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Abstract: A correlation between polyoxotungstate structures and their catalytic performance for
oxidative desulfurization processes was investigated. Bridged lanthanopolyoxometalates that incor-
porate identical metallic centers with Keggin- Eu[PW11O39]11− and Lindqvist-type [Eu(W5O18)2]9−

structures were used as catalysts for the oxidation of the most representative refractory sulfur com-
pounds. Both compounds were able to desulfurize a multicomponent model diesel under sustainable
conditions, i.e., using ionic liquid as an extraction solvent and hydrogen peroxide as an oxidant.
However, the Lindqvist catalyst appeared to achieve complete desulfurization faster than the Keggin
catalyst while using a lesser amount of catalyst and oxidant. Furthermore, the reusable capacity of the
Lindqvist-type [Eu(W5O18)2]9− was confirmed for consecutive oxidative desulfurization processes.
The contribution of the lanthanide metallic center for the catalytic performance of these compounds
was investigated by studying the analogous [TB(W5O18)2]9− compound. Identical desulfurization
efficiency was obtained, even reusing this catalyst in consecutive reaction cycles. These results
indicate that the active catalytic center of these compounds is probably related to the octahedral
tungsten centers. However, a higher number of tungsten centers in the polyoxometalate structure did
not result in higher catalytic activity.

Keywords: polyoxometalates; Keggin-type; Lindqvist-type; desulfurization; oxidative catalysis; ionic
liquid; hydrogen peroxide

1. Introduction

Fossil fuels are now, and will be for the next few decades, the major source of energy,
especially for maritime, road and air transportation. Therefore, the elimination emissions
from sulfur-derived products during fuel combustion continues to be a crucial topic for
investigation. This includes the application of sustainable and efficient desulfurization
processes, capable of producing fuels that have strict policies for sulfur contents in fuels:
ultra-low for road transportation (<10 ppm), and more recently, a global limit of sulfur in
fuel ships of 0.5% (m/m) [1], set by the International Marine Organization. Hydrodesulfur-
ization (HDS) is the traditional method used by petroleum industry, which requires severe
operational conditions and is less efficient in removing the aromatic sulfur compounds
present in fuels [2,3]. Different complementary desulfurization processes have been studied
based on extraction, adsorption, oxidation or even biological methods [1,4,5]. The oxidative
desulfurization method (ODS) is an alternative process that allows for a highly efficient
removal of refractory sulfur compounds under mild and eco-sustainable conditions [1,6–8].
Furthermore, the ODS process allows for the treatment of more viscous and less volatile
fuels derived from the heavy fuel oils. The ODS method involves three steps: a selective
oxidant to convert sulfides into corresponding sulfones or sulfoxides, followed by the
extraction of sulfones, and the recovery of the catalyst [9,10].

Polyoxometalates (POMs) are clusters of anionic metal-oxides that are thermal and
oxidative stable compounds. The chemical properties of POMs such as redox potential,
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electron-transfer properties, acidities and solubility, can be finely changed by adjusting the
metal ions, the heteroatoms and the counter-cations [11]. These properties make POMs su-
perior catalytic materials for oxidative catalysis. Our research group has been investigating
novel POM-based eco-sustainable oxidative desulfurization systems for the production
of sulfur-free fuels [7,12–15]. Most of these studies have been performed with a derived
Keggin-type structure [PM12O40]3-, with M = MoIV, WIV or VV. Some of these studies used
lanthanopolyoxometalates (LnPOMs) obtained through the coordination of lanthanide
ions, such as Eu3+, Tb3+, Sm3+, etc. to coordinative POM lacunary fragments, namely
[PM11O39]7-units with M = W and Mo [16]. In general, LnPOMs exhibit interesting lumines-
cent properties and other specific characteristics, which result from the synergy between the
properties of the lanthanide ions and POM units. The LnPOMs have a large number of ap-
plications: optics, catalysis, electronics, magnetics, biomedicine and luminescence [17–23].
The Keggin-type ([XM12O40]n−] anions are mainly studied in catalysis and also in the
oxidative desulfurization processes. This is not only due to the high catalytic efficiency
of these types of POMs, but also to their properties and catalytic activity, which can be
modulated by the substitution of the M addenda atoms or the heteroatom X by different
metal centers. Moreover, several Keggin-type derivates can be formed by removing one
or more MO4+ units, resulting in lacunary compounds which contain free oxygen atoms,
that can readily coordinate with transition metals or even lanthanide ions. Sandwich-type
lanthanopolyoxotungstates [Ln(PW11O39)2]11- (Ln3+ = Eu3+, Tb3+) are efficient catalysts
for ODS [11,12,15,24]. The Lindqvist-type [Ln(W5O18)2]9– (Ln3+ = Eu3+, Tb3+, Gd3+, La3+)
has also been used to catalyze the oxidation of sulfur compounds in fuels [11,25–27]. The
Lindqvist-type is an iso-polyoxometalate with only one type of transition metal atom in its
structure and multiwavelength systems that allow the excitation wavelength to be tuned
by variation of the lanthanide center or through the coordination of an organic ligand to
the POM.

