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Abstract: In this study, new organic-inorganic g-C3N4/CoAl-LDH nanocomposites were prepared
and introduced to fabricate photocatalytic cement mortars by internal mixing, coating, and spraying.
The photocatalytic depollution of both g-C3N4/CoAl-LDH and cement mortars was assessed by
NOx degradation reaction under UV-visible light irradiation. The study results suggested that
the degradation efficiency of g-C3N4/CoAl-LDH nanocomposites improved with an increase in
g-C3N4 content. The g-C3N4/CoAl-LDH1.5 nanocomposite displayed the highest NOx degradation
capacity, which was about 1.23 and 3.21 times that of pure g-C3N4 and CoAl-LDH, respectively. The
photocatalytic cement mortars which were all fabricated using different approaches could effectively
degrade the target pollutants and exhibited significant compatibility between g-C3N4/CoAl-LDH
and cementitious substrate. Among them, the coated mortars showed strong resistance to laboratory-
simulated wearing and abrasion with a small decrease in degradation rate.

Keywords: g-C3N4/CoAl-LDH; heterostructure; cementitious composites; photocatalytic
depollution; laboratory-simulated wearing and abrasion

1. Introduction

Air pollution has always been a significant concern for human health and ecological
environment. Efficient strategies for pollution prevention and control are imminent. Nitro-
gen oxides NOx (NO + NO2) as one of the major pollutants can cause a series of problems,
such as photochemical smog, acid rains, and serious respiratory diseases for human [1,2].
In recent years, one of the most promising methods, i.e., photocatalytic technique has
played an increasingly essential role in the field of environmental pollution control and
received increased attention. For the feasibility of practical applications that introduce pho-
tocatalysts into building materials such as cementitious composites [3,4], it is desirable that
a photocatalyst can be activated by solar energy for oxidative degradation of air pollutants,
providing an efficient way for air purification. So far, TiO2-based photocatalytic cementi-
tious materials have most commonly been studied in many fields including air purification,
sewage treatment, as well as antibacterial and self-cleaning applications. However, there
are some inherent disadvantages and problems associating with their practical application:
(1) TiO2 has a wide band gap (3.2 eV) which can only be activated by UV light and has a
low utilization rate of solar light [5], (2) TiO2 does not have satisfactory compatibility with
agglomerated cementitious material, which could have a negative effect on the photocat-
alytic performance [6,7], and (3) the high alkaline environment of cementitious materials
probably adversely affect the capacity of photocatalyst [8]. Therefore, endeavors to identify
a new stable photocatalytic cementitious material are imperative.
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Graphite carbon nitride (g-C3N4) with the graphite-like 2D structure has aroused
widespread interest in the field of photocatalysis because of its unique performances,
such as a UV-visible light driven band gap (2.7 eV), good thermal stability, low cost, and
nontoxicity [9,10]. In recent years, studies have shown that g-C3N4 can be excited by
UV-visible light and have found application in hydrogen production, organic pollutant
degradation, and air pollution control [9,11,12]. However, due to the short lifetime of photo-
induced carriers and inadequate absorption of UV-visible light, pristine g-C3N4 displays
relatively low photocatalytic efficiency, which greatly limits its practical application. To
improve the properties of g-C3N4, a variety of methods have been proposed, including
doping modification [13], precious metal deposition [14], template introduction [15], and
semiconductor recombination [16]. Among them, combinations of g-C3N4 with other
semiconductors such as TiO2 [17], SnO2 [18], ZnCr-LDH [19] have been recognized as the
most effective methods to enhance the photocatalytic efficiency.

Layered double hydroxides (LDH) are hydrotalcite-like compounds that contain the
main body laminates with metal oxides (M2+ and M3+) and adjustable interlayer anions.
Due to its unique structure and adjustable band gap, LDH has been widely applied to
various photocatalytic applications, such as CO2 reduction [20], hydrogen generation [21],
and photodegradation [22]. In addition, the molecular structure of LDH shares the same
characteristics with some cement hydration products and, thus, exhibits good compatibility
with cement-based materials as well as chemical stability in its alkaline environment [23–25].
The unique layered structure of LDH can also act as an effective supporting substrate
for photocatalysts to avoid direct contact with cementitious materials. This can mitigate
the adverse impact of cementitious materials on the photocatalyst and, thus, improve the
photocatalytic efficiency [18]. Up to now, many researchers have reported that LDH could
act as a co-photocatalyst to improve the inherent shortcomings of other semiconductors
due to LDH’s suitable potential and narrow band gap [26,27].

The appropriate construction of a g-C3N4/LDH nanocomposite has the potential
to contribute synergistic benefits over that of g-C3N4 and LDH in terms of photocat-
alytic performances. Research has found that because of the interfacial contact between
NiAl-LDH and g-C3N4, the photogenerated charges can separate more efficiently with a
low recombination rate [28]. It has been reported that 2D/2D g-C3N4-C(N)/ZnCr-LDH
with a higher surface area can increase light harvesting ability and response capacity, and
therefore, present a superior photocatalytic performance than individual pure phase [29].
In addition, the chemical properties of g-C3N4/LDH can be tailored, which makes it suit-
able for photocatalytic applications in various fields [30,31]. Moreover, according to our
investigation, no study has reported for introducing g-C3N4/LDH into building materials
with regard to photocatalytic depollution.

