrin
complexes (the closest precursors of natural iron monooxygenases) are well investigated
and probably constitute the largest alkane hydroxylation-active “synthetic enzymes”. Their
structure, the link between the structure and reactivity or selectivity, as well as the modes
of action, was the subject of extensive investigation in several research groups [6,19,21].
Iron complexes have long been considered one of the most promising catalysts [22], but
also complexes of other transition metals, e.g., Mn [23], Co [24,25], Cu [26,27], Ru [28], and
Os [29], have been studied as catalysts for the oxidation of alkanes [30]. The structures of
selected porphyrin complexes are depicted in Figure 1.

The first iron-porphyrin catalyst applied for hydroxylation was 1a (FeIII(TPP)Cl),
used with iodosylbenzene (PhIO) as the terminal oxidant. Results were not impressive:
cyclohexane and adamantane were selectively oxidized to the corresponding alcohols in 8
and 13% yields, respectively [31]. Since then, porphyrin ligands have been tuned in various
ways to modulate the steric environment or electrophilicity, resulting in new generations
of metalloporphyrin catalysts. Nakagaki and co-workers have designed an acetal phenyl-
substituted iron-porphyrin complex 1f (see Figure 1) for the oxidation of cyclohexane with
PhIO, obtaining 27% of alcohol and 8% of ketone yields [32]. The same catalyst immobilized
on silica was slightly less active. The second generation of metalloporphyrin catalysts (e.g.,
1b,1c, 2, Figure 1) was designed in such a way that electron-withdrawing substituents
(mainly halides) were introduced at the ortho, meta, and para positions of the phenyl
ring attached to the macrocycle meso positions. After the introduction of fluorine atoms
into the phenyl ring of the porphyrin (FeIII(TPFPP)Cl, 1b), the durability of the catalyst
and its effectiveness significantly increased (19 TON). With the use of 1b and tBHP as the
oxidants in the reaction with cyclohexane, alcohol was obtained in a 47% yield [33]. The
same fluorinated ligand was used with ruthenium as the metal center, resulting in a more
active catalyst 1c (70 TON) [33]. Using 2,6-dichloropyridine N-oxide (2,6-Cl2pyNO) as
the oxidant with 1c, the secondary C–H bonds of benzylic substrates were over-oxidized,
giving the corresponding ketones as the final products in moderate yields (46–70%), while
1c in the presence of mCPBA resulted in the benzylic alcohols with a 78–81% yield [34].
Furthermore, Ru(TPFPP)(CO) supported on polyethylene glycol (PEG) macromolecules
were applied with 2,6-Cl2pyNO, but the catalytic activity decreased (50 TON). However, in
this case, the tertiary C–H bond in adamantane was converted to the tertiary alcohol only
(65% conversion, 80% yield) [35].
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Much effort was made to study the use of metalloporphyrin catalysts with O2 as the
oxidant, checking both the effect of substituents on the periphery of the metalloporphyrin
ligand and the type of metal in the center. Base hydrolysis of the type Fe(TPP)Cl (1) com-
plexes affords the “µ-oxo dimers” with the formula [Fe(TPP)]2O (4). She et al. have tested
Fe-catalysts type 1 and 4 in the oxidation of p-nitrobenzene as a substrate with O2 (0.1 MPa)
without the solvent [36]. The experiments proved that the monomers 1a,d, and e were
the most active (up to 56% conversion for cobalt catalyst 1d), while the lowest reactivity
was shown by the 4a dimer (29%). The study expanded to evaluate the effect of electron-
withdrawing vs. -donating groups present in the aromatic ring. In the oxidation to ketones,
better activities and selectivities were obtained with complexes having strong electron-
withdrawing substituents, according to the obtained sequence methoxy < hydrogen <
bromine < acyl < nitro (conversion from 9% to 54%, respectively). Wang et al. investigated
the oxidation of p-cresol catalyzed by FeIII, MnIII, and CoIII complexes with porphyrins
(2, see Scheme 3) modified with a donor group (OCH3) or an electron-withdrawing group
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(NO2), respectively. Both the selectivity and yield of p-hydroxybenzaldehyde followed the
sequence Co > Mn > Fe, while Fe porphyrins performed better in o-cresol oxidation [25,37].
Although, independent experiments proved that the central metal was the most relevant
issue for the catalyst activity using metallo-deuteroporphyrins (CoII > MnIII > FeIII) in the
oxidation of alkylbenzenes (see Scheme 4). The CoII complexes were the best and most
active catalysts, giving up to ∼63 540 TON [38]. The iron complexes 4 have been investi-
gated also by Tabor et al. in catalytic oxidation with molecular oxygen at 20 ◦C, 10 atm. [39].
Cycloalkanes were converted to ketones (mainly) and alcohols. For cyclohexane, 4a yielded
17.4% and 3.4%, respectively, and for cyclooctane, there was a 40.3% yield of ketone and an
8.0% yield of alcohol (A/K = 0.16; TON 108,660). The catalytic performance of µ-oxo dimers
can be modified by the substituents introduced in meso-aryl positions of porphyrin macro-
cycles. It was depicted that either electron-withdrawing or electron-donating substituents