This work presents for the first time a comparative study using Keggin- and Lindqvist-
type LnPOMs as catalysts for desulfurization technology. Furthermore, the influence of
the number of tungsten centers in the POM structure and the nature of the lanthanide is
evaluated here for the first time. The potassium salts of the sandwich monovacant Keggin-
and Lindqvist-type phosphotungstates were tested in the desulfurization of the model
diesel containing three different sulfur compounds with a total sulfur concentration of
1500 ppm. The reusability and stability of the catalysts have also been investigated.

2. Results
2.1. Catalysts Characterization

The Eu3+ based POMs, Lindqvist-type [Eu(W5O18)2]9− and Keggin-type [Eu(PW11O39)2]9−,
are clearly the most studied POMs, and already described in the literature by different tech-
niques, such as elemental and thermal analysis, powder X-ray diffraction, vibrational (FTIR
and FT-Raman), 31P NMR and photoluminescence spectroscopy, to prove the authenticity
and purity of the compounds [11,28–30].

Spectroscopic methods including FTIR and 31P NMR were used to characterize the
europium compounds. The infrared spectrum of [Eu(W5O18)2] 9− presents several bands in
the range 700–1200 cm–1, the terminal νas(W = Ot) stretch ca.931 cm–1 and the νas(W–O–W)
corner or edge-shared stretching modes between 700–900 cm–1 (Figure S1 in Supplementary
Materials). The infrared spectrum of Eu(PW11)2 displays four characteristic strong asym-
metric vibration bands for the Keggin-type frameworks: νas(P–O) between 1100–1040 cm−1,
terminal νas(W–Ot) at ca. 950 cm–1, corner-sharing νas(W–Ob–W) at ca. 850 cm–1, and edge-
sharing νas(W–Oc–W) at ca. 800 cm–1. 31P NMR spectroscopy was also used to identify
and characterize the potassium salt of Eu(PW11)2 structure in D2O solution, showing as
expected, a singlet at 0.36 ppm [28]. These results are in accordance with the literature
data and indicate that they were successfully prepared. The thermal behaviour of the
lanthanopolyoxotungstates was investigated by thermogravimetric analysis (TGA) and
the obtained TGA curves are exhibited in Figure S2 in Supplementary Materials. The
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Lindqvist-type POMs exhibit a main weight loss until 150 ◦C that can be assigned to the to
the evaporation of physisorbed water (hydration water molecules). An additional weight
loss can be observed in the TGA curve of Tb(W5O18)2 in the 150–325 ◦C range, most likely
due to the presence of chemisorbed water. The TGA curve of Keggin-type POM shows
a longer initial weight loss step until ca. 200 ◦C (hydration water molecules) followed
by another weight loss in the 350–550 ◦C range, which suggests the degradation of the
sandwich-type structure.

