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Abstract: Zero-valent metal (ZVMs)-based persulfate activation systems are extensively applied
for the elimination of organic pollutants in aqueous environments. In this study, for the first time,
zero-valent copper (ZVC) was employed as the peroxymonosulfate (PMS) activator for the efficient
degradation of Orange G (OG). The physicochemical properties of ZVC were systematically char-
acterized by FESEM, EDX, TEM, XRD and XPS measurements. Furthermore, the effects of catalyst
loading, PMS dosage, OG concentration and inorganic anions on the ZVC/PMS system were, re-
spectively, investigated and explicated. The formation of •OH and SO4

•− in the system was verified
by quenching experiments and then the possible reaction mechanism was proposed. This work can
provide insight into water treatment technology based on ZVMs.

Keywords: heterogeneous catalyst; ZVC; PMS; OG

1. Introduction

The ever-growing nature of mankind’s activities vastly threatens the ecological envi-
ronment, and the water pollution caused by refractory organic pollutants is particularly
serious. Azo dyes, one of the most used synthetic dyes in the printing and dyeing process,
have attracted much attention for their toxicity, carcinogenicity and biodegradability [1].
Unfortunately, conventional water treatment technologies are ineffective in degrading azo
dyes in wastewater, creating barriers to meeting the discharge standard [2,3].

In recent years, persulfate-based advanced oxidation processes have been extensively
used to decompose and mineralize refractory organic pollutants in water [4,5]. Many
persulfate activation methods were applied, such as ultraviolet light (UV) activation [6],
thermal activation [7], ultrasonic (US) activation [8], transition metal ion activation [9],
carbon material activation [10], etc. The energy-based activation processes suffer from the
high energy consumption in long-term operation. Transition metal ions are commonly
active but difficult for recycling, restricting the large-scale application. Therefore, it is imper-
ative to develop low-cost, green and efficient activation tactics. In this regard, zero-valent
metals (ZVMs), as highly efficient and recyclable catalysts, serve as a promising option
for persulfate activation. The ZVMs can efficiently activate persulfate to generate reactive
species with strong oxidation ability via direct or indirect activation (low-valent metal
ions) [11,12]. Among them, zero-valent copper (ZVC) is widely used to catalyze persulfate
to remove various organic contaminants [13–16]. However, to our best knowledge, there
is no report about OG degradation by the ZVC/persulfate system. It is noteworthy that
OG as a common azo dye in textile wastewater is often used for dyeing synthetic fiber,
wool, etc. Moreover, wastewater containing OG is a significant threat to human beings
and aquatic organisms. For instance, studies have discovered that OG is teratogenic and
genotoxic to organisms [17]. Therefore, more efforts should be devoted to the degradation
of OG.
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In this paper, ZVC, for the first time, was used to activate peroxymonosulfate (PMS)
for OG degradation. Firstly, the physicochemical properties of commercial ZVC were
characterized by field emission scanning electron microscopy (FESEM) and X-ray diffraction
(XRD). The effects of ZVC loading, PMS dosage, OG concentration and inorganic anions on
the degradation reaction were investigated. The dominant reactive species were identified
and then the reaction mechanism was proposed. This study provides insights into water
purification technology based on zero-valent metals.

2. Materials and Methods
2.1. Materials and Instruments

The main materials and reagents include: KHSO5 (PMS), Acid Orange G (OG), zero-
valent copper (ZVC), NaCl, NaHCO3, Na3PO4, methanol (MeOH), and tert-Butanol (TBA).
All reagents were analytically pure and the solutions were prepared with deionized water.
The main instruments include: ultraviolet-visible spectrophotometer (DR-5000, Hach
Company, Loveland, CO, USA), electronic analytical balance (AUY120, Shimadezu, Japan),
and magnetic stirrer (JOAN LAB SH-2).