can improve the catalytic activity toward the oxyfunctionalization. The best results were
delivered with 4d cyclooctanone, with a 46% yield, and cyclooctanol, with an 8.5% yield
(A/K = 0.18; TON 122,640) [17]. Although, it was slightly lower than in the case of the
respective monomers.
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The third generation of porphyrin catalysts broadened the idea of electronic modifi-
cations by introducing halide substituents at the β-position of pyrroles also. It resulted
in large, positive shifts in the FeIII/FeII redox couple, while at the same time protect-
ing the porphyrin structure from oxidative destruction. It also enables the formation of
oxo-bridged dimeric structures. Further interference with the electronic properties by
introducing electron-withdrawing nitro- or 4-(N-methylpyridinium) groups led to the
formation of even more reactive species in hydroxylation reactions [29]. DeFreitas-Silva
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evaluated the efficiency of metalloporphyrins 5 with PhI(OAc)2 (alternative oxidant to
PhIO). 5b, as a third-generation catalyst, was more selective in the cyclohexane oxidation
(86% of cyclohexanol) and had a higher total yield (65%) compared to 5a (7% and 19%,
respectively). The oxidation of adamantane 5a resulted in a slightly higher 30/20 ratio
than that of 5b (8.33 vs. 1.57), while the latter gave a better overall yield (36% vs. 28%).
Both of these catalysts were more efficient compared to [FeIII TPP]Cl (1a) [40]. The au-
thors found that 5b underwent more extensive destruction as compared with 5a, possibly
due to the presence of bulky bromine atoms in the β-pyrrole positions of the porphyrin
ring, causing some distortions. The addition of imidazole or water to the catalytic system
significantly improved the total product yield [41]. It has been observed that complex
cis-[MnIIIDADPP]Cl (2g, second generation), when water was added, was more selective
for alcohols (71%) than 5a, however, not as much as 5b. It is likely that the amino groups
in 2g could coordinate with the metal center of the second molecule of the complex and
make the high-valent active form of MnV = O more reactive and increase the selectivity
towards alcohol [40]. A convenient way to recover and reuse an organometallic catalyst is
to prepare and use it in a heterogeneous form. In addition to the attempts to immobilize
catalysts on silica gel or chitosan, polymer structures of catalysts were also built. Recently,
Zhao and Wu received a metal-organic-framework (MOF), in which CuII meso-tetrakis
(3,5-dicarboxyphenyl)-porphyrinate (6) was immobilized onto the porous framework [41].
The new MOF was applied in the oxidation of ethylbenzenes using O2 as an oxidant (24 h at
50 ◦C), resulting in up to 99% yield. Moreover, a complete selectivity was obtained for the
corresponding ketones [42]. Enantioselective oxidation results are strongly favored by the
rigid geometry of the catalyst molecule. The influence of other parameters, such as solvent,
polar, electronic, and torsional effects, has also been investigated. Although many com-
plexes of different metals have been studied, most synthetic applications in enantioselective
hydroxylation involve manganese rather than iron catalysts. The first enantioselective
oxidation catalyzed by metalloporphyrin was described by Groves and Viski [43]. Chiral
benzyl alcohols were obtained (up to 77% ee) in the oxidation of ethylbenzenes with PhIO in
the presence of a chiral iron-porphyrin catalyst (7). The occurrence of asymmetric induction
is evidence of a non-radical hydroxylation mechanism. There are not many examples of
metalloporphyrin complex-catalyzed enantioselective oxidations with H2O2. The reason
can be: (i) the synthesis of optically active water-soluble chiral metalloporphyrins having
high enough catalytic activity; (ii) the requirement of high activity of metalloporphyrin
complexes in the homolytic cleavage of the peroxidic O–O bond resulting in the formation
of hydroxyl radical; (iii) the high thermal stability of the C–H bond, which is one of the most
difficult to transform. The first asymmetric hydroxylation catalyzed by Mn porphyrins in
the presence of H2O2 in water was performed by Simonneaux. The treatment of ethylben-
zene (1 equivalent) with H2O2 (5 equivalent) in the presence of complex 1g in H2O/MeOH
(1/1) afforded (88% conversion) a mixture of 1-phenyl ethanol (57% yield, 38% ee) and
acetophenone (43% yield) [44]. Cyclic alkanes such as indane and tetrahydronaphthalene
are more reactive substrates, giving a high conversion (85 and 90%), but the obtained
enantioselectivities decreased to 32% and 43%, respectively. The SO3Na group (in 1g) was
the most suitable substituent; its replacement with H, NMe2, or NO2 afforded less chemo-
and enantioselective catalysts [45]. Another way to obtain asymmetric induction was to
develop catalysts that show a specific binding mode for a given substrate and thus enable a
selective interaction of the reactants. Developed by Bach and coworkers, complex 8 has an
octahydro-1H-4,7-methanoisoindol-1-one motif, suitable for two-point hydrogen bonding
interactions during the oxidation of 3,3-disubstituted 3,4-dihydroquinolones.