In this work, a group of g-C3N4/CoAl-LDH nanocomposites were prepared with
different contents of g-C3N4. The photocatalytic property and depollution mechanism of
the g-C3N4/CoAl-LDH nanocomposites toward the degradation of NOx were investigated,
while the morphology, microstructure, and photoelectrical properties were characterized
by X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR), field emission scan-
ning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDS),
UV-VIS diffuse reflectance spectrum (UV-VIS DRS), photoluminescence (PL), electrochemi-
cal impedance spectroscopy (EIS), as well as current-time (I-T), and Mott–Schottky (M-S)
plots. Furthermore, a series of cement mortars were fabricated with the introduction of
g-C3N4/CoAl-LDH by means of internal mixing, spraying, and coating. The photocatalytic
property of the cement mortars was measured by NOx degradation under UV-visible light,
while the durability of the coated mortar was assessed under the laboratory-simulated
wearing and abrasion conditions.
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2. Results and Discussion
2.1. Characterization of g-C3N4, CoAl-LDH, and the g-C3N4/CoAl-LDH Nanocomposites

The crystalline structures of pure CoAl-LDH, g-C3N4, and a series of g-C3N4/CoAl-LDH
nanocomposites were characterized by XRD. As Figure 1 shows, two basic diffraction peaks
of g-C3N4 located at 13.1◦ and 27.5◦ can be indexed to (100) and (002) planes of the g-
C3N4 (PDF#50-1250) [32], corresponding to the typical in-planar ordered structure and
the interlayer structural stacking of aromatic systems, respectively. The diffractogram of
pure CoAl-LDH (PDF# 51-0045) with a typical hydrotalcite-like layer structure exhibits
the characteristic diffraction reflections at 11.53◦, 23.21◦, 34.60◦, 38.78◦, 45.55◦, 60.02◦, and
60.90◦ corresponding to the crystal planes of (003), (006), (012), (015), (018), (110), and
(0015), respectively. For the g-C3N4/CoAl-LDH nanocomposites, all of the characteristic
diffraction peaks of CoAl-LDH can be observed, while it is hard to monitor the typical peaks
of g-C3N4 in the g-C3N4/CoAl-LDH0.75 nanocomposite. However, the characteristic peak
intensity of g-C3N4 increases with an increase in the g-C3N4 content of the nanocomposite.
It is worth mentioning that the crystal peak (003) which is assigned to CoAl-LDH decreases
with the enhanced peak (002) of g-C3N4. Based on (003) and (110) reflections, the lattice
parameters of a and c can be calculated. The parameter a is the average distance between
two cations in the layers, where a = 2d110, and c is three times the distance between
the two main body layers, where c = 3d003. According to the Debye–Scherrer equation
(D = 0.89λ/βcosθ, where D is the crystallite size, θ is the Bragg diffraction angle, λ is
the radiation wavelength (λ = 1.54 nm), β represents (003) full width at half maximum),
the crystallite size of composites can be obtained [33] and the results are listed in Table 1.
As clarified by Table 1, the g-C3N4/CoAl-LDH nanocomposites with various g-C3N4
contents give similar values of a and c indicating that the combination of g-C3N4 and
LDH does not change the main laminate structure of CoAl-LDH. Among them, the g-
C3N4/CoAl-LDH1.5 nanocomposite displays the narrowest line widths and strongest
intense reflections with a stable baseline, indicating the highest crystallinity and the best-
crystallized laminated structure.

The morphology and microstructure of g-C3N4, CoAl-LDH, and the g-C3N4/CoAl-LDH
nanocomposites were explored by SEM. As Figure 2a shows, the g-C3N4 has an irregu-
lar two-dimensional (2D) layered structure, and some layers bend to form a tube-like
structure with an open end due to its small thickness. Moreover, owing to the large
amount of CO2 and NH3 produced during the preparation, many pores are formed on the
g-C3N4 sheet which, in turn, provide more active sites for the photocatalytic reaction. The
CoAl-LDH (Figure 2b) displays irregular lamellae with uniform micron size, but serious
layer-by-layer agglomeration is also found with CoAl-LDH sheets, and cannot be effec-
tively dispersed. The g-C3N4/CoAl-LDH nanocomposites with various contents of g-C3N4
(Figure 2c–e) display obviously different morphologies as compared with those of the
CoAl-LDH and g-C3N4. During the process of coprecipitation, a large amount of metal
cations is deposited on the surfaces of g-C3N4, which promotes the intercalation growth of
CoAl-LDH nanoflakes on g-C3N4, contributing to mitigation of the self-aggregation of
LDH sheets. Upon combination with g-C3N4, CoAl-LDH exhibits a uniform and regu-
lar 3D flower-like microsphere structure, which provides a large number of active sites
with a larger specific surface area for photocatalytic reactions. In addition, the structure
constructed between g-C3N4 and CoAl-LDH provides a suitable electronic heterojunc-
tion which can greatly shorten the migration distance of carriers and, thus, promote the
photocatalytic reaction. Particularly, more flower-like microspheres with uniform shape
and size are formed with the g-C3N4/CoAl-LDH1.5 nanocomposite as compared with
g-C3N4/CoAl-LDH0.75 and g-C3N4/CoAl-LDH1.25 nanocomposites, due to the
highest crystallinity.
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Table 1. The crystallite size and unit cell parameters of the g-C3N4/CoAl-LDH nanocomposites.