2.2. Analytical Method

OG was determined by spectrophotometry from their maximum absorbance at 478 nm.
The morphological characteristics of the samples were obtained by field emission scanning
electron microscopy (FESEM, Thermo Scientific Apreo 2C, Waltham, MA, USA) and trans-
mission electron microscope (TEM, Talos F200S G2). X-ray diffraction (XRD, X-D6, PUXI)
was used to study the structural information of the materials. The elemental compositions
of samples were obtained from energy-dispersive X-ray spectroscopy (EDX) equipped with
Oxford Instruments Ultim Max 65 detector. X-ray photoelectron spectra (XPS, AXI Sultra
DLD) were further performed to illustrate the chemical compositions and the elemental
valence states of materials.

2.3. Degradation Experiment

The batch experiments were carried out in a 150 mL beaker at room temperature. The
reaction was initiated by adding a certain amount of ZVC and PMS into OG solution with
magnetic stirring at 400 rpm. At predetermined intervals, the water samples were taken
out and filtered through a 0.22 µm filter membrane, followed by adding a trace amount of
MeOH (reaction terminator) for further analyses.

3. Results and Analysis
3.1. Characterization

Figure 1a,b depicted the SEM images of the catalyst sample. It is evident that the
catalyst consists of irregular agglomerates with smooth surfaces, and no obvious porous
structure is observed. The TEM micrograph also confirmed the apparent aggregation of the
catalyst particles (Figure 1c). As indicated by EDX measurement (Figure 1d), the catalyst
sample is mostly composed of the Cu element, while the detected C and O elements can be
ascribed to the presence of conducting resin used for investigation. By means of the XPS
test, the zero oxidation state of the catalyst was further revealed (Figure 1e).

The XRD pattern of the catalyst is shown in Figure 1f. Three characteristic diffraction
peaks of the sample located at around 2θ = 43.3◦, 50.4◦ and 74.1◦, corresponded to the
(111), (200) and (220) planes of metal Cu (PDF #04-0836). Meanwhile, no impurity peak
was detected, indicating that the catalyst is indeed pure ZVC material [18].
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Figure 1. SEM (a,b), TEM (c), EDX (d), XPS (e) and XRD (f) of the catalyst.

3.2. Catalytic Performance of ZVC

To evaluate the activity of ZVC, several degradation experiments were conducted in
different systems. As shown in Figure 2, the concentration of OG barely changed with
the addition of sole PMS. Similarly, slight removal of OG (only ~1.2%) was obtained with
ZVC alone, which is attributed to the adsorption of OG molecules onto ZVC. In contrast,
once binary PMS and ZVC were mixed in the solution, the removal efficiency of OG
reached 99.6% only after 10 min, and OG was completely removed within 20 min. It
is preliminarily speculated that owing to the high reactivity of copper element [19–21],
ZVC could effectively activate PMS to produce highly oxidative reactive species for rapid
decomposition of OG.
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Figure 2. The OG degradation in different systems. Condition: [OG] = 50 mg/L, [PMS] = 3 mM,
[ZVC] = 0.3 g/L.

3.3. Quenching Experiment

A series of quenching experiments were carried out to probe the reactive species
formed in the ZVC/PMS system. Methanol (MeOH) can effectively quench •OH and SO4

•−,
while tert-butyl alcohol (TBA) can quench •OH more quickly [22–24]. As shown in Figure 3,
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both MeOH and TBA exhibited significant inhibitory effects. The removal efficiency of
OG decreased to 30.8% in the presence of 200 mM MeOH, while the degradation reaction
was further inhibited by 200 mM TBA, and the removal efficiency decreased to 6.7%.
These results indicated that •OH and SO4

•− were simultaneously produced during PMS
activation over ZVC, in which •OH played the primary role for OG oxidation. Based on the
data and the literature [16], a possible reaction mechanism was proposed and illustrated in
Equations (1)–(6) and Figure 4.