When supramolecular catalyst 8a was applied with PhIO in dichloromethane, it gave
the benzyl type of alcohols efficiently (up to 68% yield) with remarkable enantioselectivity
(up to 99% ee), as shown in Scheme 5, part A [46]. In the later report [47], a series of
3-substituted quinolones were hydroxylated adjacent to the 3-position of the heterocyclic
ring with outstanding site- and enantioselectivity (up to 99% ee, up to 64% yield, see
Scheme 5 part B).
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Scheme 5. Asymmetric hydroxylation of 3,4-dihydroquinolones (A) and 3-substituted quinolones (B)
with 8a.

The same authors previously employed a supramolecular ruthenium catalyst 8b
with 2,6-Cl2pyNO as an oxidant for the oxidation of spirocyclic oxindoles, resulting in
a conversion of 60%, and an e.r. of 95:5 in favor of ketone (Scheme 6) [48]. The high
enantioselectivity of the described system is, to some extent, limited by substrate specificity.
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4. Oxidation with Non-Heme Complexes

In the field of C–H oxidations, numerous synthetic non-heme complexes have been
designed and prepared. Generally, they are more flexible for structural modification com-
pared to metalloporphyrins. Most of the discovered effective iron catalysts are supported
by tetradentate N4 ligands and possess two cis-oriented sites on the metal center for perox-
ide binding and activation. The importance of the cis-labile coordination sites and cis-α
coordination of the ligand for the stability of the catalyst and its catalytic abilities has
been highlighted based on analogous tests of several differently substituted TPA-ligands
(10b,10c,11–13) [19]. The first stereospecific oxidation of alkanes was performed using
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Fe(TPA) (10a) and H2O2 as the terminal oxidant [10]. In this reaction, cyclohexane gave
mainly alcohol (A/K = 4.3), and cis-1,2-dimethylcyclohexane gave almost 100% RC (which
revealed the metallocentric and not the radical mechanism).

In order to clarify the nature of the active metal-based oxidant, detailed studies of the mech-
anism engaged in catalytic hydroxylation of alkanes were needed (see Scheme 7). [10,19,49,50]
High-valent metal-oxo species could be also accessed by a nonheme ligand environ-
ment [51,52]. Since then, a large number of nonheme oxo-iron(IV) complexes with a
wide range of tetradentate and pentadentate ligands have been designed. A few selected
examples are shown in Figure 3. The investigations of the iron(BMEP) complex 9 (BMEP is
N,N’-dimethyl-N,N’-bis(2-pyridylmethyl)-ethane-1,2-diamine) showed its better activity
than the iron-TPA complex (10a) in the oxidation of cyclohexane with H2O2 (65% yield and
an A/K ratio of 9.5) [53]. It was established that 9 has a high tolerance towards functional
groups in substrates; furthermore, it operates via the electrophilic metal oxidant and has
a bulky ligand framework amenable to modification, which gives a base to the design of
its modifications [54]. Topological variations of the BPMEN ligands were studied by the
Britovsek group [53,55].
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Scheme 7. Free-radical and metal-based oxidation pathways.

Based on collected experience, the ground-breaking results in the field of nonheme
iron-catalyzed oxidation were reported by Chen and White [56,57]. The authors have
demonstrated that the site of oxidation in complex organic substrates with 14a can be
predicted by knowing the electronic and steric environment of the C–H bond in a substrate.
Hydroxylation with 14a in all examined cases occurred preferentially at the most electron-
rich C–H bond, the tertiary one. If the 3◦ C–H bond was part of the stereogenic center,
complete retention of stereochemistry was observed (see Scheme 8). In substrates where 3◦