2.2. Desulfurization Studies

The preliminary studies with potassium salts of Keggin- (Eu(PW11)2) and Lindqvist-
type (Eu(W5)2) POMs were performed using a model diesel containing three refractory
sulfur compounds present in real diesel that are the most difficult to desulfurize: dibenzoth-
iophene (DBT), 4-methyldibenzothiophene (4-MDBT) and 4,6-dimethyldibenzothiophene
(4,6-DMDBT), with an individual concentration of approximately 500 ppm of sulfur con-
taining compounds in n-octane. These oxidative desulfurization studies were performed
using a biphasic system (1:1 model diesel/[BMIM]PF6, extraction solvent). The process
procedures in two main steps: first an initial liquid-liquid extraction in the presence of
the catalyst by stirring for 10 min at 70 ◦C (initial extraction); and then, after the initial
extraction equilibrium is reached, the catalytic oxidation stage is initiated by adding the
hydrogen peroxide oxidant (promoting the oxidation of sulfur compounds to the corre-
sponding sulfoxides and/or sulfones in the extraction solvent). The oxidation occurs in
the extraction phase, since no oxidation products were detected in the model diesel phase.
However, when the sulfur compounds are catalytically oxidized, more sulfur compounds
from the diesel phase can be transferred to the extraction phase. Therefore, during the
catalytic oxidation stage, a continuous extraction of sulfur occurs (ECODS, extraction cat-
alytic oxidative desulfurization system). The comparison of the catalytic performance of
the homogeneous Lindqvist and the Keggin catalysts for the ECODS was performed, by
varying the catalyst and oxidant amounts. The initial conditions adopted were 0.75 mL of
model diesel, 0.75 mL of extraction solvent [BMIM]PF6 and 75 µL of H2O2 at 70 ◦C. These
were optimized conditions previously reported by the research group for similar catalytic
systems [31]. Ionic liquids have been demonstrated to have an effective effect as extractive
desulfurization solvents. Between these, the [BMIM]PF6 have demonstrated to be most
efficient [8,14,16]. The effect of the catalyst amount was studied using 0.3 and 3 µmol of
catalyst and the results obtained are displayed in Figure 1. The desulfurization profile using
Linqvist-type catalyst Eu(W5)2 is less influenced by the amount of catalyst, and higher
catalytic efficiency is achieved using the lower amount of catalyst. Using this catalyst, total
desulfurization was achieved after only 1 h of reaction. Slightly higher catalytic efficiency
was found using 3 µmol than 0.3 µmol only during the first minutes. The desulfurization
profile of the model diesel when catalysed by the Keggin-type catalyst Eu(PW11)2 demon-
strates that complete desulfurization was faster achieved using the highest amount of
catalyst. Therefore, 3 µmol of Keggin-type catalyst were needed to achieve complete desul-
furization after 2 h (instead of 79% obtained using 0.3 µmol of Eu(PW11)2). However, after
3 h, complete desulfurization was achieved using 3 and 0.3 µmol of Eu(PW11)2 catalyst.

The amount of oxidant presents in the ECODS system is another important parameter
that can have a high influence in the catalyst performance. The H2O2 oxidant is activated by
its interaction with the catalyst, forming active species. These are usually hydroperoxy- or
peroxo-POM species that are able to oxidize the sulfur compounds into the corresponding
sulfoxides through a nucleophilic attack. The initial POM is further regenerated. The
subsequent oxidation of the sulfoxides leads to the formation of sulfones. The mechanism
involved in ECODS system using polyoxotungstate catalysts is well reported in the litera-
ture [12,24,32–35]. In the oxidant amount study, 75 and 100 µL of H2O2 were used. Results
obtained using Keggin and Linqvist catalysts are displayed in Figure 2. Using the Lindqvist
catalyst, the increase in oxidant amount decreased the desulfurization efficiency of the
ECODS system. This is probably caused by the occurrence of some deactivation of the cata-
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lyst or even by the difficulty of sulfur extraction in the presence of a higher amount of water
content in the system. Visually, the aqueous oxidant is located between the apolar model
diesel phase and the polar ionic liquid [BMIM]PF6 extraction phase. In both Keggin and
Lindqvist catalytic systems, it is possible to observe a decrease in the initial extraction data
when the oxidant amount is increased, i.e., the extractive desulfurization achieved after the
first 10 min. However, using the Keggin catalyst, it is possible to observe an increment in the
desulfurization efficiency during the oxidative catalytic step. Therefore, the Keggin catalyst
also needs a higher amount of oxidant to achieve the same desulfurization efficiency as
the Lindqvist catalyst obtained after 1 h, which corresponds to complete desulfurization of
model diesel. When 75 µL of H2O2 was used instead of 100 µL, only 85% of desulfurization
was obtained after 1 h. From the catalyst and oxidant amounts study is possible to verify
that the Lindqvist catalyst achieved complete desulfurization faster, using less amount
of catalyst and less amount of oxidant. This demonstrates that the Lindqvist (Eu(W5)2)
compound is a more efficient catalyst than the Keggin (Eu(PW11)2). Therefore, the number
of atomic tungsten centers in the POM structure does not have a direct correlation with the
activity of the compound. A higher dimensional polyoxotungstate structure containing a
higher number of tungsten centers may not be more catalytically active for an oxidative
reaction as others with a smaller size and lower number of tungsten centers. Moreover, the
primary phosphorus atomic center in the Keggin (Eu(PW11)2) structure does not have an
active participation in catalyst activity.

