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Abstract

:

Metal phase molybdenum disulfide (1T-MoS2) is considered a promising electrocatalyst for the hydrogen evolution reaction (HER). In this work, an interface engineering-induced strategy is reported to prepare a 1T-MoS2/NiS heterostructure. The 1T-MoS2/NiS heterostructure exhibits an enhanced HER activity compared with that of the 1T-MoS2 in 1.0 M KOH. It achieves an overpotential of 0.12 V at a current density of 10 mA cm−2 with a Tafel slope of 69 mV dec−1. The density functional theory (DFT) calculations reveal that the interface engineering-induced 1T-MoS2/NiS heterostructure exhibits regulated electronic states of the S sites in 1T-MoS2, thus promoting the HER activity. This work demonstrates that tuning the electronic structure through interface engineering to enhance the intrinsic activity of electrocatalysts is a feasible strategy.
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1. Introduction


Molybdenum disulfide (MoS2) is regarded as a promising electrocatalyst for the hydrogen evolution reaction (HER) due to its abundant edge sites [1,2,3,4,5]. However, the catalytic performance is not as expected in practical applications. In the past years, enormous efforts have been devoted to fabricating various MoS2 electrocatalysts to improve the HER activity, such as adjusting the size [6], regulating the layer number [7,8], heteroatom doping [9], creating vacancies [10], phase engineering [11] and interface engineering [12,13,14]. The 1T phase MoS2 (octahedral structure) catalysts have attracted significant attention because of the dense active sites on their basal plane and edge site [15]. The metallic 1T-MoS2 exhibits a conductivity that is about six orders of magnitudes higher than that of the semiconductor 2H-MoS2, which ensures a fast charge transfer during the electrode reaction [16]. However, 1T-MoS2 is thermodynamically metastable, which can spontaneously transform into 2H-MoS2 at a certain temperature [17]. The traditional synthesis methods of 1T-MoS2 always involve harsh conditions and a complex process, such as the alkali metal intercalation or exfoliation process, making it difficult to synthesize in batches [18].



In recent years, hybrid materials, which feature heterostructures, have attracted much attention due to their decent HER electrocatalysis activity. The catalysts, such as Ni3S2@MoS2 [19], 1T-MoS2/NiS2 [20], MoS2/NiS [21], MoS2/NiS nanoflowers [22], etc., have been explored. Notably, the interface engineering-induced strategy has been developed to prepare the 1T-MoS2, which possesses easy operation, a low energy consumption and high conversion rate [20,23]. Theoretical and experimental studies revealed that interface engineering can trigger the slip of S atoms, thus transforming the 2H to the 1T phase [24]. For example, Park et al. reported an edge-aligned 2H-MoS2 and reduced graphene oxide heterointerface-induced interface charge transfer, resulting in a phase conversion of 2H-MoS2 to 1T-MoS2 [17]. Moreover, the obtained heterostructure can regulate the electronic structure of the 1T-MoS2, thus improving the intrinsic electrocatalytic activity of HER. Song et al. reported a 1T-MoS2/CoS2 heterostructure by an interface engineering-induced in situ growth with molybdate cobalt oxide nanowire as a precursor and thiourea as a sulfur source [25]. The obtained MoS2/CoS2 heterostructure yields a regulated electronic structure at the interface, thus achieving a near zero Gibbs free energy for hydrogen adsorption. Therefore, it is plausible to develop an interface engineering-induced strategy to fabricate highly conductive 1T-MoS2 with a modulated electronic structure at its interface to boost the HER.



In line with the above understanding, a two-dimensional 1T-MoS2/NiS heterostructure was prepared by an interface engineering-induced strategy to boost the HER in alkaline media. The physiochemical characterizations reveal that the obtained 1T-MoS2/NiS features a typical heterostructure with interlinked 1T-MoS2 and NiS. The 1T-MoS2/NiS heterostructure shows a strong electronic interaction between 1T-MoS2 and NiS. Density functional theory (DFT) calculations reveal that the electrons were transferred from Ni to the adjacent S in 1T-MoS2, thus facilitating the chemical adsorption step of the HER. The electrochemical results confirm that the 1T-MoS2/NiS heterostructure exhibits an improved HER electrocatalytic activity compared with that of the 1T-MoS2.