C–H bonds were not available, oxidation proceeded with methylene hydrogens to give the
keto product via the 2◦ alcohol. The site selectivity and stereochemical oxidation result of
14a correspond to a concerted mechanism mediated by an electrophilic oxidant. The Fe(S,S-
PDP) complex contains a rigid, non-labile tetradentate ligand, that significantly improves
the site selectivity and yield of aliphatic C–H bond oxidation compared to similar iron
complexes bearing more flexible, labile ligands. Moreover, it turned out the catalyst was less
susceptible to decomposition and sensitive to unselective Fenton-type oxidation chemistry.
The ‘isolation of the metal site’ by adding sterically demanding substituents (e.g., pinene
fragment) at distant positions to the ligand pyridyl units increased the stability and could
modulate, at the same time, the activity of the catalyst. The control of the site selectivity
could be shifted from the substrate to the ligand [58,59]. The 14b (possessing aromatic
substituent with two CF3 groups) diverts reactivity toward the electronically disfavored
2◦ sites by restricting access of the 3◦ sites to the oxidant. The inverted site selectivity was
observed for the oxidation of trans-4-methylcyclohexyl acetate or (+)-Artemisinin with 14b
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compared to 14a (Scheme 8). Substitution of the ligand’s pyridine ring at the 6-position
suppressed the reactivity, confirming previous reports that sterically hindered catalysts
near the oxo show significantly reduced C–H oxidation reactivity [60]. On the basis of steric,
electronic, and stereoelectronic effects, the principles of selectivity for the C-H oxidation
reaction were clearly defined, and the mechanism of this reaction was proposed, taking
into account the initial hydrogen abstraction step.
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Due to the predictable reactivity, the modified type 14 catalysts have found wide
application for the hydroxylation of neutral C-H bonds as one of the key steps in the total
synthesis of compounds with known biological activity, e.g., (+)-2-oxo-Sclareolide [55],
controlled oxidation of (+)-Artemisinin [60], (+)-Pseudoanisatine [61], Vancomycin aglycone
core [62], Scaparvins [63], Cyanthiwigin core [64], Illicium sesquiterpenes [65], Illisimonin
A [66], and Streptovitacin A [67] (see Figure 2). The practical application of the Fe(PDP)
complex in the oxidation of a series of nitrogen-containing molecules (amides, imides,
pyridines) was presented by White [67,68].

Bryliakov and coworkers displayed the selectivity patterns of iron catalysts of the
Fe(TPA) and Fe(PDP) families in aliphatic C–H oxidation with H2O2. According to them,
the studied catalytic systems generated low-spin (S = 1/2) FeV = O(OAc) intermediates
or high-spin (S = 3/2) FeV = O(OAc) intermediates (see Scheme 9), depending on the
electron-donating abilities of the remote substituents at the pyridine rings via iron-complex
dimerization [13,69]. The detected (by EPR Spectroscopy) low-spin perferryl intermediates
demonstrate lower stability and higher reactivity toward aliphatic C-H groups of cyclo-
hexane than their high-spin congeners. Additionally, Costas and coworkers put in a lot of
effort to study the active form of the oxidant generated by the reaction of the iron complex
with an excess of the oxidant (peroxyacid). They have managed to collect a number of
spectroscopic data on identification (UV-vis, EPR, cryospray-HRMS) and a set of data on
the unprecedented reactivity of this FeV–oxo intermediate [70,71].
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Scheme 9. Postulated formation of the elusive FeV = O(OAc) intermediates in selective catalytic
oxofunctionalizations.

Hitomi reported a FeIII(DPAQ) complex (15; DPAQ = 2-[bis(pyridin-2-ylmethyl)]amino-
N-quinolin-8-yl-acetamidate, Figure 2) which was able to catalyze the selective hydroxyla-
tion of inert C–H bonds with H2O2 as the oxidant [72,73]. The distribution of the products
(cyclohexanol + cyclohexanone) over time has changed; initially, the A/K ratio was 36:1
but gradually decreased to 11.3:1. This result indicates the formation of cyclohexanone
by further oxidation of cyclohexanol. Different derivatizations of the quinoline unit of
the ligand yielded a series of complexes possessing adjustable electronic properties. An
increase in catalytic turnovers and selectivity for the reaction of tertiary bonds in the case of
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adamantane oxidation was observed, while the electron deficiency of the catalyst increased.
(TON from 75.1 for R = OCH3 up to 108.1 for R = NO2) [73], probably because of the
weaker coordination of the amide group with the iron center. Pentadentate TPA-derived
complex 16 exhibited a moderate catalytic activity in the cyclohexane oxidation with H2O2,
probably because of the short lifetime of the primary FeIV-oxo species, which dimerize
to form a µ-oxo bridged iron(III)-complex [74]. Application of complex 17, with the rigid
pentadentate N-donor ligand, did not work much better. Cyclohexane was oxidized with
H2O2 resulting in a 25% yield (with respect to the oxidant), and an A/K ratio of 1.3 was
observed, indicating the possibility of free radicals occurring during the reaction [75].

