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Abstract: Trypsin is a long-known serine protease widely used in biochemical, analytical, biotechno-
logical, or biocatalytic applications. The high biotechnological potential is based on its high catalytic
activity, substrate specificity, and catalytic robustness in non-physiological reaction conditions. The
latter is mainly due to its stable protein fold, to which six intramolecular disulfide bridges make a
significant contribution. Although trypsin does not depend on cofactors, it essentially requires the
binding of calcium ions to its calcium-binding site to obtain complete enzymatic activity and stability.
This behavior is inevitably associated with a limitation of the enzyme’s applicability. To make trypsin
intrinsically calcium-independent, we removed the native calcium-binding site and replaced it with
another disulfide bridge. The resulting stabilized apo-trypsin (aTn) retains full catalytic activity as
proven by enzyme kinetics. Studies using Ellmann’s reagent further prove that the two inserted
cysteines at positions Glu70 and Glu80 are in their oxidized state, creating the desired functional
disulfide bond. Furthermore, aTn is independent of calcium ions, possesses increased thermal and
functional stability, and significantly reduced autolysis compared to wildtype trypsin. Finally, we
confirmed our experimental data by solving the X-ray crystal structure of aTn.

Keywords: protease; trypsin; calcium-binding; enzyme engineering

1. Introduction

In nature, the serine protease trypsin (EC 3.4.21.4) is involved in the digestive hydrol-
ysis of proteins into peptides in many vertebrates and has been used widely in various
biotechnological processes. The enzyme cleaves peptide bonds on the carboxyl side of
lysine and arginine. Catalytic activity is mediated by three highly conserved residues corre-
sponding to the catalytic triad H57, D102, and S195 (chymotrypsinogen numbering) [1,2].
Like many other proteases, trypsin is synthesized as an inactive zymogen and converted
into the active enzyme by limited proteolytical cleavage between Arg15 and Ile16 [3]. This
cleavage induces conformational changes in the enzyme by forming a salt bridge between
Ile16 and Asp194. This interaction stabilizes the substrate-binding site and the oxyanion
hole, solidifying the transition state negative charge of the scissile peptide bond carbonyl
oxygen [4,5]. The stability of the active state of trypsin is commonly mediated by three
disulfide bonds (C42-C58, C168-C182, and C191-C220), which mainly contribute to the high
catalytic activity, substrate specificity as well as catalytic robustness in non-physiological
reaction conditions [6]. Furthermore, the enzyme has no need for cofactors, which is crucial
for many applications.

Nevertheless, trypsin is highly dependent on Ca2+-ions [7]. There are two calcium-
binding sites within the enzyme. The first one is localized in the zymogenic peptide and
necessary for activation processes via enterokinase. The other calcium-binding site is
localized in the calcium-binding loop (CBL) and is necessary for the enzyme’s activity. The
absence of calcium ions leads to a considerable increase in autodigestion [8]. Furthermore,
a temperature-dependent trypsin activation by calcium ions can be observed [7]. This
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Ca2+-induced thermal stability is also described for other proteases like thermolysin or
subtilisins [9,10].

One of the most striking uses of trypsin is the detachment of adherent cells from
culture flasks in animal cell cultures. Since exogenous calcium causes cell differentiation
and inhibition of proliferation, trypsin is used with EDTA for this application [11]. Since
trypsin activity and stability are Ca2+ dependent, the use of EDTA makes it necessary to
increase the amount of enzyme, which could alter the physiology, protein expression, and
metabolism of cultured cells [12].

Besides cell culture, trypsin is also the most used enzyme in proteomics. Its cleavage
carboxyterminal of Arg and Lys results in a positive charge at the peptide C-terminus, being
advantageous for MS analysis [13]. Furthermore, some MS applications would profit from
a Ca2+-free buffer system due to the prevention of insoluble salts resulting in a possible
decrease of ion signals due to buffer-induced ionization suppression [14].

The insertion of artificial cysteines forming cross-linkage within the protein of interest
to increase stability is valuable in protein chemistry [15–17]. In the case of subtilisin, the
deletion of the calcium-binding loop leads to a drastic stability reduction, which can be
restored by inserting a disulfide bridge within the enzyme [18]. This work demonstrates
that reduced stability in subtilisin can be compensated by inserting a disulfide bridge. In
the present work we were able to show that in trypsin the calcium binding site can even
be directly replaced by a disulfide bridge, and thus a more stable, calcium-independent
trypsin variant was generated.

