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Copernicus University in Toruń, Dr. A. Jurasza 2, 85-089 Bydgoszcz, Poland
* Correspondence: mmars@cm.umk.pl; Tel.: +48-52-585-3532

Abstract: There are several methods that allow enantiomerically pure compounds to be obtained. In
the study presented herein, the enantioselective biotransformations of (R,S)-atenolol were performed
with the use of various catalytic systems containing ionic liquids and toluene as a reaction medium,
vinyl acetate as an acetylating agent as well as lipases from Candida rugosa. The conducted studies
profs that, the use of the two-phase reaction system enables the reuse of the biocatalyst in another
cycle and allows to achieve satisfactory kinetic resolution parameters.
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1. Introduction

Cardiovascular disorders are the leading cause of death in the world. More than 75%
of heart disease and stroke-related fatalities take place in low- and middle-income nations.
Elevated blood pressure, often known as hypertension, is a serious medical condition
that dramatically raises the risk of cardiovascular disorders. Specific systolic and diastolic
blood pressure values or the documented usage of antihypertensive drugs can be used
to diagnose hypertension. Only 14% of the estimated 1.4 billion people with high blood
pressure have it under control. There are, nevertheless, affordable therapy choices [1–3].

Due to the fact that β-blockers, including atenolol, in their chemical structure have
an asymmetric carbon atom, which is their chiral center, they exist in the form of two
enantiomers, i.e., (R)-enantiomer and (S)-enantiomer [4,5]. (S)-enantiomers of β-blockers
are usually responsible for the therapeutic action, since the (R)-enantiomers of β-blockers
have significantly lower affinity to the β-adrenergic receptors and could cause additional
adverse events. Nevertheless, β-blockers are still mainly administered as racemates, instead
of pure eutomers and thus could be responsible for unnecessary side effects.

Currently, there are three main ways to obtain optically pure compounds (including
therapeutic agents). It is an organic synthesis using a “chiral pool” of optically pure
substrates; racemate separation; as well as asymmetric synthesis with the use of pro-chiral
substrates. Enzymatic transformations are appreciated by many good features such as high
selectivity, milder reaction conditions, and biocompatibility, which become an alternative
powerful tool in organic synthesis. Therefore, the kinetic resolution (racemate resolution)
with the use of enzymes, which relies on carrying out a stereoselective biotransformation,
is one of the most frequently used methods due to the fact that, compared to the use of
a “chiral pool”, it is significantly less expensive and does not require the use of toxic and
environmentally hazardous chemical compounds [6–17].

In the process of stereoselective biotransformation of racemic forms of active pharma-
ceutical ingredients, it is still common to use organic solvents that act as a reaction medium.
Nevertheless, most of these compounds are toxic and dangerous to the environment, and
in many cases, they can cause organic contamination of the final synthesis product, e.g.,
β-blocker derivatives. On the other hand, the use of ionic liquids as the reaction medium
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brings many advantages. Many ionic liquids have been developed to solve specific syn-
thetic problems and are therefore also referred to as so-called “design solvents”. Their
unique properties make them useful in many technological processes [18]. Ionic liquids are
considered also as “green solvents” that exhibit several unique characteristics, such as high
ionic conductivity, high solvation power, thermal stability, low volatility, and recyclabil-
ity [19–21]. These “green” solvents are environmentally friendly and the transformations
with the use of ionic liquids are often faster. Additionally, the ionic liquids can be recovered
from the bioreactor and reused in subsequent catalytic cycles, which reduces the overall
cost of the biotransformation [22–27]. Therefore, nowadays, more and more processes in
the pharmaceutical industry, including stereoselective biotransformations, are carried out
with the use of ionic liquids [28–31].