From a practical perspective, Mn-aminopyridine complexes (for selected structures, see
Figure 3 and Figure 5) demonstrate higher oxidation efficiencies as compared to nonheme
iron catalysts: they perform up to ca. 1000 catalytic turnovers (versus hundreds for Fe
counterparts) and require as little as a 1.3-fold excess of H2O2 (versus typically 2 equivalent
of H2O2 for Fe complexes) [76–79]. The mechanisms of Mn-catalyzed C–H oxidations are
rather underinvestigated. However, the data available give evidence for close similarities to
oxofunctionalization in the presence of Fe-aminopyridine complexes, proving indirectly the
formation of MnV-oxo active species during the reaction [80]. Reactants capable of oxidizing
C-H generally show a strong electrophilic character, therefore, C–H bonds near electron-
donating groups such as amines, amides, ethers, and alcohols are more likely to react with
these reagents than those near electron-withdrawing groups. By using electronic, steric,
and stereoelectronic effects, it was possible to achieve highly chemoselective oxidation
of aliphatic C–H bonds in N-alkylamides and N-alkylphthalimides in the catalyzed by
manganese-complexes reactions, applying H2O2 as the oxidant. However, different site
selectivity was observed [79]. Amides show a decreased nucleophilicity at the nitrogen
center and can not only be tolerated in metal-catalyzed oxidation (contrary to amine
substrates), but the amide functionality has the potential to be developed into a versatile
directing group for C–H functionalization [81]. In the case of N-pentylpivalamide used as a
substrate, the α-hydroxylation was observed mainly. Electron-donating substituents in the
ligand’s pyridine rings also increased the activity of oxidation in the case of iron catalysts
(see Scheme 10).
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Application of Fe(DMMPDP) (14c) provides oxidation products but in low yield com-
pared to the values obtained with the manganese analog (14f, gave 99% yield and A/K = 5.5).
On the other hand, the more electron-poor catalyst, Mn(ClMCP) (18h), only delivered very
low product yields. When the tBu group in the substrate was changed to CF3 (EWG),
or N-pentylphthalimide was used as a substrate, the γ-hydroxylation occurred predomi-
nantly. The selectivity toward hydroxylation of aliphatic C-H bonds is strongly supported
by the hydrogen bonding ability of the solvent used. Trifluoroethanol (TFE), as well as
1,1,1,3,3,3-hexafluoropropan-2-ol (HFIP), form the hydrogen bonds with alcohol (the pri-
mary formed product), thus preventing its overoxidation to the ketone via polarity reversal
and consequent deactivation of the α-C–H bond. Cyclohexane-subjected oxidation with
18g and H2O2 in MeCN, TFE, or HFIP resulted in hydroxylation selectivity at 40%, 96%,
and 97%, respectively [82]. Fluorinated alcohol solvents applied in the oxidation of C-H
bonds in 1,2-diols with (S,S)-18g or (R,R)-14d complex and H2O2, due to strong hydrogen
bonds formation, cause polarity reversal and strong deactivation of proximal C-H bonds in
HAT-initiated oxidation. As a consequence, site-selective and chemoselective oxidation
of complex multi-functional molecules (sugars, steroids, and pharmaceuticals) occurs, in
which the hydroxylation of C-H bonds at a distant and nonactivated site of the molecule
predominates [83].

During the oxidation of adamantylacetic acid, Costas and co-workers observed and
excellently described the influence of the carboxyl group in the substrate on the stereos-
electivity of the hydroxylation [84]. Discrimination between the two enantiotopic C–H
bonds of an inactivated methylene group was observed, resulting in γ-lactones in high
enantiomeric excess (up to 99% ee, up to 88% yield, with 14h as a catalyst). Coordination
of the carboxylic acid group to the bulky Mn complex (see Figure 4) ensures the rigidity
needed for high enantioselectivity and dictates the outstanding γ site-selectivity. When
the respective methyl acetate was subjected to oxidation, the product of 3

0
C–H hydrox-

ylation was isolated exclusively. Thanks to the observed interactions, a general method
for site-selective lactonization of γ-C-H bonds of natural and unnatural α-amino acids
was developed [85]. The effect of the carboxyl group was used in the synthesis for the
diastereoselective C2 hydroxylation of taxane with simultaneous lactonization resulting in
(+)-Taxol (see Scheme 11) [86]. Interactions of a chiral substrate with the chiral iron catalyst
(S,S)-14a afford matched/mismatched selectivity in C–H oxidation; the use of 14a antipode,
(Fe (R,R-PDP)), resulted in a decreased yield of Taxol (25%) and a more complex mixture of
oxidation products.
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Scheme 11. Diastereoselective hydroxylation of Taxane with simultaneous lactonization resulting (+)-Taxol.