2. Results and Discussion
2.1. Biosynthesis and Titration of Free Thiols

In the CBL of anionic rat trypsin II (Tn), the Ca2+-ion is coordinated by electrostatic
interactions with the side chain of Glu70 and Glu80 and the backbone carbonyl oxygens
of Asn72 and Val75 (Figure 1b) [19]. The distance between Cα atoms of Glu70 and Glu80
is 5.6 Å and fits ideally to the length of a disulfide bond. This fact, and a relatively
high conservation score of six (determined by the bioinformatics analysis with Consurf,
Figure 1a), encouraged us to create a trypsin variant with an additional disulfide bridge at
this position [20]. Therefore, a calcium-independent, stabilized apo-trypsin (aTn) bearing
the amino acid substitutions E70C and E80C was generated by site-directed mutagenesis,
expressed as inactive zymogen in Saccharomyces cerevisiae, and finally purified and activated
by enterokinase. To prove the concept, wildtype Tn (wt-Tn) and a single cysteine variant
(mC-Tn) bearing a single E70C mutation were chosen as controls. Both enzyme variants
were generated similarly to aTn.
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After biosynthesis and preparation, Tn species were investigated for the presence of
free thiol functionalities, to indirectly determine the formation of disulfide bonds. Therefore,
free thiols were titrated with Ellmann’s reagent (DTNB: 5,5’-dithio-bis-(2-nitrobenzoic
acid)), which enables detection of reduced cysteine side chains by converting DTNB to
2-nitro-5-thiobenzoate, which can be quantified spectrophotometrically (Figure S1) [21].
In the case of wt-Tn, no absorption signal at 412 nm, correlating to thionitrobenzoic acid
products, was detected. This result implies that all 12 cysteines are disulfide-bridged
(Table 1, Figure S2). In contrast, 65% of mC-Tn have a free sulfhydryl moiety, indicating
that the artificial cysteine is not involved in forming an intramolecular disulfide bridge. It
can be assumed that the remaining 35% are involved in the formation of intermolecular
disulfide bonds, resulting in the formation of dimers. This assumption is also confirmed by
non-reducing SDS-PAGE (Figure S3). The aTn variant shows a proportion of free cysteines
of only 4.1%, indicating that almost every one of the 14 cysteine side chains is involved
in disulfide bond formation. Thus, we have generated a trypsin species containing seven
disulfide bridges.

Table 1. Overview of the catalytic parameters for Bz-Arg-AMC turnover and proportion of free thiol
(SHfree) species for Tn variants.

aTn wt-Tn mC-Tn

KM (µM) a 56.7 ± 2.8 70.2 ± 3.7 54.9 ± 4.8
kcat (s−1) a 0.11 0.15 0.07

kcat/KM (M−1 s−1) a 1900 ± 200 2100 ± 200 1300 ±200

SHfree (%) b 4.1 0 65
a Kinetic parameters were determined at 30 ◦C in 100 mM HEPES (pH 7.8), 100 mM NaCl, and 10 mM CaCl2 using
16 nM of Tn variants and varying Bz-Arg-AMC from 5 to 200 µM. Hydrolysis was monitored via fluorescence
(λex=381 nm, λem=455 nm) b Determination of free thiols was carried out by following the procedure described by
Ellman [21]. Errors represent the standard deviation of three technical replicates.

2.2. Enzymatic Activity

Enzymatic activity of wt-Tn, mC-Tn, and aTn was determined for the substrate Bz-
Arg-AMC (benzoyl-arginyl-7-amido-4-methylcoumarin, Figure S4). Enzymatic cleavage of
the carboxamide bond between Arg and AMC releases 7-amino-4-methylcoumarin, which
results in an increased fluorescence signal (λex = 381 nm, λem = 455 nm). According to the
Michaelis-Menten-kinetics, trypsin species were characterized by analyzing the kinetic
parameters of the hydrolysis, namely kcat, KM, and kcat/KM. The v/S-plots are depicted in
Figure S5, and the corresponding kinetic parameters are summarized in Table 1. As a result,
the presence of artificial cysteine residues in the CBL does not influence the enzymatic
activity of trypsin. Furthermore, KM and kcat are in the same order of magnitude for all Tn
variants. However, the KM value for wt-Tn is slightly higher (KM = 70 µM) than the cysteine
variants mC-Tn and aTn (KM = 55-57 µM). On the other hand, the kcat of wt-Tn is marginally
higher (kcat = 0.15 s−1) than for aTn (kcat = 0.11 s−1). aTn also shows a slightly higher
kcat value than the single cysteine variant mC-Tn (kcat = 0.07 s−1). In general, all kinetic
constants determined in this work are in the same order of magnitude as described in the
literature for bovine trypsin (Tn(bov)) and the aforementioned Bz-Arg-AMC substrate [22].