Figure 1. Desulfurization profile using 0.3 and 3 µmol of Keggin-type [Eu(PW11O39)2]9 (right) and
Lindqvist-type [Eu(W5O18)2]9− (left) catalysts to treat the multicomponent model diesel in a biphasic
diesel/[BMIM]PF6 (1:1) ECODS system, using and 75 µL of H2O2 at 70 ◦C. The vertical dashed line
indicates the time that the oxidative catalytic reaction was started by the addition of the oxidant.

2.2.1. Reusing Homogeneous POMs

The reusability capacity of both the structures, Keggin and Lindqvist POMs, was
investigated under the ECODS system, using 3 µmol of catalyst and 75 µL of H2O2. The
reusability of both catalysts was evaluated for five consecutive cycles. At the end of each
ECODS cycle, the desulfurized model diesel was removed from the system and a new
sulfurized model diesel and oxidant sample were added to perform a consecutive ECODS
cycle, maintaining the same experimental conditions and the POM/[BMIM]PF6 catalytic
active phase. Figure 3 displays the results of desulfurization obtained for five ECODS
consecutive cycles, after 1 h of reaction. The Lindqvist catalyst maintained its catalytic
performance during the 5 consecutive cycles, whereas the Keggin one slightly increased
its activity after the first cycle that was maintained for over 4 consecutive ECODS cycles.
This behavior indicates that some catalytic activation must occur using the Keggin POM. In
fact, the oxidant needs to be activated by the interaction with the catalyst, forming peroxo
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compounds as catalytic active intermediates [16]. In the case of the Keggin POM catalyst,
a slower interaction with the H2O2 oxidant must have occurred, when compared to the
Lindqvist POM which caused the increased catalytic activity observed.

Figure 2. Desulfurization profile of the multicomponent model diesel in a biphasic diesel/[BMIM]PF6

(1:1) ECODS system, using 3 µmol of catalyst and 100 and 75 µL of H2O2 at 70 ◦C. The vertical dashed
line indicates the time that the oxidative catalytic reaction was started by the addition of the oxidant.

Figure 3. Desulfurization results obtained after 1 h of 5 consecutive ECODS diesel/[BMIM]PF6 pro-
cesses, maintaining the same POM/[BMIM]PF6 catalytic phase, using the Keggin and the Lindqvist
catalysts (3 µmol) and H2O2 (75 µL) at 70 ◦C.

2.2.2. Influence of Lanthanide Nature

To investigate the contribution of the lanthanide as a catalytic active center, the cat-
alytic activity of the europium Lindqvist POM Eu(W5)2 was compared with the analogous
terbium Tb(W5)2 compound (Figure 4). Similar desulfurization profile of the multicompo-
nent model diesel was obtained between both Lindqvist compounds, which indicates that
the bridge lanthanide metallic center should not have an important contribution on the
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catalytic performance of the POM (Figure 4). Furthermore, Tb(W5)2 was reused for several
ECODS cycles and also for this Lindqvist POM, and its activity was maintained for at least
five consecutive ECODS cycles (Figure 5).