Complexes 14 and 18 are chiral at the metal (Λ or ∆ series), which in turn is deter-
mined by the chirality of the diamine backbone (S,S′ and R,R′, respectively). Costas and
Gebbink proved that the nature of the backbone systematically has a contributing role
in enhancing selectivity towards the less sterically hindered C–H bond. According to
their report, application in oxidation complexes substituted with bulky tris-(isopropyl)silyl
groups (TIPS) can more strongly modulate their regioselectivity and may also enhance the
stereoselectivity in C–H oxidation reactions. Both catalysts (14d and 18d) provide improved
product yields compared to the parent catalysts, 14a and 18a. Furthermore, TIPS-modified
catalysts oxidize preferentially 2◦ over 3◦ C–H bonds, giving ketones. However, most
remarkably, their chirality endows them with the ability to determine site selectivity among
distinct methylene groups in the oxidation of complex molecules, as shown for steroids
(Scheme 12). The (S,S′)-catalyst favors oxidation in the C6 position while (R,R′)-catalyst
reacts in C12 [87]. Very thorough studies and interesting results regarding the influence
of ligand architecture on the result of oxidative transformation were presented lately by
Bryliakov and co-workers [88,89].
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Scheme 12. Oxidation of trans-androsterone acetate.

A general synthetic protocol for late-stage selective oxidative C-H functionalization of
estrone 3-acetate, 17α-estradiol 3-acetate, and 17β-estradiol 3-acetate (female hormones)
with H2O2, relying on bioinspired Mn nonheme complexes with tetradentate N-donor lig-
ands, has been developed. By tuning the ligand steric and absolute chirality, the reaction can
be effectively directed towards either C9-hydroxylation, C6-hydroxylation, C6-ketonization,
or 9,11-desaturation/C12-hydroxylation (selected examples in Scheme 13).
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ligand decoration.

The aromatic ring remains intact under these conditions, and ketonization of the
hydroxo groups at C17 is effectively prevented by using HFIP as a strong hydrogen bond
donor reaction solvent [88]. The significance of the possibility of universal substitution
and ligand compatibility for the development of efficient oxofunctionalization catalysts
based on common transition metals was described in detail in the papers of Sun [90] and
Costas [91].

The next challenge was to explore the ability of chiral complexes to affect the enantios-
electivity of C–H oxidation. Since it has been shown that secondary alcohols are rapidly
oxidized by several Fe- and Mn-complexes to the corresponding achiral ketones, it was
decided to select substrates for the C–H oxidation, which can result in an asymmetric
desymmetrization. The screening of related iron and manganese complexes as catalysts
in the oxidation of tert-butylcyclohexane with H2O2 proved the superiority of manganese
catalysts, especially those with TIPS-substituents on the pyridine rings (up to 44% ee). Sig-
nificant improvements in enantioselectivity were observed when N-cyclohexylpivalamide
was applied as the substrate (90% yield, up to 85% ee) [78,81]. As expected, the use of the
opposite enantiomers of catalysts ((S,S′) or (R,R′)) provides the oxidation product with com-
parable optical purity (ee) but with the opposite absolute configuration. Carboxylic acid,
used as a cocatalyst, strongly impacts the stereoselectivity due to its binding to the metal
center (cis to the site where H2O2 is activated) and contributes to defining the active site.
The best result was delivered by the application of propanoic and cycloproanecarboxylic
acids (90 and 99% yield, 89 and 90% ee, respectively, K3/K4 = 45) [78]. This is consid-
ered the first example of nonenzymatic, highly enantioselective oxidation of nonactivated
methylenic sites (Scheme 14).

Using previous observations, several N-cyclohexyl amides were oxidized under the
same conditions. Unexpectedly, kinetic separation in the oxidation of C–H bonds in
disubstituted cyclohexane derivatives has been observed [92]. Only cis-1,2-, cis-1,4-, and
trans-1,3-cyclohexanediamides underwent selective oxidation with 18g to ketones, while
the other diastereoisomers were unreactive under the same conditions and can be recovered
in good to excellent yields (66–96%) (see Scheme 14). Overall, the kinetic resolution in
C–H bond oxidation of cyclohexane derivatives gave a powerful tool for organic synthesis.
Moreover, it can successfully be used to isolate pure diastereomers from different cis—trans
mixtures of commercially available starting materials, with a relatively low material loss.
The carboxylic acid additive was found crucial for achieving a high A/K ratio and high
enantioselectivity. While the use of simple achiral or racemic carboxylic acids results in low
to moderate enantioselectivities (10–50% ee), the optically pure additive N-Boc-(S)-proline,
in combination with 14i, affords benzyl-type alcohols with up to 86% ee (A/K = 0.5–3.4,
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TON = 25–340) [93,94]. The influence of the type of acid used as the cocatalyst has been
studied recently by Wang’s team [95]. After optimization, they developed a catalytic
system using Mn(MCP) (18e), along with H2O2 as the oxidant, and with the addition of
bromoacetic acid. The crucial features of the reported system are the excellent catalytic
activity in hydroxylation (up to 98%), a low catalyst loading (0.1–1.0 mol%), a short reaction
time, a broad substrate scope, and an easy scale-up. The catalytic system also showed
excellent stereoretention (up to 98% ee) [95].
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Scheme 14. Oxidation of cyclohexane derivatives with Mn(TIPSMCP) (18g).