Determination of Ca2+-dependency on the activity and stability of wt-Tn and aTn was
carried out after 16 h incubation in the presence and absence of Ca2+ and subsequent activity
measurements (Figure 2a). Reaction mixtures without Ca2+ were additionally treated with
EDTA to remove remaining calcium ions by chelation. The incubation in the presence
of Ca2+ leads to an expectable reduction of activity (Arel, wt-Tn = 80%; Arel, aTn = 81%),
resulting from autolytic processes. On the contrary, in the absence of Ca2+ (which was
supported by the addition of EDTA) the activity of aTn (Arel = 81%) is nearly unchanged
(Figure 2a). At the same time, the activity of wt-Tn is drastically reduced by 41%. This effect
is explained by an increased autolysis rate due to the missing Ca2+ in the case of wt-Tn,
indicating that aTn benefits from the artificial disulfide bond [23]. In addition, the disulfide
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bridge also contributes to increased thermal stability. Corresponding measurements were
carried out with the appropriate trypsinogen variants and at a lowered pH to prevent
autolytic events, which would result in fragmentation of the trypsins during thermal
denaturation. Thermal unfolding and refolding of wt-Tn and aTn was measured by
real-time simultaneous monitoring of internal tryptophane fluorescence at 330 nm and
350 nm differential scanning fluorimetry. Melting curves are depicted in Figure 2b. Melting
temperature increases from 72.4 ◦C in the case of wt-Tn to 81.7 ◦C in the case of aTn in
the presence of Ca2+. A similar stabilizing effect is also observed in the presence of EDTA
(wt-Tn = 71.6 ◦C, aTn = 81.1 ◦C). Furthermore, it was found that the aTn does not seem to
denature completely even at 90 ◦C. Therefore, refolding of aTn is detectable, which is not
the case with wt-Tn.
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Figure 2. Evaluation of the contribution of the E70/80C disulfide bridge in aTn to the calcium
dependence of enzymatic activity and the thermal stability (a) The bar chart shows the influence on
the reduction of the relative activity Arel in the presence and absence (EDTA) of Ca2+ after 16 h in
comparison to the starting activity at 0 h (t0). The activities were related to the respective starting
point (A) of either aTn (shown in black) or wt-Tn (shown in blue). (b) The micro-thermophoresis
method depicts the thermal denaturation of aTn (shown in black) and wt-Tn (shown in blue). Arel

was determined at 30 ◦C in 100 mM HEPES (pH 7.8), 100 mM NaCl, and either 10 mM CaCl2 or
0.2 mM EDTA using 16 nM of Tn variants and 200 µM Bz-Arg-AMC. Unfolding and folding was
monitored using 20 µM trypsin, 10 mM CaCl2 or 0.2 mM EDTA in 20 mM MES, 150 mM NaCl, pH
5.5. The temperature was increased from 40 to 90 ◦C at a ramp rate of 1 ◦C/min. Errors represent the
standard deviation of three technical replicates.

2.3. X-ray Structure Analysis

Anionic rat trypsin sometimes can be challenging to crystallize. One reason is the high
proteolytic activity of the enzyme, which leads to autolysis and thus fragmentation [23].
In addition, rat trypsin variants are sometimes characterized by poor crystallizability.
Therefore, as in previous studies, the sequence-like (sequence similarity 86%, for more detail
see Figure S6) and structurally identical bovine trypsin was used for crystallization [24]. In
addition, all variants were produced as inactive S195A variants to prevent autolysis as well
as optional folding influences by inhibitors. As a positive side effect, this strategy allowed
us to investigate the transferability of the motif between different trypsin species.