Sample Crystallite Size (nm) a (nm) c (nm)

g-C3N4/CoAl-LDH0.75 3.034 3.079 22.790
g-C3N4/CoAl-LDH1.25 2.930 3.079 22.906
g-C3N4/CoAl-LDH1.5 2.615 3.076 22.907
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Figure 1. XRD patterns of CoAl-LDH, g-C3N4, and the g-C3N4/CoAl-LDH nanocomposites.
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The elemental composition of the g-C3N4/CoAl-LDH1.5 nanocomposite was investigated
by EDS spectrum. The results are shown in Figure 2f, where the Au comes from spraying gold
in the process of test sample preparation. It was found that the EDS spectra mainly consisted
of C, O, N, Al, and Co element, indicating the existence of g-C3N4/CoAl-LDH. In addition,
the relative elemental content of Co to Al in EDS spectrum (5.76 wt% vs. 2.59 wt%) was similar
to that of g-C3N4/CoAl-LDH1.5 (5.21 wt% vs. 2.23 wt%), indicating the consistency of the Co
and Al contents in initial precursor and final product.

The N2 adsorption/desorption isotherms of CoAl-LDH, g-C3N4, and g-C3N4/CoAl-LDH
nanocomposites were examined to estimate the specific surface area and pore size distribu-
tion; the curves are shown in Figure 3. The N2 adsorption/desorption curves, presented in
Figure 3a,b, belong to the typical type IV according to the BDDT classification [34]. The
adsorbed quantity increases rapidly in the low-pressure region, followed by a relatively gentle
increase trend until the relative pressure (P/P0) attains 0.8. A drastic increase in adsorption
takes place in the high relative pressure level (0.8–1) owing to capillary condensation. A loop
appears in the adsorption/desorption curve of the g-C3N4/CoAl-LDH nanocomposites at
the P/P0 above 0.5, and there is no obvious saturated adsorption platform, indicating a meso-
porous (2–50 nm) structure due to the orderly stacking of the lamellar structure. According to
Figure 3c,d, the pore widths of both g-C3N4 and CoAl-LDH are mainly distributed between 2
and 30 nm. After compounding, the pore sizes of the g-C3N4/CoAl-LDH nanocomposites are
basically maintained.
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Figure 3. N2 adsorption/desorption isotherms (a,b) and BJH pore size distribution (c,d) of g-C3N4,
CoAl-LDH, and the g-C3N4/CoAl-LDH nanocomposites.

The BET surface areas of g-C3N4, CoAl-LDH, and the g-C3N4/CoAl-LDH0.75,
g-C3N4/CoAl-LDH1.25, and g-C3N4/CoAl-LDH1.5 nanocomposites are calculated from
isotherms to be 71, 57, 66, 63, and 70 m2/g, respectively. As compared with g-C3N4, the
reduction in the pore volume and specific surface area of g-C3N4/CoAl-LDH nanocompos-
ites can be ascribed to the blockage of the pores by the incorporation of g-C3N4. Among the
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nanocomposites with different g-C3N4 contents, the g-C3N4/CoAl-LDH1.5 nanocomposite
shows the highest pore volume and specific surface area, indicating the incorporation of
g-C3N4 nanosheets can effectively improve the dispersion of LDH, which agrees with the
result observed from SEM in Figure 2.

The infrared spectra of g-C3N4, CoAl-LDH, and the g-C3N4/CoAl-LDH0.75, g-C3N4/CoAl-
LDH1.25, and g-C3N4/CoAl-LDH1.5 nanocomposites are shown in Figure 4. Obviously, the
pure g-C3N4 shows an intense band at 808 cm−1, which is attributed to the heptazine ring
out-of-plane bending vibration mode. The peaks in the range of 1200–1650 cm−1, such as the
characteristic peaks at 1226, 1311, 1453, and 1625 cm−1, are determined to be the stretching
vibration of C=N double bond and C-N single bond of aromatic heterocycles. The broad band
for N-H stretching vibration is observed from 3000 to 3500 cm−1 [35]. For CoAl-LDH, the
bands at 750 and 1355 cm−1 correspond to the vibration modes of interlayer anion CO3

2−, of
which 750 cm−1 also refers to the infrared absorption caused by metal-oxygen bond (M-O) [36].
The peak at 3450 cm−1 indicates the tensile vibration of the O-H bond in water molecules and
the hydrogen bonding of -OH in hydroxides, while the bending vibration of interlayer water
molecules causes the characteristic peak at 1629 cm−1.
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Figure 4. FT-IR spectra of the g-C3N4, CoAl-LDH, and the g-C3N4/CoAl-LDH nanocomposites.

The infrared spectrum of the g-C3N4/CoAl-LDH nanocomposites basically retain
the original vibration modes of g-C3N4 nanosheets and CoAl-LDH. The peaks at 1355
and 1629 cm−1 of CoAl-LDH cannot be clearly observed, likely due to overlapping of the
characteristic peaks of g-C3N4 in the range of 1200–1650 cm−1. In addition, the absorption
peaks of g-C3N4 at 808 cm−1 and in the region of 3000–3500 cm−1 show different degrees
of red shifting of the -C3N4/CoAl-LDH nanocomposites, resulting in a higher peak wave-
length than that of pure g-C3N4. Additionally, the change in the peak positions of the
g-C3N4/CoAl-LDH nanocomposites indicate that LDH interacts with the N-H group in
the g-C3N4 and C-N bonds in the aromatic rings. It should be highlighted that the interface
interactions between monomers are beneficial to the transfer of e−, thus, improving their
photocatalytic efficiency. Furthermore, with an increase in g-C3N4 content from 0.75 to
1.5 g/L, an increased peak intensity at 808 cm−1 and in the range of 1200–1650 cm−1,
bands can be observed, indicating the existence of aromatic rings from g-C3N4 in the
g-C3N4/CoAl-LDH nanocomposites.