Nam, San, and coworkers reported an enantioselective oxidation of benzylic methylene
C–H bonds in spirocyclic substrates. Different manganese catalysts bearing a tetradentate
N4 ligand (19–21, see Figure 5) were tested together with aqueous H2O2 as an oxidant. A
series of chiral spirocyclic β,β′-diketones in high yields with excellent site- and enantiose-
lectivities (up to 80% yield and up to 94% ee) were obtained when 21a was used, and 2,2-
dimethylbutanoic acid (DMBA) was applied as a cocatalyst (see part A of Scheme 15) [96].
To demonstrate the synthetic usefulness of the presented catalytic system, a gram-scale
oxidation experiment was carried out. Oxidation of spirocyclic indanones under the same
conditions afforded corresponding spirocyclic β,β′-spirobiindanones with good to excellent
enantioselectivities (68%−98% ee). The authors studied the scope of the developed oxida-
tion procedure more widely, namely, in the asymmetric oxidation of spirocyclic oxindoles
and dihydroquinolinones, as shown in part B of Scheme 15 [97]. In optimized reaction
conditions (two additions of catalyst for 2 h, at −20 ◦C), chiral alcohol was isolated (up to
41% yield, up to 99% ee). This result confirmed that the ketone product arises from the
oxidation of the corresponding chiral alcohol.
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with 21a.

Sun has developed a direct, diastereo- and enantioselective C–H hydroxylation of
the indan-type substrates bearing a carbonyl group. Catalyzed by a complex 21a reaction,
a series of benzylic alcohols were successfully obtained as the only product with high
enantioselectivity (up to 95% ee) in TFE [98]. By modifying the amount of additive acid
(DMBA), high diastereoselectivity of C–H hydroxylation was also obtained. Furthermore,
a mechanism involving hydrogen bond interactions between the Mn(V)-oxo species, TFE,
and the reaction substrate has been suggested (depicted in Scheme 16). Fluorinated alcohol
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(TFE) has become the solvent of choice in oxidation reactions due to its mild acidity, high
polarity, and strong hydrogen bonding, thus inhibiting further oxidation of the secondary
alcohols formed.
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Costas et al. introduced a supramolecular recognition strategy into the site-selective C–
H oxidation of a simple alkyl chain with nonheme catalysts [99]. To achieve the site-selective
oxidation, they designed iron- and manganese-PDP complexes bearing the 18-benzocrown-
6 ether (BC) motif and investigated the oxidation of alkylammonium salts as a BC receptor
(see Scheme 17). For short-chain substrates, both catalysts worked non-selectively, giving
a mixture of ketones. However, for longer-chain substrates, the supramolecular-directed
manganese-catalyzed oxidation (on C8 and C9) proceeded. Moreover, the Mn(PDP-BC)
complex enabled the oxidation of alkylammonium salts selectively from various alkane
mixtures [100]. The same strategy was applied to the late-stage C-H oxidation of aminos-
teroids at C15 (or C16) positions, with a selectivity tunable by modification of catalyst
chirality and metal [101].
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Kadera and coworkers reported the preparation and application of catalytic oxidation
in µ-oxodiaquadiiron(III) complex 27 (see Figure 6) [102]. They discovered that in the
presence of H2O2, complex 27 is converted to high-spin µ-oxodiaquadiiron(IV) complex
27b, which undergoes a fast transformation from synoxo to more active antioxo form. Due
to the presence of the bis-TPA-type ligand, the binuclear structures 27a–27b were stable
enough for isolation as solid materials and were therefore possible to investigate. Species
antidioxo-27b showed relatively high activity in the cleavage of a C-H bond, which was
620 times more reactive than the most reactive di-iron system reported to date. It was found
that antidioxo-27b enabled quantitative alkane oxidation with reasonably high selectivity
and gave large turnover numbers in the catalytic cycle (for cyclohexane TON = 104, for
adamantane TON = 188, for cis-1,2-dimethylcyclohexane TON = 12.5). Lately, a series of
nonheme µ-oxo-bridged dinuclear FeIII-complexes, with tripodal 4N ligands with pyridine
(28–30), imidazole (31–32), and sterically demanding quinoline moieties (33), were prepared
and their catalytic activity toward the hydroxylation of alkanes has been studied using
mCPBA as an oxidant [103]. All of these complexes were characterized; moreover, molecular
structures of 29 and 32 have been successfully determined by single crystal X-ray diffraction
analysis. The most active in the cyclohexane oxidation was complex 31, giving 448 TON of
cyclohexanol (A) and 51 TON of cyclohexanone (K), and 12 TON of 3-caprolactone (A/K,
7.1) with 73% conversion.
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Research on iron catalysts based on nonheme amines was accompanied by parallel
studies on iron complexes based on nonheme imines. However, the latter has received
considerably less attention, possibly due to the conviction that imines are not robust enough
to be successfully and widely used under typical oxidation conditions. The imine ligands
are good sigma donors and allow a high degree of π-backbonding, so they have been used
for the coordination of various transition metals. The first iron complexes 34 (see Figure 7)
applied in the oxidation of cyclohexane exhibited only moderate activity. The A/K ratios
closely suggest radical formation and indicate that the reaction mechanism is driven mainly
by Fenton-type chemistry [104]. Bauer et al. described the synthesis and application of iron
complexes bearing 35 bidentate iminopyridine ligands. These complexes showed rather
low activity in the oxidation of cyclohexane with H2O2 or tBHP, compared to the activities
of iron complexes with tetradentate N-coordinating ligands. However, activated methylene
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groups can be oxidized by applying 35 with tBHP (catalyst loading 3 mol%) for up to 91%
yield (fluorene to fluorenone) [105]. An effective catalyst for the oxidation of C-H bonds
of hydrocarbons by H2O2, even at low catalyst loads (as low as 1%), turned out to be the
nonheme imine-based iron(II) complex 36 developed by Di Stefano. The authors assume
that the octahedral complex, easily prepared in situ from commercially available starting
materials, is the pre-active form in the catalytic sequence. Its reaction with an oxidant leads
to the FeIII-OOH form, which is finally transformed into an active oxo-complex capable of
carrying out the oxidation of cyclohexane (24% yield, A/K = 1.4), adamantane (47% yield,
3o/2o up to 13), and 1,2-cis-dimethylcyclohexane (RC 97%) [106,107].
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Contrarily, high selectivity towards the formation of cyclohexanol using H2O2 as
an oxidant was achieved with complex 37, although nonactivated C–H bond oxidation
required nitric acid as a cocatalyst. The overall yield of cyclohexane oxidation was 17.5%,
but the A/K ratio was 74.5 (TON 16.7) [108].