2. Results and Discussion
2.1. Enantioselective Biotransformation of Racemic Atenolol

Candida rugosa OF and MY lipases, which are commercially available, were used to
study the enantioselective biotransformation of (R,S)-atenolol in a variety of two-phase reac-
tion conditions (Figure 1). Atenolol has very little solubility in organic solvents. Therefore,
the research that was undertaken was concentrated on exploring different reaction systems
to omit the racemic compound’s solubility issue. The types of ionic liquid and enzyme
isoforms used in the developed and tested catalytic systems varied from one another. It
directly led to the acquisition of numerous products of appropriate quality for a given
catalytic system. However, some of the evaluated reaction systems demonstrated adequate
kinetic resolution performance criteria (Table 1). It was seen during the studies that, in
every case, the value of conversion was rising with the reaction time.
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Figure 1. Enantioselective biotransformation of (R,S)-atenolol with the use of Candida rugosa lipase as
biocatalyst. The reaction mixture consisted of (R,S)-atenolol (3.0 mg, 0.01 mM), vinyl acetate (2.0 µL,
0.02 mM), lipases from Candida rugosa OF or MY (10.0 mg), and toluene (10 mL) with or without
the addition of ionic liquid (500 µL) and was incubated for 120 h along with mechanical shaking
(250 RPM) at 37 ◦C.
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Table 1. List of obtained results of performed enantioselective biotransformation of (R,S)-atenolol
after 120 h of incubation: enantiomeric excesses of substrates (ees), products (eep), conversion (c), and
enantioselectivity (E).

Reaction Medium Lipase ees eep c E

Toluene
Candida rugosa OF 61.80% 93.60% 39.77% 56.99

Candida rugosa MY 52.00% 93.00% 35.86% 46.34

Toluene
[EMIM] [BF4]

Candida rugosa OF 59.98% 93.76% 39.01% 57.22

Candida rugosa MY 50.00% 92.96% 34.97% 45.07

Toluene
[EMIM] [OTf]

Candida rugosa OF 58.78% 79.60% 42.48% 15.88

Candida rugosa MY 52.24% 77.60% 40.23% 13.27

Toluene
[EMIM] [EtSO4]

Candida rugosa OF 1.60% 1.40% 53.30% 1.04

Candida rugosa MY 1.86% 0.36% 83.89% 1.02
ees—enantiomeric excesses of substrates; eep—enantiomeric excesses of products; c—conversion; E—enantioselectivity.

The lipase from Candida rugosa OF had the greatest outcomes among all examined
catalytic systems, nevertheless. After 120 h of incubation, the (S)-atenolol acetate was
obtained, with the highest value of enantioselectivity which equaled E = 57.22, whereas the
enantiomeric excesses of the product equaled eep = 93.76%. Although the application of
lipase from Candida rugosa MY allowed to obtain acceptable results, in particular catalytic
systems, the enantiomeric purity of achieved products was lower compared to the results
obtained with the use of lipase from Candida rugosa OF. Finally, the use of Candida rugosa
MY lipase allowed to obtain the (S)-atenolol acetate with the enantioselectivity equaled
E = 45.07, whereas the enantiomeric excess of product was eep = 92.96% after 120 h of
incubating the reaction mixture.

2.2. Effect of Rreaction Time

One of the most crucial aspects of the kinetic resolution of racemic chemicals was
found to be the incubation duration of the reaction mixture among all evaluated influencing
factors on enzyme-catalyzed biotransformations. Other investigations have shown that the
enantioselectivity and enantiomeric excess of both products and substrates rapidly decline
when the reaction medium is incubated for an excessively long time. The lack of substrate
makes the reaction no longer regarded as enantioselective as a result of the conversion
value having the potential to be higher than 50%. Commercially available lipases from
Candida rugosa OF and MY, vinyl acetate (2 µL) as an acetylating agent, (R,S)-atenolol
(3.0 mg), ionic liquid (500 µL), and toluene (10 mL) were utilized as the reaction medium in
the experiment. The biotransformations were carried out for 120 h at 30 ◦C. According to
Figure 2, the reaction duration increased along with the conversion, enantiomeric excess of
the substrate, and enantiomeric ratio. Over the same time span, the product’s enantiomeric
excess slowly diminished. The value of conversion was the highest after 120 h of reaction
(Figure 2), and it varies depending on the type of catalytic system (Table 1).
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Figure 2. Effect of reaction time on the enzymatic parameters of performed kinetic resolution of
(R,S)-atenolol in two-phase catalytic system consisting of [EMIM] [BF4] and lipase from Candida
rugosa OF (a) or Candida rugosa MY (b) including values of both enantiomeric excesses of substrates
(ees) and products (eep) as well as conversion (c) and enantioselectivity (E).