2.2. Optical and Photoelectric Properties of g-C3N4, CoAl-LDH, and the
g-C3N4/CoAl-LDH Nanocomposites

A UV-VIS spectrophotometer was used to characterize the light-response range
and light absorption properties of the g-C3N4, CoAl-LDH, and the g-C3N4/CoAl-LDH
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nanocomposites. As displayed in Figure 5a, the absorption edge of g-C3N4 is around
443 nm, reflecting its photocatalytic ability under the UV-visible light irradiation. In
addition, three broad absorption peaks located at 460, 490, and 526 nm, the absorption
band of CoAl-LDH in the ultraviolet region of 200–300 nm is mainly due to the interlayer
ligand-yo-metal charge transfer (O2-→Mn+) [37]. Obviously, owing to the synergistic effect
of CoAl-LDH and g-C3N4, the g-C3N4/CoAl-LDH nanocomposites exhibit typical light
absorption bands of CoAl-LDH in the UV-visible light absorption range. The improvement
of UV-visible light absorption in the case of g-C3N4 is conducive to light utilization rate
and generation of photo-induced carriers under illumination, and thus, can strengthen
their photocatalytic activity. Moreover, a slight red shift of the absorption edge ranging
from 443 to 454 nm is observed for the g-C3N4/CoAl-LDH nanocomposites. Among
the three nanocomposites with different amounts of g-C3N4, the g-C3N4/CoAl-LDH1.5
nanocomposite shows the best light absorption performance and highest absorption peak
intensity. According to the Tauc plot [38], the band gap energies of g-C3N4, CoAl-LDH,
and the g-C3N4/CoAl-LDH1.5 nanocomposite were calculated to be 2.66, 2.09, and 2.48 eV,
respectively, and are plotted in Figure 5b. Apparently, the embedding of g-C3N4 by the
CoAl-LDH realizes an intensive UV-visible light absorption due to the change in the band
structure and the narrowing of the band gap as compared with pure g-C3N4.
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Figure 5. (a) UV-VIS absorption spectra of g-C3N4, CoAl-LDH, and the g-C3N4/CoAl-LDH nanocom-
posites; (b) Tauc plot of g-C3N4, CoAl-LDH, and the g-C3N4/CoAl-LDH1.5 nanocomposite.

It is widely acknowledged that the lower PL emission intensity implies a lower rate for
charge carrier recombination and higher photocatalytic activity [39]. As depicted in Figure 6,
pure g-C3N4 displays an intense PL peak at 450 nm indicating a rapid recombination of photo-
excited carriers, which is in accordance with the results presented in Figure 5a. In contrast to
g-C3N4, the PL emission intensities of the g-C3N4/CoAl-LDH nanocomposites are decreased
obviously and show a blue shift. This suggests that CoAl-LDH can accelerate electron–hole
separation and the transfer process owing to the formation of heterojunction with g-C3N4,
and therefore, impedes the electron–hole recombination. The smallest PL emission intensity is
found for the g-C3N4/CoAl-LDH1.5 nanocomposite, which indicates that higher recombination
of carriers can be hindered with a higher content of g-C3N4. This could ascribe to the fact that
the g-C3N4/CoAl-LDH1.5 nanocomposite has the highest crystallinity and can provide an
efficient transfer of excited carriers between the interfaces of LDH and g-C3N4.
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Figure 6. PL spectra of the g-C3N4, CoAl-LDH, and the g-C3N4/CoAl-LDH nanocomposites.

To further explore the electron–hole separation and transfer behavior of the g-C3N4/CoAl-
LDH1.5 nanocomposite, EIS and photocurrent transient were performed, and the obtained
plots are exhibited in Figure 7. Figure 7a gives the EIS Nyquist plots of g-C3N4, CoAl-LDH
and the g-C3N4/CoAl-LDH1.5 nanocomposite. Note that the radius of circular arc in Nyquist
plot reflects the resistance of carrier immigration on the surface of photocatalytic materials [40].
The small arc radius at high frequency suggests a more effective separation and a faster
interfacial transfer of excited carrier [41]. Among all the samples, the g-C3N4/CoAl-LDH1.5
nanocomposite displays the smallest arc radius, suggesting the lowest resistance to electron
transfer. This demonstrates that the heterojunction constructed between g-C3N4 and LDH
indeed has a positive effect on the efficiency of excited carrier separation and transfer.
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Figure 7. (a) EIS Nyquist plots; (b) I-T plots of g-C3N4, CoAl-LDH, and the g-C3N4/CoAl-LDH1.5

nanocomposite. Mott–Schottky plots of: (c) g-C3N4; (d) CoAl-LDH.
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The photocurrent transient response of g-C3N4, CoAl-LDH and the g-C3N4/CoAl-
LDH1.5 nanocomposite film electrodes were investigated through four light-dark cycles,
and the I-T plots are shown in Figure 7b. Due to the narrow band gap (2.09 eV), CoAl-LDH
can only produce weak photocurrent with irradiation, indicating that the photo-generated
carriers have a short lifetime, and can recombine easily in the bulk phase of the material. In
contrast to the pure LDH and g-C3N4, the g-C3N4/CoAl-LDH1.5 nanocomposite shows a
higher photocurrent intensity, which indicates that the heterojunction structure constructed
can accelerate the transfer of photo-induced electrons and prolong their lifetimes, and
consequently inhibit the recombination of photo-induced carriers. It can be extracted that
the light current intensity of the g-C3N4/CoAl-LDH1.5 nanocomposite is the highest, which
is about 2.4 and 3.2 times that of CoAl-LDH and g-C3N4, respectively.