2. Results and Discussion


2.1. Material Synthesis and Characterization


The 1T-MoS2/NiS heterostructure is synthesized by an interface engineering-induced strategy with a two-dimensional Ni nanosheet (Figure S1) as the substrate, as illustrated in Scheme 1. First, the Ni nanosheets are dispersed in a mixed solution of ethanol and deionized water with MoO3 as a Mo precursor and KSCN as a sulfur source. Then, the above solution is subjected to a solvothermal treatment at 180 °C for 24 h to obtain the 1T-MoS2/NiS heterostructure. The possible growth mechanism is as follows: Under the high-temperature and high-pressure conditions, the active metallic Ni is easily oxidized to Ni2+ and reacts with the sulfur source to form NiS at the initial stage. Then, the NiS serves as the substrate to form composite structures [26]. The MoO3 (Mo VI) is slowly reduced to Mo (IV) in the presence of ethanol, and the resultant Mo (IV) reacts with SCN− to produce MoS2 on the NiS surface to form heterostructures [21,27].



The scanning/transmission electron microscopy (SEM/TEM) is employed to characterize the microscopic morphology of the synthesized materials (Figure 1a,b). It is seen that the 1T-MoS2/NiS heterostructure shows a distinct nanosheet-like morphology. Scanning transmission electron microscopy–energy dispersive X-ray (STEM-EDX) element mapping results confirm the presence of Ni, Mo and S elements and the uniform distribution (Figure 1c). The high-resolution TEM (HRTEM) image shows well-resolved lattice fringes with a d-spacing of 0.278 nm, which correspond to the (300) lattice plane of NiS (Figure 1d). Remarkably, the region marked with yellow corresponds to the crystal structure of 1T phase MoS2 (Figure 1e,f) [28,29]. The above results suggest the successful fabrication of the 1T-MoS2/NiS heterostructure by the interface engineering-induced strategy [25]. In comparison, the 2H-MoS2 is prepared without the presence of the Ni nanosheet, which also exhibits a nanosheet-like morphology as the 1T-MoS2/NiS heterostructure (Figure S2). The above results suggest that the Ni nanosheet plays a significant role in inducing the formation of the 1T-MoS2 phase.



X-ray diffraction (XRD) is used to identify the crystal structure of the prepared catalysts (Figure 2a). As shown in Figure 2a, the diffraction peaks at 14.1°, 32.9° and 58.8° correspond to the (002), (100) and (110) planes of the MoS2 (PDF#75-1539) for both 1T-MoS2 and 2H-MoS2, respectively. In addition, the broadened diffraction peaks suggest a low crystallinity of the MoS2 electrocatalysts. While the diffraction peaks of 1T-MoS2/NiS at 18.4°, 30.3°, 32.2°, 35.7°, 40.4° and 48.8° are matched well with (111), (101), (300), (021), (211) and (131) planes of hexagonal phase NiS (PDF#12-0041), respectively, it is worth noting that no obvious peak of 1T-MoS2 was detected in the 1T-MoS2/NiS heterostructure, which may be due to its relatively low crystallinity compared with the high crystallinity NiS [30].



The Raman spectroscopy is further used to confirm the crystal structure of the 1T-MoS2/NiS heterostructure. A crucial difference between 2H-MoS2 and 1T-MoS2 is the symmetry of the S atoms in their structures. It is seen that the 2H-MoS2 exhibits two main characteristic peaks of E12g (383 cm−1) and A1g (408 cm−1). The E12g peak involves the molecular vibrations mode of Mo and S atoms in the 2g layer, while the A1g peak involves the molecular vibration mode of S atom symmetry outside the layer along the c-axis [31]. For the 1T-MoS2 and 1T-MoS2/NiS heterostructure, there are four new characteristic peaks that can be observed at J1 (147 cm−1), J2 (236 cm−1), E1g (283 cm−1) and J3 (335 cm−1), confirming the existence of 1T phase MoS2 [32]. This result further confirms that the interface engineering induced the formation of the 1T-MoS2 phase.