2.3. Effect of Biocatalysts

The enzyme-catalyzed biotransformation of racemic atenolol with the use of vinyl
acetate as an acetylating agent was carried out using Candida rugosa (OF, MY) lipases in
native forms, and their catalytic and enantioselective capabilities were examined. The
use of lipases from Candida rugosa OF produced the highest levels of enantioselectivity
among all evaluated catalytic systems, as indicated in Table 1. It should be highlighted that
reactions utilizing lipase OF had greater enantiomeric ratios and enantiomeric excess of
product than reactions using lipase MY. Since both enzymes could only be deemed to be
enantioselective in one of the investigated reaction mediums, the observed results for both
lipases were comparable in terms of their sensitivity to the reaction medium. It should be
also noted that the differences between compared isoforms of Candida rugosa lipases were
mainly related in observed conversion, which affected the enantioselective, rather than
enantiomeric excess of products, which were similar.

2.4. Effect of Reaction Medium

The investigated systems were effective in reaction media both with and without
ionic liquids. As it was observed, Candida rugosa lipase exhibited various catalytical
properties depending on type of reaction medium. Due to this, one of the most crucial
aspects of improving reaction conditions to increase enantioselectivity is selecting the best
reaction medium. Taking into account the addition of ionic liquids, it should be noted
that only [EMIM] [BF4] was appropriate for the enantioselective acetylation of racemic
atenolol among the three investigated ionic liquids, [EMIM] [OTf] and [EMIM] [EtSO4],
as shown in Table 1. Racemic atenolol was sufficiently soluble in [EMIM] [OTf] and
[EMIM] [EtSO4], however, these ionic liquids are ineffective as reaction mediums for the
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enantioselective biotransformation of racemic atenolol, resulting in decreased enantiomeric
excess of product and enantioselectivity. Therefore, it appears that using [EMIM] [BF4] and
toluene as the reaction medium is ideal, and using it led to greater enantiomeric excess
of product, with values higher than 93% (Figure 3). Furthermore, the employment of
this catalytic system allowed for the achievement of a high value of enantioselectivity
(Figure 4). The reactions carried out only in this reaction medium could be identified as
being enantioselective since the E-values were in all investigated systems with [EMIM]
[BF4] higher than 40. It should be emphasized that the reaction without the addition of
ionic liquids also allowed to obtain comparable kinetic resolution parameters. Nevertheless,
the composition of the two-phase catalytic system obtained by direct addition of ionic
liquids gave the possibility to easily separate the substrates and products from the reaction
medium, by withdrawing ionic liquids containing atenolol and resulted derivatives and by
replacing it with fresh ones containing only substrates allowed to reuse the biocatalysts
remaining in reaction system.
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Figure 3. Overview of obtained results of performed enantioselective biotransformation of (R,S)-
atenolol after 120 h of incubation including enantiomeric excesses of products (eep) and conversion (c).
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Figure 4. Overview of obtained results of performed enantioselective biotransformation of (R,S)-
atenolol after 120 h of incubation including enantioselectivity (E).

2.5. Effect of Lipase Reusability in Enzyme-Catalyzed Biotransformation of (R,S)-Atenolol

One of the most significant benefits of using ionic liquids in two-phase enzyme-
catalyzed biotransformation is the ability to reuse the enzymes in another catalytic system
by simply substituting the ionic liquids with specific substrates and products of reaction.
During the study, the effect of native lipases’ capacity for reuse on the kinetic resolution of
racemic atenolol was investigated. After the indicated substrate substitution method, the
Candida rugosa lipases OF and MY were employed again for this purpose.

Following the catalytic process, the remaining ionic liquids containing the enantiomers
of atenolol and atenolol acetate were transferred to the separated tube. The same lipase
that was suspended and remained in toluene was then introduced to the new quantity of
ionic liquids containing the racemic atenolol as a reaction substrate. The correct acetylating
agent was applied in order to initiate the enantioselective reaction (vinyl acetate). Five
reaction cycles were carried out for the purpose of the experiments that were presented,
which amount to 600 h of catalytic and operational activity of the enzymes that were used.
Enantiomeric excesses of all evaluated reaction mixture products after the fifth reaction
cycle were greater than 90% of the initial value (Figure 5).