After biosynthesis, purification, and refolding of bovine trypsin variants, circular
dichroism spectroscopy was done to prove correct protein folding, as activity measurements
with the S195A mutation were not possible (Figure S7). In addition, thermodynamic
denaturation was examined, showing a 4.2 ◦C increase in stability comparing wt-Tn(bov)
S195A (67.6 ◦C) to aTn(bov) S195A (71.8 ◦C) (Figure S8). This result is similar to the
stabilization effects of rat trypsin variants, although not quite as pronounced.

As a result of crystallization, the structure of aTn(bov) S195A was solved. The resolu-
tion was 1.40 Å, with a completeness of the structure of 98%. Residual 2% correspond to the
region from residue 73 to 79, which could not be resolved (Figures 2 and S9). This region
corresponds to the original CBL. The increased flexibility can be attributed to the missing
Ca2+-induced coordination of the residues Asn72 and Val75. Despite this result, there is
still increased structural integrity created by a new formed disulfide bridge between Cys70
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and Cys80, proven by the electron density map (FoFc and 2FoFc) (Figure 3b). The correct
positioning of the disulfide bond is also verified in the overlay structure of aTn(bov) S195A
and wt-Tn(bov) (Figure S10).
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2.4. Conclusions

Thus, the crystal structure supports the presence of the expected additional disulfide
bridge in trypsin and confirms the activity and stability measurements. Furthermore, we
demonstrated that a disulfide bridge between residue 70 and 80 is formed in both rat and
bovine trypsin. In both cases, this is beneficial for the stability and Ca2+ independence of
the enzyme. This feature emphasizes a potential universal stabilization strategy for the
conformation and catalytic activity of Ca2+-dependent trypsins in numerous applications
such as mass spectrometry and biocatalysis.

3. Materials and Methods
3.1. Construction, Biosynthesis, and Purification of wt-Trypsin and Trypsin Variants

All trypsin variants were generated by site-directed mutagenesis using Pfu DNA
polymerase (Thermo Scientific, Waltham, MA, USA) and either a pST-vector (Tn) or a
pET-vector (Tn(bov)) as described previously [25,26]. All mutations were introduced using
pairs of complementary primers (Table S1). The sequence of all generated constructs was
confirmed by DNA sequencing (LGC Genomics, Berlin, Germany). The gene constructs
of Tn-variants were subsequently cloned into pYT-expression-vector and transformed
into Saccharomyces cerevisiae DLM 101a cells. Biosynthesis, purification of zymogenic Tn,
and subsequent activation using enterokinase (Roche Diagnostics, Mannheim, Germany)
were done as described before [25]. For preventing autolytic processes, Tn variants were
stored in 10 mM HCl at −20 ◦C. For crystallization, Tn(bov) variants were expressed as
catalytic inactive species (S195A). Therefore, the respective pET-vectors were transformed
into Escherichia coli BL21 (DE3) cells. After accumulating the Tn(bov) variants as inclusion
bodies, isolation, refolding, purification, and subsequent activation using enterokinase
were performed using previously established procedures [27]. The overall yield of Tn
variants was 1.5 to 2.1 mg/lculture, while the overall yield of Tn(bov) variants was 0.8 to
2.3 mg/lculture. SDS-PAGE and mass spectrometry confirmed the purity and identity of all
protein variants (Figure S11).

3.2. Activity Measurement of Tn

The activity of Tn and Tn variants was determined while monitoring the hydrolysis
of benzoyl-L-arginine-7-amido-4-methyl coumarin (Bz-Arg-AMC, Bachem, Bubendorf,



Catalysts 2022, 12, 990 6 of 9

Switzerland) at an F-310 fluorescence spectrometer (Hitachi, Tokio, Japan) [28]. In detail,
16 nM of the corresponding Tn was dissolved in 100 mM HEPES (pH 7.8), 10 mM CaCl2,
100 mM NaCl, and 5-200 µM Bz-Arg-AMC (dissolved in N,N-dimethylformamide). In-
creasing fluorescence was monitored for 5 min at 20 ◦C using an excitation wavelength
of 381 nm and an emission wavelength of 455 nm. The catalytic properties kcat and KM
were determined with the Michealis-Menten-regression from the v/[S]-regression curves
(Figure S5) using Origin8.1 (OriginLab Corporation, Northampton, MA, USA) [29]. To
determine Ca2+-dependency, wt-Tn and aTn were incubated in 100 mM HEPES (pH 7.8),
100 mM NaCl containing either 10 mM CaCl2 or 10 mM EDTA. After 16 h of incubation,
measurements using 16 nM of the corresponding Tn and 200 µM of Bz-Arg-AMC for 5 min
at 20 ◦C were performed.