The elemental composition and chemical states are determined by X-ray photoelectron spectroscopy (XPS), as shown in Figure 3. The XPS survey spectra of 1T-MoS2 and 1T-MoS2/NiS show the signals of Mo, S, O and C (Figure 3a). The presence of O may be attributed to the surface oxidation of the materials, while C originated from the carbon substrate. In the 1T-MoS2/NiS heterostructure, the Ni is detected and the atomic ratio of Mo to Ni is around 3:1. It is seen that the peaks around 228.6 and 231.9 eV correspond to the Mo 3d3/2 and Mo 3d5/2, respectively (Figure 3b). It is seen that the Mo 3d3/2 and Mo 3d5/2 of 1T-MoS2/NiS shift to lower binding energies than that of the 1T-MoS2, indicating a strong electronic interaction between the 1T-MoS2 and the NiS species in the 1T-MoS2/NiS heterostructure [33]. Similarly, the S 2p peak of 1T-MoS2/NiS also shifts to lower binding energies than that of the 1T-MoS2 (Figure 3c). The detailed XPS analysis of the Mo 3d, Ni 2p and S 2p are shown in Figure 3d–f. It is seen that the high-resolution Mo 3d spectrum of the 1T-MoS2/NiS is mainly deconvoluted into four peaks of Mo 3d5/2, Mo 3d3/2, S 2s and Mo6+ (Figure 3d). The two characteristic peaks of Mo 3d5/2 (228.3 eV) and Mo 3d3/2 (231.3 eV) correspond to the production of Mo4+ in 1T-MoS2/NiS [20]. The peaks located at around 229.5 eV and 232.4 eV can be attributed to the Mo4+ in the 2H phase, which is ~1.1 eV higher than the corresponding peaks in 1T-MoS2 (red line) [34]. Based on the analysis and discussion of the high-resolution Mo 3d spectra and the fitting results [35], it is worth noting that the relative content of the 1T phase (red line) in the catalyst is estimated to be ~38.9%, and the 1T/2H phase ratio was determined to be 0.64. The peak at ~225.9 eV can be allocated to S 2s [30], Moreover, the peaks located at 234.3 eV and 235.6 eV correspond to Mo6+, which possibly arises from the surface oxidation of Mo4+ when exposed to air [36]. The high-resolution Ni 2p spectrum of the 1T-MoS2/NiS is deconvoluted into four peaks of Ni 2p1/2 (874.4 eV), Ni 2p3/2 (856.5 eV) and two satellite peaks (861.3 and 879.4 eV) (Figure 3e), which correspond to the characteristics peaks of Ni2+ [19]. In the S 2p spectrum (Figure 3f), the peak at 164.3 eV is associated with bridging disulfides S22-, implying the unsaturated S atoms on NiS and MoS sites [37,38]. The peak at 161.1 eV (S 2p3/2) and 162.5 eV (S 2p1/2) is consistent with S2- species in 1T-MoS2 [39,40].




2.2. Electrochemical Activity


Electrocatalytic activity of the as-prepared 1T-MoS2/NiS heterostructure towards the HER is evaluated in 1.0 M KOH. For comparison, the HER electrocatalytic activity of the Ni-doped MoS2 (Ni-MoS2), 1T-MoS2, 2H-MoS2 and NiS are also examined under the same conditions. As shown in Figure 4a,b, carbon fiber paper (CFP) exhibits negligible HER activity compared to the obtained electrocatalysts. It is seen that the 1T-MoS2 shows a much lower overpotential of 0.19 V than that of the 2H-MoS2 (0.29 V) at the current density of 10 mA cm−2 (Figure 4a,b), which may be attributed to its increased conductivity and active sites. It is reported that the 1T-MoS2 exhibits an inherent conductivity, thus promoting the charge transfer of HER, and both the basal plane and edge are active sites [41]. Among the electrocatalysts, the 1T-MoS2/NiS heterostructure shows the lowest overpotential of 0.12 V at the current density of 10 mA cm−2, which is lower than that of 1T-MoS2. In particular, this trend is still maintained at a high current density of 100 mA cm−2, and the results are summarized in Figure 4b. Moreover, 1T-MoS2/NiS shows a much higher overpotential than that of the commercial Pt/C electrocatalyst (0.03 V) at a current density of 10 mA cm−2, while attaining comparable performance at high current densities (100 mA cm−2) (Figure S3).



To further evaluate the HER kinetics of the catalysts, the Tafel slopes are obtained by linearly fitting the polarization curves of HER based on the Tafel equation [42,43,44]. As shown in Figure 4c, the 1T-MoS2/NiS heterostructure shows the lowest Tafel slope compared with the other prepared electrocatalysts, indicating the fastest kinetic of 1T-MoS2/NiS (Figure 4c). The Tafel slope of the 1T-MoS2/NiS is 69 mV dec−1, indicating the Volmer–Heyrovsky mechanism of the HER pathway [45,46]. The electrochemical impedance spectroscopy (EIS) is also employed to study the charge transfer resistance (Rct) of the electrocatalysts. It is seen that the 1T-MoS2/NiS exhibits a charge transfer resistance of ~ 0.4 Ω, which is much lower than that of 1T-MoS2 (~ 2.9 Ω) (Figure S4). This result indicates that the strong interaction between NiS and 1T-MoS2 can significantly facilitate charge transfer. The detailed mechanism analysis of the electrocatalytic activity enhancement is further explored by the density functional theory (DFT) calculations (see below).