In a reaction medium made up of toluene and [EMIM] [BF4], lipase from Candida
rugosa OF produced the highest value of enantiomeric excess. Nevertheless, it was found
that after five reaction cycles, there was no discernible difference in the catalytic activity of
any of the used enzymes. The acquired results therefore showed that using ionic liquids
not only has direct benefits linked to getting catalytic parameters that are above acceptable
levels, but also enables the separation of substrates and products from the catalytic system
and the reuse of the enzyme in another cycle.
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the reused lipases from Candida rugosa in enantioselective biotranformation of (R,S)-atenolol.

3. Materials and Methods
3.1. Chemicals

Acetonitrile, acetyl chloride, diethylamine, [EMIM] [BF4], [EMIM] [EtSO4], [EMIM]
[OTf], vinyl acetate, isopropanol, (R)-atenolol, (R,S)-atenolol, and toluene were purchased
from Merck (Sigma-Aldrich Co. Stainhaim, Germany).

Lipases from Candida rugosa MY and OF were a gift from Meito Sangyo Co., Ltd.
(Tachikawa, Japan). The activity of lipase from Candida rugosa OF is 360,000 U/g powder,
whereas the activity of lipase from Candida rugosa MY is 30,000 U/g powder. The thermal
stability of both lipases is equal or below 37 ◦C and optimum pH is 6–7.

In the conducted study, the water was used, which was obtained using a Milli-Q Water
Purification System (Millipore, Bedford, MA, USA).

3.2. Instrumentation

The Refrigerated CentriVap Concentrator, which was bought from Labconco, was
used to purify the HPLC samples.

Shimadzu UPLC-MS/MS system (Japan) used for the HPLC study was equipped with
an autosampler (SIL-40AC), two solvent supply pumps with gradient systems (LC-40AD),
a degasser (DGU-30A5), a column oven (CTO-40AC), a UV detector (SPD-M20A), and a
triple quadrupole mass spectrometer detector (model: LCMS-8045). The Guard Cartridge
System model KJO-4282 and Lux Cellulose-2 (LC-2) column with cellulose tris(3-chloro-



Catalysts 2022, 12, 1068 8 of 12

4-methylphenylcarbamate) stationary phase, both obtained from Phenomenex Co., were
used to perform the chiral resolutions.

All incubations were carried out in specialized incubating apparatuses, models: Inku-
bator1000 and Unimax 1010, which were bought from Heidolph, at a controlled temperature
and rotation (250 RPM) (Schwabach, Germany). Every piece of glass that was used was
oven-dried overnight before being cooled in a nitrogen stream.

3.3. Chromatographic Conditions

In previously published papers [32–34], the chiral chromatographic resolution opti-
mization method of (R,S)-atenolol and its acetylated derivatives was discussed. Finally,
baseline chiral separation of the enantiomers of both atenolol and atenolol acetate was
accomplished using a chiral column made of Lux Cellulose-2 which was thermostatic at
30 ◦C. Acetonitrile, isopropanol, and diethylamine were combined in the ideal mobile
phase at a volumetric ratio of 98/2/0.1.

The mobile phase flow rate was tuned at 0.8 mL/min in order to get a good resolution.
Utilizing a triple quadrupole mass spectrometer in multiple reaction monitoring mode,
the detection was made (MRM). Atenolol had MRM transitions of 267.20 > 116.10, 267.20
> 190.05, and 267.20 > 145.05, whereas atenolol acetate had transitions of 309.20 > 116.10,
309.20 > 145.15, 309.20 > 158.10, and 309.20 > 190.05, which is shown in Figure 6 and was in
line with other published articles [35,36] as well as the METLIN database, which directly
proves that the identified peaks were from atenolol and atenolol acetate. The retention
time of (R)-atenolol acetate was tR = 7.717 min, (S)-atenolol acetate was tR = 8.516 min,
(R)-atenolol was tR = 19.921 min, and (S)-atenolol was tR = 17.539 min (Figure 7).
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2 (4.6 × 250 mm × 3 µm) column, mobile phase: acetonitrile/2-propanol/diethylamine (98/2/0.1
v/v/v), F = 1 mL/min, t = 30 ◦C.

Using equations based on peak areas from chromatograms of (R,S)-atenolol and its
acetylated forms, it was possible to determine the optical purity of both substrates and
products as well as the enantioselectivity of the enzyme-catalyzed biotransformation that
was carried out.