Figure 4. Desulfurization profile of the multicomponent model diesel in a biphasic diesel/[BMIM]PF6

(1:1) ECODS system, using 3 µmol of Lindqvist catalyst (Eu(W5)2 or Tb(W5)2) and 75 µL
of H2O2 at 70 ◦C.

Figure 5. Desulfurization results obtained after 1 h and 2 h of five consecutive ECODS
diesel/[BMIM]PF6 cycles, maintaining the same POM/[BMIM]PF6 catalytic phase, using Tb(W5)2

Lindqvist catalysts (3 µmol) and H2O2 (75 µL) at 70 ◦C.

2.2.3. Comparison between Different POM Structures

A comparison of the desulfurization efficiency to treat model diesel catalyzed by
different POM structures in the presence of H2O2 as oxidant is presented in Table 1. It
is possible to observe that the structure of the POM catalysts play an important role in
the desulfurization efficiency; however, the extraction solvent also presents an important
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influence. In general, ionic liquids appeared to promote a higher desulfurization efficiency
than the acetonitrile. Different studies using the Keggin-type Eu(PW11)2 catalyst were
performed and faster complete desulfurization was achieved in this study using [BMIM]PF6
solvent [15,24]. Furthermore, the lanthano-bridged POM Keggin-type (Eu(PW11)2) presents
a higher structural stability than the pristine Keggin [PM12O40]3− (M = W and Mo) and
the monovacant [PW11O39]7−, when used as catalysts for oxidative desulfurization of
identical multicomponent model diesel [7,12,31]. Only a few examples could be found in
the literature using the lanthano-bridged POM with the Lindqvist structure, and these only
used single-model diesel containing only DBT, which is more easily oxidized than the BT
or the DBT derivatives [25,27]. In this study, identical results were obtained using sulfur
multicomponent model diesel.

Table 1. Extractive/Oxidative Desulfurization efficiency of model diesel, using H2O2 as oxidant and
various POM structures as homogeneous catalysts.

Catalyst Solvent Time (h) Desulfurization
(%) Ref.

[PMo12O40]3− [BMIM]PF6 2 100 a [34]
[PW12O40]3− [BMIM]PF6 1 100 a [12]
[PW11O39]7− No 2 96.5 a [7]
[PW11Zn(H2O)O39]5− CH3CN 4 100 [10]
[Eu(PW11O39)2]11− CH3CN 2 73.9 [15]
[Eu(PW11O39)2]11− CH3CN 4 100 [24]
[Eu(PW11O39)2]11− [BMIM]PF6 1 100 This work
[Sm(Pmo11O39)2]11− [BMIM]PF6 1.5 100 [24]
[EuW10O36]9− [omim]PF6 0.5 100 b [25]
[LaW10O36]9− [omim]PF6 0.5 100 b [27]
[EuW10O36]9− [BMIM]PF6 1 100 This work
[TbW10O36]9− [BMIM]PF6 1 100 This work

a Low structural stability of the POM catalyst was found. b Only DBT (instead of a multicomponent sulfur model
diesel) was used to study the desulfurization efficiency.