5. Conclusions

Over the past decades, the direct and selective functionalization of nonreactive C–H
bonds of alkanes and cycloalkanes has become an attractive approach to obtaining various
functionalized organic compounds with high added value from cheap and ubiquitous
starting materials. Among the various types of transformation, one of the most widely ex-
ploited was direct oxidation/hydroxylation. By discovering how enzymes work in nature,
we are able to construct systems that mimic their action. For this purpose, complexes of
transition metals with porphyrin ligands and nonheme ligands have been designed, and
since then they have been constantly modified, improved, or new ones are created. In
recent years, apart from activity requirements, the catalytic systems under development
are expected to be chemo-, site-, or even enantioselective. By exploring the nature of the
electrophilic oxidant and its mechanism of action, it is possible to reach for the design of ap-
propriately substituted structures that will have the desired properties. Porphyrin ligands
were the first to offer such a modeling opportunity, but the introduction of polydentate
aminopyridine ligands (nonheme) provided much wider possibilities. The development of
Mn complexes with multi-dentate, structure-modulated, and aminopyridine ligands was
another milestone in bioinspired transition metal-catalyzed selective oxidation of aliphatic
C–H groups with environmentally acceptable final oxidants. The usefulness of iron and
manganese complexes as catalysts in oxyfunctionalization has been repeatedly proven
by their use in key stages of the synthesis of many compounds of proven importance. In
some respects (catalytic efficiency, selectivity, and oxidant economy), Mn catalysts seem to
have even higher potential compared to their iron counterparts. Calculations and available
experimental data prove the similarity of the mechanisms of C–H oxidation catalyzed by
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Fe- and Mn-aminopyridine complexes, i.e., the formation of high-value MV–oxo species.
Despite the proven catalytic efficiency and efforts made, the detection of the same active
intermediates involved in the mechanism of oxidation by catalysts based on late transition
metals, such as cobalt, nickel, or copper, is rather rare. Concerning catalyst-controlled
site-divergent and chemo-selective C–H bond functionalization, future research should
focus on the development of new ligand structures for transition metal-catalyzed oxidation
procedures that enable the oxidation of currently inaccessible C–H bonds. Work should be
continued to expand the more useful C–H bond functionalization.
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