3.4. Kinetic Resolution of (R,S)-Atenolol

In a 20 mL glass flask, enantioselective biotransformation of racemic atenolol was
performed. The reaction mixture contained (R,S)-atenolol (3.0 mg, 0.01 mM) dissolved
in 0.5 mL of chosen ionic liquid put in 10 mL of toluene, which combined, constituted a
two-phase reaction medium. Vinyl acetate (2 µL, 0.02 mM) was used as an acetyl donor
in the reaction. The ionic liquids [EMIM] [BF4], [EMIM] [OTf], and [EMIM] [EtSO4] were
investigated as part of the investigation. By directly adding 10 mg of native lipase from
Candida rugosa OF or MY to the previously assembled bioreactor, the enzyme-catalyzed
biotransformation of (R,S)-atenolol was initiated. At 37 ◦C, the reaction mixture was
incubated while being shaken (250 RPM).

The enantioselective biotransformation of (R,S)-atenolol was monitored using a chiral
stationary phase and an UPLC system coupled with a triple quadrupole mass spectrometer
in MRM mode. Samples of 30 µL of ionic liquid were collected at predetermined time
points every 24 h for 120 h. Next, racemic atenolol and its acetylated forms were extracted
from the ionic liquid by vigorous shaking with 500 µL of acetonitrile for 10 min, and after
centrifugation and filtration via syringe filters, the prepared samples were placed into the
vials and furtherly injected into a UPLC chiral column.

4. Conclusions

The results of the experiment supported the hypothesis that Candida rugosa lipases,
both OF and MY, can catalyze the enantioselective acetylation of racemic atenolol with the
use of vinyl acetate as acetylating agent. It turned out that using two-phase catalytic systems
with toluene and ionic liquid, as well as Candida rugosa lipase and vinyl acetate, allowed
for the production of highly enantioselective parameters. According to the previously
published paper related to kinetic resolution of (R,S)-atenolol, toluene was the most suitable
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reaction solvent, whereas the acetylating agent was vinyl acetate or isopropenyl acetate.
Nevertheless, all previously published studies emphasized that the solubility of atenolol
in toluene is slight [32–34,37,38]. The substrate concentration was at the same level as it
is reported herein. The main aim of the performed study was to verify the possibility to
perform kinetic resolution of racemic atenolol in a two-phase catalytic system with the
use of vinyl acetate. According to available literature, it was decided to test three various
ionic liquids, e.g.,: [EMIM] [BF4], [EMIM] [OTf], and [EMIM] [EtSO4] [39–44]. The used
ionic liquids, however, displayed a variety of kinetic characteristics, leading to varying
enantioselectivities and enantiomeric excesses of substrates and products. According
to a previous report, enzymatic transesterification is inhibited by the direct addition of
[EMIM] [EtSO4] to the reaction mixture, but the results presented here demonstrate that a
smooth transesterification reaction caused by the addition of [EMIM] [EtSO4] produced the
highest values of conversion [29]. However, the E-value dramatically decreased, making
it impossible to regard this reaction system as enantioselective. Additionally, given that
this IL may function as an esterification catalyst, this result may suggest that the reaction
carried out in the catalytic system including [EMIM] [EtSO4] is non-enzymatic.

Although the native Candia rugosa lipase OF in a system including [EMIM] [BF4]
produced the best results among all evaluated catalytic systems (E = 57.22, eep = 93.76%),
the obtained results were comparable to the results obtained without the addition of ionic
liquid (E = 56.99, eep = 93.60%). Nevertheless, the usage of the tested ionic liquids provided
the opportunity to remove substrates and products from the enzyme’s catalytic system
and reuse it. The conducted investigation shown that both lipases from Candida rugosa
OF and MY maintained their high operational stabilities and catalytic activity even after
five reaction catalytic cycles. It should be emphasized that the two-phase catalytic systems
containing ionic liquids could be highly significant from an economic perspective because
they permit a direct and significant overall cost reduction of the carried out enzyme-
catalyzed biotransformation by the easy separation of substrates and products from the
reaction mixture and reuse of the biocatalyst in another reaction. Additionally, it should
emphasize that the solubility of atenolol in organic solvents, which are compatible with the
biocatalysts such as toluene, is rather low and requires higher volumes of reaction medium,
which has a negative impact on the environment. Therefore, the future prospects of the
presented study should be referred in seeking new functionality of reaction mixtures, which
apart from resulting in obtaining better and more efficient reaction parameters, should also
be more “green” and gives the possibility of reusing.
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