2.2.4. Stability of Keggin- and Lindqvist-Type Polyoxometalates

The stability of the Europium Keggin- and Lindqvist-type POMs were evaluated
by comparison of the emission spectra, before and after catalysis. The studied EuPOMs
exhibit peculiar photoluminescent properties, with an efficient energy transfer process
to the lanthanide emitting center, as a result of the coordinated POM moieties [11,36].
For this reason, we prepared aqueous solutions, 1 mM of the as-prepared Lindqvist and
Keggin POMs, and studied its emission under excitation into the maximum of the W-O
charge transfer band (285 nm). The results confirm the occurrence of the characteristic
intramolecular energy transfer to the Ln3+, with both emission spectra displaying the typical
5D0 → 7FJ (J = 2–4) emission peaks of Eu3+ (Figure 6) [28,37]. The EuPOM/[BMIM]PF6
phases were recovered after catalytic use and its emission spectra were acquired under
the same experimental conditions for comparison purposes. As expected, the spectra
of the recovered phases show peaks with considerably lower emission intensity when
compared with the as-prepared samples due to the higher dispersion of the EuPOMs in the
[BMIM]PF6. Nevertheless, both spectra are composed by the same Eu3+ emission peaks
assigned to the 5D0 → 7FJ (J = 2–4) transitions (Figure 6—insets). Moreover, the relative
intensities of the 5D0 → 7FJ transitions are still preserved in the emission spectra of the
recovered phases, which could indicate that the Keggin and Lindqvist POM structures are
retained after catalytic use since these transitions are known to be extremely sensitive to
changes in the local symmetry of Eu3+ [29,38,39].
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3. Experimental Section
3.1. Materials and Methods

All the reagents used in the preparation of the polyoxometalates, namely sodium
tungstate dihydrate (Aldrich, St. Louis, MO, USA, 99%), glacial acetic acid (Merck, Ke-
nilworth, NJ, USA), potassium chloride (Merck), europium chloride hexahydrate (Sigma,
St. Louis, MO, USA, 99.9 %,), terbium (III) chloride hexahydrate (Aldrich, St. Louis, MO,
USA, 99.90%), hydrochloric acid (Panreac, Barcelona, Spain, 37 %) were used as received
without further purification. The reagents for catalytic studies, including dibenzothio-
phene (DBT, Aldrich, St. Louis, MO, USA), 4-methyldibenzothiophene (4-MDBT, Aldrich,
St. Louis, MO, USA), 4,6-dimethyldibenzothiophene (4,6-DMDBT, Alfa Aeser, Haver-
hill, MA, USA), n-octane (Aldrich), 1-butyl-3-methylimidazolium hexafluorophosphate
([BMIM]PF6, Sigma-Aldrich) and 30% w/w hydrogen peroxide (Aldrich, St. Louis, MO,
USA) were purchased from commercial sources. Infrared absorption spectra were recorded
for 400–4000 cm−1 regions on a Jasco 460 Plus spectrometer (Jasco, Tokyo, Japan), using
KBr pellets. Thermogravimetric analysis was performed using a Hitachi STA 7200 RV
equipment (Hitachi, Tokyo, Japan) under inert atmosphere (nitrogen flow of 200 mL/min),
at room temperature up to 500 ◦C with a heating rate of 5 ◦C/min. 31P NMR spectra for
liquid solutions were recorded with a Bruker Avance III 400 spectrometer (Bruker, Billerica,
MA, USA), and chemical shifts are given with respect to external 85% H3PO4. Emission
spectra were acquired in a Horiba Fluorolog-QM fluorometer (Horiba, Kyoto, Japan) with
an excitation wavelength of 285 nm. Catalytic reactions were periodically monitored by
GC-FID analysis carried out in a Bruker 430-GC-FID chromatograph (Bruker, Freemont,
CA, USA). Hydrogen was used as carrier gas (55 cm s−1) and fused silica Supelco capillary
columns SPB-5 (30 m × 0.25 mm i. d.; 25 µm film thickness) were used.

3.2. Synthesis of Lanthanopolyoxometalates
3.2.1. Lindqvist-Type POM

The potassium salts of the [Ln(W5O18)2]9−-type [Ln (III) = Eu and Tb] lanthanopoly-
oxometalates were prepared using an adaptation of the Weakley et al. method [36,40].
Briefly, an aqueous solution of sodium tungstate dihydrate (15.2 mmol, 7 mL) was prepared
and the pH adjusted to 7 by addition of glacial CH3COOH. The solution was heated at
90 ◦C and a hot aqueous solution of LnCl3·6H2O (1.52 mmol; 2 mL) was added dropwise
followed by an aqueous solution of KCl (17.5 mmol; 8 mL). The mixture was allowed to stir
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at 90 ◦C for 30 min and stored in the refrigerator for 3 days. The obtained precipitate was
filtered, washed with ethanol, and dried in a desiccator over silica gel. Thermogravimetric
analyses were performed for the determination of the hydration water molecules.