3.3. Determination of Free Sulfhydryl Groups

Ellman’s protocol was used to determine the number of accessible sulfhydryl function-
alities within all protein variants to verify the correct formation of the disulfide bonds [21,30].
For calibration, a concentration of cysteamine (5–50 µM) was used (Figure S2a). For mea-
surement, 65 µM of the particular trypsin variant was dissolved in 100 mM Tris/HCl
(pH 7.5), and 0.1 mM of DTNB (dissolved in dimethyl sulfoxide) was added. After incuba-
tion for 5 min at room temperature, absorbance was measured at 412 nm with a NOVOstar
plate reader (BMGLabtech, Ortenberg, Germany).

3.4. Determination of Thermostability

Real-time simultaneous monitoring of the internal tryptophane fluorescence at 330 nm
and 350 nm during thermal unfolding and refolding of wt-Tn and aTn was measured
on a Prometheus NT.48 instrument (Nanotemper, Munich, Germany) with an excitation
wavelength of 280 nm [31]. Capillaries were filled with 10 µL of a suspension containing
20 µM of trypsin in presence of CaCl2 (c = 10 mM) and EDTA (c = 0.2 mM), respectively
(in 20 mM MES, 150 mM NaCl pH 5.5). The temperature was increased from 40 to 90 ◦C
at a ramp rate of 1 ◦C/min, with one fluorescence measurement per 0.027 ◦C. The ratio
of the recorded emission intensities (Em350nm/Em330nm) was plotted as a function of the
temperature. The fluorescence intensity ratio and first derivative were calculated with the
manufacturer’s software (PR.ThermControl).

3.5. Crystallization

The protein solution of aTn(bov) S195A was concentrated to a final concentration of
10 mg/mL in 50 mM HEPES/NaOH (pH 7.8), 100 mM NaCl, and 10 mM CaCl2, and crystal-
lized by hanging drop vapor diffusion at 20 ◦C. Equal amounts of the protein solution and
precipitant solution (0.2 M KNO3, pH 6.5, 22% (w/v) PEG 3350) were mixed and incubated
at 20 ◦C. After approximately 14 days, the growth of trigonal crystal was observable.

Diffraction images of a single aTn(bov) S195A crystal were collected using a copper
rotating-anode source (Cu Kα radiation (λ = 1.5418 Å), RA Micromax 007, Rigaku Europe,
Neu-Isenburg, Germany) and a CCD detector (Saturn 944+, Rigaku Europe, Neu-Isenburg,
Germany). Oscillation images were integrated, merged, and scaled using XDS to a resolu-
tion of 1.439 Å (for detailed information, see Table S2) [32]. All datasets were processed
with the HKL2000 suite, and structures were solved using Phaser’s molecular replacement
method using PDB coordinate file 1MTS as a search model [33–35]. Coot and REFMAC5
were used for model building and refinement, respectively [36,37]. PROCHECK ana-
lyzed structure quality [38]. All molecular images were generated by Pymol (Schrödinger,
New York, NY, USA).
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Supplementary Materials: The following supporting information can be downloaded https://www.
mdpi.com/article/10.3390/catal12090990/s1. Figure S1: Determination of free sulfhydryl groups,
Figure S2: Calibration curve and results for the determination of free thiols, Figure S3: Non-reducing
SDS-PAGE of the Tn variants, Figure S4: Hydrolysis of Bz-Arg-AMC, Figure S5: v/[S]-regression
curves of Bz-Arg-AMC conversion catalyzed by diverse trypsin variants, Figure S6: Alignment of the
protein sequences of anionic rat trypsin II and cationic bovine trypsin, Figure S7: Circular dichroism
(CD) measurements of bovine trypsin species, Figure S8: Thermal denaturation of aTn(bov) S195A
and wt-Tn(bov) S195A measured by CD-spectroscopy, Figure S9: Overall structure of aTn(bov) S195A,
Figure S10: Ca2+-binding site of trypsin, Figure S11: SDS-PAGE and mass spectrometry of trypsin
variants, Table S1: Sequences of the primers used for site-directed mutagenesis, Table S2: Overview
of the crystallization data and refinement statistics of aTn(bov) S195A [21,23,27,28,30,35,39–44].
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