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Abstract: The development of effective, environmentally friendly catalysts for the Baeyer—Villiger
reaction is becoming increasingly important in applied catalysis. In this work, we synthesized a 3D
composite consisting of silica spheres coated with Mg/Al hydrotalcite with much better textural
properties than its 2D counterparts. In fact, the 3D solid outperformed a 2D-layered hydrotalcite as
catalyst in the Baeyer-Villiger reaction of cyclic ketones with H2Oz/benzonitrile as oxidant. The 3D
catalyst provided excellent conversion and selectivity; it was also readily filtered off the reaction
mixture. The proposed reaction mechanism, which involves adsorption of the reactants on the hy-
drotalcite surface, is consistent with the catalytic activity results.
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Figure S1. TG profiles for SiO2@HT (solid line) and SP-SiO2 (dashed line).
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Figure S2. XRD patterns for synthetized solids: HT-2D (a); SiO2 microspheres; (b) and SiO-@HT (c).

The XRD pattern (figure S2a) for HT-2D catalyst shows the typical signals for
hydrotalcite [1]. For SiO2 microspheres, the XRD patterns (figure S1b) suggest that these
microspheres were amorphous [2]. Finally, the XRD patterns for SiO:@HT (figure Slc)
shows the typical bands for hydrotalcite in addition to a broad halo for silica at 2 values
from 15 to 30°. The low intensity of the (003) line is suggestive of little stacking [3]. A
comparison of this XRD patterns with those for hydrotalcite reveals that baseline
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reflections were shifted to greater 2 values. The shift in baseline reflections to increased
2 values is consistent with a decrease in interlayer distance by effect of a change in
interlayer anion. As revealed by the -Raman spectra and explained below, the interlayer
anion was carbonate rather than nitrate as in the hydrotalcite.
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Figure S3. m-Raman spectra for synthetized solids: HT-2D (a); SiO2 microspheres (b) and SiO2@HT
(©)

Effective intercalation of nitrate anion in HT-2D was confirmed by -Raman spec-
troscopy. Thus, as can be seen in figure S1a, the presence of the signal at 1055 cm-! and the
absence of another at 1060-1070 cm! typical of carbonate ion indicate that nitrate was the
only anion intercalated in the interlayer region. In solid SiO@HT (figure S2c) the nitrate
signal is also observed, however, a shoulder can be observed, indicative of the presence
of carbonate in the interlaminar region, together with nitrate. The presence of this car-
bonate anion should be related with the sonication step used in this process which was
not carried out under inert atmosphere.
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Figure S4. TEM images for synthetized solids: (a) HT-2D; (b) SiO2 microspheres and (c) SiO:@HT.

As can be seen from figure S4a, the solid HT-2D exhibited a roughly hexagonal, plate-
like shape in addition to a particle size around 100 nm which is consistent with previously
reported values [4]. Figure S4b shows a transmission electron micrograph for the SiO:
microspheres. As can be seen, they were uniform in diameter (ca. 400 nm). That the
coating layers grew around the silica microspheres is confirmed by TEM image of figure
S4c.
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Figure S5. Nitrogen adsorption—desorption isotherm for (a) HT-2D and (b) SP-SiOs.

Table 1. Comparison of the prepared catalysts with those reported recently.

Cycloh
Catalysts Reaction conditions yelo e'x ,a none Selectivity (%) Ref
conversion (%)
H-type B-zeolite 30% H20:, acetonitrile, 48 5 (5]

(Si/A1=39) 30°C, 3h
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30% H202,1.2-
Re complexes dichloroethane, 70 °C, 6h 24-57 5-69 (6]

30% H20:, 1.4-dioxane, 80

-Beta-HT 2 7
Sn-Beta °C. 3h 30 6 [7]
30% H20, acetonitrile,
HT-60 70 °C, 6h 49 98 [8]
o H L
(M)W30 50% H20, paracetic acid, 50 64 g7 9]
°C, 5h
Mg-Al 30% H20:, acetonitrile,
30-4 70-1 1
Hydrotalcites 70 °C, 6h 0-40 0-100 [10]
30% H20:2, benzonitrile, 90 This
HT-2D 1
°C, 6h 39 00 work
30% H20:2, Benzonitrile, 90 This
i HT ! ! 7. 1
SiOx@ °C. 6h 8 00 Work
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