K9[Eu(W5O18)2]·7H2O (abbreviated as Eu(W5)2). TGA showed a mass loss of 4.2% up to
150 ◦C (loss of seven H2O hydration molecules). Selected FT-IR (cm−1): 931, 833, 791, 708.

K9[Tb(W5O18)2]·5H2O (abbreviated as Tb(W5)2). TGA showed a mass loss of 3.3% up
to 150 ◦C (loss of five H2O hydration molecules). Selected FT-IR (cm−1): 933, 843, 793, 706.

3.2.2. Keggin-Type POM

The potassium salt of europium, K11[Eu(PW11O39)2]·5H2O (abbreviated as Eu(PW11)2)
was prepared by following a modified literature procedure [28]. A solution of EuCl3·6H2O
was added dropwise to an aqueous solution of the precursor ligand (K7[PW11O39]·10H2O;
abbreviated as PW11), previously prepared [41]. The mixture was stirred for 1 h at 90 ◦C.
PW11 and Eu3+ were dissolved in the minimum volume of water, and both solutions were
added in rigorously stoichiometric amounts to prepare Eu(PW11)2 (1:2). Elemental analysis:
calcd (%). Eu 2.5, K 7.1, P 1.1, W 66.9; found (%) Eu 2.9, K 7.5, P 1.8, W 67.7. Selected
FT-IR (cm−1): 1096, 1040, 942, 878, 798, 698. TGA showed a mass loss of 1.4% in the range
50–150 ◦C (loss of five H2O hydration molecules).

3.3. Oxidative Desulfurization Studies

The ODS studies were performed using a model diesel containing three sulfur com-
pounds: dibenzothiophene (DBT), 4-methyldibenzothiophene (4-MDBT) and
4,6-dimethyldibenzothiophene (4,6-DMDBT), in n-octane (with a total sulfur concentration
of 1500 ppm). The experiments were carried out under air in a closed borosilicate 5 mL ves-
sel, equipped with a magnetic stirrer and immersed in a thermostatically controlled liquid
paraffin bath at 70 ◦C. In a typical experiment, 3 µmol of POM was added to 1:1 model
diesel/extraction solvent (750 µL each). The ionic liquid, 1-butyl-3-methylimidazolium
hexafluorophosphate ([BMIM]PF6), was used as extraction solvent. The resulting mixture
was stirred for 10 min, after which the catalytic step was initiated by adding 30% w/v
hydrogen peroxide (75 µL, H2O2/S = 14). The sulfur content in the model diesel was
periodically quantified by GC analysis using tetradecane as the external standard. The
reusability of the catalyst was evaluated by removing the desulfurized model diesel at the
end of each ODS cycle and adding a new portion of model diesel and oxidant, maintaining
the condition.

4. Conclusions

The catalytic performance of Europium-bridged polyoxometalates with
Keggin- Eu[PW11O39]11− and Lindqvist-type [Eu(W5O18)2]9− structures was investigated
for the oxidative desulfurization of a multicomponent model diesel. The Lindqvist cata-
lyst showed a slightly higher catalytic performance than the Keggin type, since complete
desulfurization was achieved after only 1 h using less amount of oxidant. Furthermore,
the catalytic activity of the Lindqvist compounds was investigated using the analogous
[Tb(W5O18)2]9− structure. In this case, identical catalytic performance was obtained and
this result suggests that the Lanthanide center does not contribute to the catalytic efficiency
of the Lindqvist compounds. The reusability of the catalysts was confirmed for at least five
desulfurization cycles and the stability of the Keggin and the Lindqvist structures were
confirmed by their photoluminescent properties.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal12060581/s1, Figure S1: FT-IR spectra of Eu(W5)2, Tb(W5)2
and Eu(PW11)2; Figure S2: TGA curves for (A) Eu(W5)2, (B) Tb(W5)2 and (C) Eu(PW11)2.
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