Finally, the stability of the as-prepared 1T-MoS2/NiS is evaluated by chronoamperometry, as shown in Figure 4d. It is seen that the 1T-MoS2/NiS exhibits good stability with a slight degradation at an overpotential of −0.12 V. It is worth noting that the long stable performance is maintained even at high current densities (black line), the degradation of which we attribute to the partial shedding of the catalyst. As shown in Figure S7 and Table S1, the prepared 1T-MoS2/NiS heterostructure is equipped with low overpotential and a small Tafel slope, which indicate the merits of high intrinsic activity and fast HER kinetics, making the 1T-MoS2/NiS heterostructure one of the promising molybdenum-based sulfide electrocatalysts.




2.3. Mechanism Analysis of the Electrocatalytic Activity Enhancement


To further investigate the reason for the enhanced HER activity of 1T-MoS2/NiS, the DFT calculations and electronic structure analysis are performed on CP2K 8.1 package. The models of 1T-MoS2 and 1T-MoS2/NiS are constructed based on the HRTEM results (Figure 1d,e), as shown in Figures S5 and S6. The electronic structure is investigated to understand the effect of interface engineering. As displayed in Figure 5a, the location of the S orbital relative to the Fermi energy level in 1T-MoS2/NiS is higher than the counterpart of 1T-MoS2. The location of S orbital shifts to the Fermi level, resulting in a decreased binding energy [47], which is consistent with the XPS analysis (Figure 3c). As previously reported, the H adsorption on the S site of 1T-MoS2 is weak, the S orbital shifts to the Fermi level can strengthen the adsorption free energy of H, thus promoting the chemical adsorption step of the HER [48]. The charge density difference map of the 1T-MoS2/NiS heterostructure exhibits a strong electronic interaction between the 1T-MoS2 and NiS, in which the electrons are transferred from Ni to the adjacent S in 1T-MoS2 (Figure 5b). These results suggest that the introduced NiS species regulate the electronic states of S in 1T-MoS2, thus modifying the adsorption free energy of hydrogen, and finally enhancing the HER activity.





3. Conclusions


A novel 1T-MoS2/NiS nanosheet heterostructure was developed for the HER by an interface engineering-induced strategy. The obtained 1T-MoS2/NiS electrocatalyst exhibited an enhanced HER activity compared with that of 1T-MoS2. DFT calculations revealed that the obtained 1T-MoS2/NiS heterostructure can modulate the electronic structure of S by increasing its electronic density states and shifting towards the Fermi level. The S orbital shifts to the Fermi level can facilitate the chemical adsorption step of the HER, thus enhancing the HER activity. This work may provide fundamental insights and strategies for the rational design of efficient HER electrocatalysts by manipulating the electronic structure.
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Scheme 1. Schematic illustration of the synthesis process. 
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Figure 1. (a) SEM image, (b) TEM image and (c) STEM-EDX elemental mapping of the 1T-MoS2/NiS; (d) HRTEM image on the basal plane of 1T-MoS2/NiS and (e,f) zoom-in view of the selected regions and the lattice schematic of 1T-MoS2. 






Figure 1. (a) SEM image, (b) TEM image and (c) STEM-EDX elemental mapping of the 1T-MoS2/NiS; (d) HRTEM image on the basal plane of 1T-MoS2/NiS and (e,f) zoom-in view of the selected regions and the lattice schematic of 1T-MoS2.



[image: Catalysts 12 00947 g001]







[image: Catalysts 12 00947 g002 550] 





Figure 2. (a) XRD spectra and (b) Raman spectra of the 2H-MoS2, 1T-MoS2 and 1T-MoS2/NiS. 
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Figure 3. (a) XPS survey spectra of 1T-MoS2 and 1T-MoS2/NiS; high-resolution peaks of (b) Mo 3d and (c) S 2p of 1T-MoS2 and 1T-MoS2/NiS; high-resolution peaks and fitting results of 1T-MoS2/NiS: (d) Mo 3d, (e) Ni 2p and (f) S 2p. 
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Figure 4. The electrochemical characterization of all electrocatalysts in 1.0 M KOH. (a) Polarization curves (without iR correction) and corresponding (b) overpotential at a current density of 10 mA cm−2 and 100 mA cm−2 and (c) Tafel plots; (d) durability tests of the 1T-MoS2/NiS catalyst at a constant potential of −0.12 V and −0.21 V vs. RHE. 
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Figure 5. (a) Projected density of states (PDOS) of catalysts with the Fermi level set to zero. (b) the side view of the charge density distribution of 1T-MoS2/NiS, showing electron transfer from NiS to 1T-MoS2, with cyan and pink exhibiting the increase and decrease in electron density, respectively. 
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