2Cu0 + 2H+ → 2Cu+ + H2 (1)

2Cu0 + HSO5
−→ 2Cu+ + OH− + SO4

2− (2)

Cu+ + HSO5
− → Cu2+ + SO4

•− + OH− (3)

Cu2+ + HSO5
− → Cu+ + SO5

•− + H+ (4)

SO4
•− + H2O→ SO4

2− + •OH + H+ (5)

SO4
•− + OH− → SO4

2− + •OH (6)
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3.4. Effect of Initial OG Concentration

The effects of the initial OG concentration were investigated and described in Figure 5.
As OG concentration changed from 30 mg/L to 50 mg/L, the decay efficiency of OG ele-
vated from 43.7% to 76.7% within 5 min, and then the final removal efficiency increased from
96.8% to nearly 100%. This enhancement may be ascribed to the increase in OG molecules,
which could generate more organic radicals to accelerate the regeneration of Cu+. However,
once the concentration of OG was up to 70 mg/L, its degradation efficiency immediately
diminished to 94.6%. The reason is that the steady-state concentration of radicals is constant,
thus the limited radicals were incapable of decomposing excessive substrate.
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Figure 5. Effect of initial OG concentration on OG degradation. Condition: [PMS] = 3 mM,
[ZVC] = 0.3 g/L.

3.5. Effect of PMS Concentration

The effects of PMS concentration on OG degradation are displayed in Figure 6. When
PMS concentration increased from 1 mM to 3 mM, the OG elimination process was signifi-
cantly enhanced (removal efficiency increased from 86.4% to 100.0%). With the addition
of 5 mM PMS, the reaction was further accelerated to achieve the complete removal of
OG in only 10 min. The reason for this phenomenon may be that adding more PMS can
appropriately improve the yield of radicals and speed up the oxidation process [25].
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3.6. Effect of Catalyst Dosage

Since the catalyst is recognized as providing active sites for a catalytic reaction, its
dosage variation can generally affect the reaction rate to a large extent [4,26]. As presented
in Figure 7, the OG removal efficiency raised from 92.4% to 100.0% with ZVC dosage
switching from 0.1 g/L to 0.3 g/L. However, with further dosing of 0.5 g/L ZVC, the
reaction rate slowed down slightly despite fulfilling the complete removal of OG. The
corresponding reason may be that an excessive amount of catalyst would result in excessive
radical species, simultaneously raising the self-quenching rate of radicals and weakening
the degradation ability of the ZVC/PMS system [27,28].
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3.7. Effect of Co-existing Ions

The actual wastewater usually contains various inorganic anions, which can interfere
with the activation of PMS. In this study, the effects of Cl−, HCO3

−, PO4
3− on OG degra-

dation were investigated, respectively. Figure 8a indicates that chloride ions posed dual
influences on OG degradation. When the concentration of Cl− increased from 0 mM to
10 mM, OG degradation was significantly inhibited, which may be ascribed to the reaction
between coexistent Cl− and •OH/SO4

•− to generate Cl• and Cl2•− with lower redox poten-
tial, thus diminishing the oxidation capability of the ZVC/PMS system [29,30]. However,
as the Cl− concentration further changed from 10 mM to 50 mM, the removal performance
of the system was clearly intensified (even better than the result obtained with 0 mM Cl−),
which may be owing to the reaction of excessive Cl− with PMS to form HClO and Cl2 for
accelerating the reaction [31]. According to previous studies, the coexistence of HCO3

−

can scavenge free radicals to impede the degradation process [32]. As expected, apparent
repression of OG decay was observed with 10 mM HCO3

− (Figure 8b). In contrast, 50 mM
HCO3

− promoted the removal process to some extent compared with 10 mM HCO3
−,

which may be because excessive HCO3
− increased the alkalinity of the solution, inducing

the base activation of PMS. As exhibited in Figure 8c, the addition of either 10 mM or
50 mM PO4

3− facilitated the degradation reaction, which may be due to the hydrolysis of
PO4

3− for increasing the solution’s pH to initiate the base activation of PMS.
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4. Conclusions

In this paper, a ZVC/PMS system was proposed that showed excellent degradation
performance on azo dye OG. When 3 mM PMS and 0.3 g/L ZVC were simultaneously
added to the OG solution, 50 mg/L of OG could be completely removed within 20 min.
The radical quenching experiments indicated that •OH and SO4

•− were responsible for the
degradation process. With the increase in OG concentration, the OG degradation was firstly
accelerated and then retarded gradually. The production of radicals can be increased for
the intensified oxidation process by reasonably manipulating the PMS concentration and
the ZVC dosage. Cl− and HCO3

− possessed dual effects on OG elimination, while PO4
3−

accelerated the degradation process. This study provides insights into water treatment
technology based on ZVMs.
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