The M-S measurement was investigated to examine the electronic potentials of g-C3N4
and CoAl-LDH. The obtained M-S plots are displayed in Figure 7c,d. By extending the
linear plots to the X axis, corresponding to Y = 0, the positive slopes in M-S plots indicates
n-type semiconductor characteristics for both g-C3N4 and CoAl-LDH [42]. The flat band
potentials (vs. SCE) of g-C3N4 and CoAl-LDH are −1.39 and −0.7 eV, respectively, which
is approximately equal to their conduction band (CB) potential. Furthermore, according
to the formula Eg = EVB−ECB, the valence band (VB) values (vs. SCE) of g-C3N4 and
CoAl-LDH are calculated as 1.27 and 1.39 eV, respectively. Therefore, it can be expected
that the staggered energy band structure of g-C3N4 and CoAl-LDH can form a type II
heterojunction electric field at the interface between g-C3N4 and CoAl-LDH, which greatly
improves the separation and transfer of photo-induced electron–hole pairs.

2.3. Photocatalytic Depollution Activity of g-C3N4, CoAl-LDH and the
g-C3N4/CoAl-LDH Nanocomposites

The photocatalytic activities of g-C3N4, CoAl-LDH and the g-C3N4/CoAl-LDH nanocom-
posites were investigated in view of NOx degradation. As shown in Figure 8, after irradiation
with UV-visible light for 30 min, the degradation efficiencies of NOx by g-C3N4 and LDH were
72.87% and 27.92%, respectively. For the g-C3N4/CoAl-LDH nanocomposites, the photocatalytic
depollution efficiency of NOx gradually improved with an increase in g-C3N4 content, which
was in accordance with the results from other measurements, such as PL, EIS, UV-VIS, and
I-T. In particular, the g-C3N4/CoAl-LDH1.5 nanocomposite had the highest NOx degradation
efficiency (89.62%), which was around 1.23 and 3.21 times that of g-C3N4 and LDH, respectively.
The higher NOx degradation efficiency achieved by the g-C3N4/CoAl-LDH nanocomposites
can be ascribed to the formation of a type II heterojunction between g-C3N4 and CoAl-LDH.
In addition, the NOx degradation performance of the g-C3N4/CoAl-LDH1.5 nanocomposite
was compared with other g-C3N4-based photocatalytic materials (Table 2). As can be seen from
Table 2, the NOx degradation rate of the g-C3N4/CoAl-LDH1.5 nanocomposite is outstanding
as compared with other g-C3N4-based materials.

Table 2. Comparison of NOx degradation performances of selected g-C3N4-based photocatalysts.

Photocatalyst NO (ppm) Amount (mg) Degradation Rate η(%) Incident Light (nm) References

g-C3N4/CoAl-LDH1.5 0.5 25 89.62 320~780 nm This work
g-C3N4/SnO2 0.5 200 44.17 >325 nm [43]
Bi2O3/g-C3N4 0.5 200 39.1 \ [44]

W18O49/g-C3N4−x 0.6 50 83.55 Simulated sunlight [45]
GNC−0.3

(Na–Ca co-doped g-C3N4) 1.339 300 59.1 >400 nm [46]

p-type g-C3N4 0.6 50 80 >420 nm [47]
g-C3N4 QDs/InVO4 0.6 50 65 Visible light [48]

Sb2WO6/g-C3N4 0.4 50 68 Visible light [49]
g-C3N4/PI/rGO 0.6 20 60 >420 nm [50]
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Figure 8. Photocatalytic degradation of NOx by g-C3N4, CoAl-LDH, and the g-C3N4/CoAl-
LDH nanocomposites.

2.4. Photocatalytic Activity of the g-C3N4/CoAl-LDH Nanocomposites in Cement Mortars
2.4.1. Effect of High Alkalinity of the Cementitious Materials on Photocatalytic Ability

The compatibility between cement and a photocatalytic material should be considered
when a photocatalyst is mixed with cement. In the process of cement hydration, plenty of
calcium hydroxide is commonly produced resulting in an alkaline environment. Such a high
alkalinity could be harmful to the photocatalytic capacity of some photocatalysts, for instant,
affecting energy band structure, increasing electron–hole pair recombination efficiency,
and decreasing service life [51]. Therefore, it is necessary to protect a photocatalyst from
the cement matrix. In order to evaluate the alkaline impact on photocatalytic capacity,
the powders of g-C3N4 and the g-C3N4/CoAl-LDH1.5 nanocomposite were immersed in
simulated concrete pore solution for 10 min, and thereafter, washed and dried at 60 ◦C.
Figure 9 shows the PL spectra of g-C3N4 and the g-C3N4/CoAl-LDH1.5 nanocomposite
before and after immersing treatment by simulated concrete pore solution (0.6 mol/L KOH,
0.2 mol/L NaOH, 0.001 mol/L Ca(OH)2, and 0.8 mol/L NaHCO3). According to Figure 9,
the PL intensity becomes stronger after the treatment for both g-C3N4 and the g-C3N4/CoAl-
LDH1.5 nanocomposite, suggesting that the two treated photocatalysts have a higher
recombination probability of photo-induced carriers. This pH-dependent PL behavior can
be attributed to the existence of free zigzag sites, as previously reported graphene quantum
dots (GOD) for a similar structure between graphene and g-C3N4 [52]. However, it is worth
mentioning that the alkaline effect on the g-C3N4/CoAl-LDH1.5 nanocomposite is smaller
than that on g-C3N4, since only a slight increase in PL intensity could be observed with the
g-C3N4/CoAl-LDH1.5 nanocomposite after the alkaline treatment. As mentioned above,
the molecular structure of LDH shares the same molecular characteristics with some cement
hydration products and, thus, exhibits good compatibility with cement-based materials
as well as chemical stability in an alkaline environment [23–25]. From this point of view,
the incorporation of g-C3N4 into CoAl-LDH has indeed effectively mitigated the possible
adverse effect of high alkalinity of a cement-based system on the photocatalytic capacity.
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Figure 9. PL spectra of g-C3N4 and the g-C3N4/CoAl-LDH1.5 nanocomposite before and after
immersing treatment by simulated concrete pore solution.

2.4.2. Photocatalytic Performance Investigation in Cement Mortars

NOx degradation of the M, MC, ML, MM, and CNMM mortar samples was examined
to evaluate their photocatalytic performance and the results are shown in Figure 10. Ob-
viously, the degradation efficiency of the MM sample is greater than that of the CNMM
sample under the UV-visible light irradiation. This implies that CoAl-LDH can protect
g-C3N4 from the alkaline effect of cementitious materials. Hence, it can be concluded that
the presence of CoAl-LDH can prevent the destruction of g-C3N4 in alkaline cement mortar,
and also significantly improve the photocatalytic capacity by its synergistic effect.
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Figure 10. Photocatalytic NOx degradation efficiency of different cement mortars.
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To further analyze the influence of different manufacturing methods on photocatalytic
degradation, a specified test was carried out on various types of mortars. For the reference
mortar, a certain degradation rate (5%) is observed in the first 30 min, which is mainly due to
its absorption. In contrast, the mortar coated with the g-C3N4/CoAl-LDH1.5 nanocomposite
(MC sample) shows the highest photocatalytic performance with a degradation efficiency
up to 71.29% after 30 min of UV-visible light irradiation. After that, the degradation
efficiency reaches a steady-state platform of 74.21% at 45 min. As compared with the first
20 min, the slowing down of the photocatalytic degradation rate of the MC sample can
be ascribed to the shielding effect of reaction products on the active site of photocatalyst.
Among all the mortars, the ML and MM samples exhibit a middle-level photocatalytic
performance with degradation efficiencies up to 61.4% and 58.97%, respectively, after
45 min irradiation, but no steady-state plateau is observed. In summary, all the mortar
samples fabricated by internal mixing, coating, and spraying can effectively degrade the
NOx pollutant in a relatively short period under UV-visible light.

2.4.3. Effect of Wearing on NOx Degradation Efficiency

The NOx degradation efficiencies for both the original and wearing samples after
the rotary abrasion process are shown in Figure 11. It can be seen that the degradation
efficiencies of the ML and MC mortar samples are decreased to a certain extent after the
wearing operation. In particular, the photocatalytic degradation efficiency of the MC
sample decreases by 17.21% after wearing for 10 min. As for the ML sample, the wearing
action causes a significant reduction in the photocatalytic degradation efficiency, dropping
from 62.4% to 33.8%. For the control sample (M), wearing has little influence of wearing
on its removal rate of NOx. Nevertheless, the photocatalytic efficiencies of the MM and
CNMM samples were slightly higher than those before wearing, which can be ascribed
to the exposure of photocatalysts on the specimen surface under abrasion. In general,
the photocatalytic degradation efficiency of mortar incorporated with the g-C3N4/CoAl-
LDH1.5 nanocomposite presents abrasive resistance, although it is decreased after wearing.
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Figure 11. Photocatalytic NOx degradation efficiency of different cement mortars after wearing.

The microstructure and morphology of the coated mortars before and after the wearing
tests were investigated by SEM-EDS. As shown in Figure 12, thin layers of g-C3N4/CoAl-
LDH-based coatings can be observed, and are loading uniformly on the raw surface of the
mortars’ substrates. Obviously, the porous microstructures of both the MC (Figure 12a) and



Catalysts 2022, 12, 443 13 of 20

ML (Figure 12b) mortar substrates provide good anchorages for the photocatalytic coatings.
In addition, a lot of particulate matter was found distributed on the surface of the ML
sample (Figure 12d) without adequate adhesion. For the MC sample (Figure 12c), due to
the adhesion of cement binder, a smooth surface with a photocatalytic coating is observed
without obvious particles and cracks. Figure 12e,f show the surface morphologies of the
MC and ML samples, respectively, after the rotary abrasion process. For the MC sample, the
wearing action results in a partial exfoliation of the g-C3N4/CoAl-LDH1.5-based coating
and a relatively rough surface. In case of the ML sample, a rougher surface morphology is
observed after the wearing, due to the loss of paste layer from the mortar substrate.
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Figure 12. Morphologies of the cross sections and surfaces of the coated mortars before and after
wearing: (a,c,e) for MC; (b,d,f) for ML.

Figure 13 shows the EDS spectra of the coated mortars before and after wearing.
Except for the Au coming from spraying gold in the process of test sample preparation,
the Co signal is regarded as coming from the g-C3N4/CoAl-LDH1.5 nanocomposite which
is attached on the surface of the coated mortars. The concentration of Co on the mortar
surface after the wearing process is obviously declined. Particularly, the MC sample shows
a reduction in Co content from 11.77% to 6.77% because of the wearing. As compared
with the MC sample, the ML sample exhibits a lower decrease in Co content after wearing.
The results of the SEM-EDS reveal that both of the MC and ML samples display a certain
resistance to abrasive action, a finding similar to the results of NOx degradation tests.
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Figure 13. EDS spectra for the coated mortars before and after wearing: (a,b) MC; (c,d) ML.

3. Experimental
3.1. Materials

Ammonium fluoride (NH4F), urea (CO(NH2)2), aluminum nitrate nonahydrate
(Al(NO3)3·9H2O), citric acid monohydrate (C6H10O8), and cobalt nitrate hexahydrate
(Co(NO3)2·6H2O) were purchased from National Medicine Group Chemical Reagent Co.,
Ltd., Shanghai, China. The Portland cement (42.5R-grade) was produced from the Fujian
Cement Co., Ltd, Fuzhou, China was used.

3.2. Preparation of g-C3N4/CoAl-LDH

Synthesis of g-C3N4: As described in a previous study [35], g-C3N4 was prepared by
condensation polymerization of urea under environmental pressure and self-supporting
atmosphere produced by pyrolysis. Briefly, 20 g urea and 25 mg citric acid monohydrate
were mixed first, before being put into a covered crucible and calcined at 550 ◦C for
240 min. After cooling naturally, the powders of g-C3N4 were obtained by milling the
light-yellow agglomerates.

Synthesis of g-C3N4/CoAl-LDH: The g-C3N4/CoAl-LDH was synthesized through a
coprecipitation process [53]. Firstly, a 100 mL mixed solution containing Al(NO3)3·9H2O
(0.0075 mol), urea (0.27 mol), Co(NO3)2·6H2O (0.0225 mol), and NH4F (1 g/L) was prepared
in a beaker before adding a given content of g-C3N4. Then, the mixture was stirred rapidly
for 60 min at 25 ◦C, and continuously, for another 24 h at 110 ◦C. Finally, the precipitate was
washed, and dried in an oven for a day at 60 ◦C. The resulting products prepared by adding
0.75, 1.25, and 1.5 g/L g-C3N4 were named as g-C3N4/CoAl-LDH0.75, g-C3N4/CoAl-
LDH1.25, and g-C3N4/CoAl-LDH1.5, respectively. For comparison, pure CoAl-LDH was
also prepared following the same procedure except for the omission of g-C3N4. The
synthesis ratio of the above photocatalyst materials is listed in Table 3.
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Table 3. Proportion of the CoAl-LDH and the g-C3N4/CoAl-LDH nanocomposites.

Sample g-C3N4 (g/L) Al(NO3)3·9H2O (mol) Co(NO3)2·6H2O (mol) Urea (mol) NH4F (g/L)

CoAl-LDH 0 0.0075 0.0225 0.27 1
g-C3N4/CoAl-LDH0.75 0.75 0.0075 0.0225 0.27 1
g-C3N4/CoAl-LDH1.25 1.25 0.0075 0.0225 0.27 1
g-C3N4/CoAl-LDH1.5 1.5 0.0075 0.0225 0.27 1

3.3. Preparation of Photocatalytic Cement Mortars

Five groups of mortar specimens were fabricated: reference cement mortar (M), cement
mortar with a thin layer of cement paste containing g-C3N4/CoAl-LDH (ML), cement
mortar with g-C3N4/CoAl-LDH coating (MC), cement mortar admixed with g-C3N4/CoAl-
LDH (MM), and cement mortar admixed g-C3N4 (CNMM). The cement mortar samples
were prepared with the water/cement/standard sand at the mass ratio of 0.5:1:3, according
to the standard procedure (UNI 11259:2008 standard [54]). The fresh mortars were cast into
the cubic mold (40 × 40 × 40 mm3), demolded after one day, and then, cut into two halves,
donated as the M sample. For the preparation of the MM sample, g-C3N4/CoAl-LDH
powder (0.25% by the weight of cement) was ultrasonically dispersed in water for 10 min
before adding into the dry mixture of cement mortar. Then, the mixture was stirred evenly
and cast into molds. For the preparation of the CNMM sample, the same procedure was
applied but g-C3N4/CoAl-LDH was replaced with g-C3N4. To obtain the ML sample,
first, fresh cement paste mixed with 0.25 wt% g-C3N4/CoAl-LDH with a water-to-cement
ration of 0.5 was prepared, and then spread on the cut face of the prepared mortar with a
thickness of around 5 mm. To obtain the MC sample, the g-C3N4/CoAl-LDH suspension
(10 g/L) with cement as binder (10% by the weight of water) was deposited on the fresh
mortar by spraying. The parameters for the spraying operation were as following: spraying
pressure is 7.0 MPa; diameter of nozzle is 1.3 mm; distance between the spray device and
specimen is 25 cm; spraying angle is 45◦, and spray time lasts for 1 min. The samples were
all cured in a standard curing room (25 ◦C and 98% RH) for 28 days. The mix designs of the
photocatalytic cement mortars are listed in Table 4. The images of photocatalytic cement
mortars MC, ML, MM, and CNMM are presented in Figure 14.

Table 4. Mix designs of the photocatalytic cement mortars.

Sample Cement (g) Sand (g) g-C3N4/CoAl-LDH (g) g-C3N4 (g) w/c

MC 152 450 0.2 0.5
ML 170 450 0.05 0.5
MM 150 450 0.37 0.5

CNMM 150 450 0.37 0.5
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3.4. Characterization and Measurement

The X-ray diffraction (XRD) analysis was performed on a DY5261/Xpert3 with Cu
Kα irradiation (λ = 0.154 nm, 45 kV, and 40 mA) at a scanning rate of 10◦/min. The mor-
phologies and elemental analysis of the samples were performed on a scanning electron
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microscopy (TECNAI G2 F20) combined with an energy-dispersive X-ray spectroscopy
(SEM-EDS). The specific area and pore size distribution were determined using a surface
area and porosity analyzer (ASAP 2460, Micromeritics Instruments Inc., Norcross, Georgia,
USA). Before the specified test, samples were degassed and dried for 12 hrs. The Fourier
transform infrared spectra (FTIR) of the samples were recorded using a FTIR spectrom-
eter (AVATAR360) in the scanning range of 4000–400 cm−1. The optical absorbance was
measured by UV-VIS spectrophotometry with a Cary 7000 UV–VIS spectrometer from 200
to 800 nm using barium sulfate as background. Steady-state photoluminescence spectra
were tracked using a Fluorescence Spectrometer (F-7000, Hitachi, Japan). The excitation
wavelength of g-C3N4 and g-C3N4/CoAl-LDH is 285 nm, and that of CoAl-LDH is 255 nm.

The photoelectric tests were performed using a CHI760 electrochemical workstation.
The electrochemical cell was set up with a platinum electrode, a saturated calomel electrode
(SCE), and a working electrode using 0.1 mol/L sodium sulfate solution as the electrolyte.
In this work, the photocatalytic film electrode, as the working electrode, was obtained
by depositing the photocatalyst suspension on fluorine-doped tin oxide conductive glass.
The electrochemical impedance spectroscopy (EIS) was measured under open circuit po-
tential condition. The Mott–Schottky (M-S) plots were measured at 800 Hz and 1200 Hz,
respectively. The photocurrent test was conducted with an initial voltage of 0.4 V in the
two-electrode system.

3.5. Photocatalytic Measurement

The photocatalytic oxidation of nitric oxide (NOx) was carried out using a customized
reaction setup as depicted in Figure 15. It consists of a gas supply providing 5 ppmv (parts
per million by volume) NO stabilized in nitrogen (N2) and synthetic air, a xenon lamp,
a reactor cell housing the test samples, and a NOx analyzer. The xenon lamp of 300 W
worked as the light source (λ = 320~780 nm), and the irradiance could be adjusted via
the distance between the lamp and sample. The data acquisition of NOx concentration
was performed using a NOx analyzer (Gastiger 6000) in a time interval of 5 s. All the
photocatalytic experiments were conducted under stable conditions as listed in Table 5.
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Table 5. Photocatalytic experimental conditions.

Parameter Value

Temperature (◦C) 25
Relative humidity (%) 50

Initial NO concentration (ppmv) 0.5
Flow rate of gas mixtures (L/min) 3

Light intensity on the sample surface (mW/cm2) 85

To evaluate the photocatalytic depollution activity, 25 mg photocatalyst powders were
suspended in 5 mL deionized water, poured into a glass dish (Φ = 5 cm), and then dried in
an oven at 60 ◦C. Before irradiation, the prepared photocatalyst sample was put into the
reactor cell, and let the gas mixture flow through for a certain time to achieve an initial
stable condition. Once a stable NO concentration was reached, the valve was turned off,
allowing the absorption of NO on the sample in a dark state until saturation. Then, the
sample was exposed to the UV-visible light through quartz glass for 45 min of degradation
reaction. The concentration of the NOx was continually monitored until switching off
the xenon lamp for a few minutes. To evaluate the performance of photocatalytic mortar,
the same procedure was applied by using four series of mortar samples as fabricated
in Section 2.3.

The photocatalytic activity of each testing sample is characterized by the NOx conver-
sion efficiency and calculated as follows [55]:

η =
[CNOx ]in − [CNOx ]out

[CNOx ]in
× 100% (1)

where [CNOx ]in is the initial concentration of NOx (ppm) before irradiation and [CNOx ]out is
the outlet concentration of NOx (ppm) after switching off the light.

3.6. Laboratory-Simulated Wearing and Abrasion

The abrasion and wear resistance of mortars coated with photocatalyst (ML and MC)
were evaluated through a rotary abrasion process. An electric grinding rod was utilized to
simulate a scaled wheel passing back and forth on the specimen in wearing condition. The
grinding rod was applied for 10 min at a speed of 150 rpm/min under constant loading
of 75 N. The photocatalytic behaviors along with the surface morphologies of the mortar
samples were examined by SEM-EDS through comparative observations and quantitative
analyses of Co element in the samples before and after the wearing.

4. Conclusions

Novel organic-inorganic g-C3N4/CoAl-LDH nanocomposites were synthesized in this
work. The g-C3N4/CoAl-LDH nanocomposites were characterized comprehensively by
means of XRD, SEM, BET, FTIR, PL, and photoelectric tests. A series of g-C3N4/CoAl-LDH
photocatalytic cement mortars were prepared. The photocatalytic activities of g-C3N4,
CoAl-LDH, and the g-C3N4/CoAl-LDH nanocomposites and the corresponding mortars
were evaluated based on NOx degradation under UV-visible light. The main conclusions
are summarized as follows:

(1) A group of g-C3N4/CoAl-LDH nanocomposites with unique flower-like microsphere
structures were synthesized through coprecipitation method. The microstructures of
the g-C3N4/CoAl-LDH nanocomposites were affected by g-C3N4 content.

(2) Formation of the heterojunction in the g-C3N4/CoAl-LDH nanocomposites was demon-
strated. The g-C3N4/CoAl-LDH nanocomposites exhibited overall better photocatalytic
performances than pure g-C3N4 and CoAl-LDH. A higher content of g-C3N4 leads to
an increase in crystallinity, specific surface area, light response range, and electron–hole
separation rate. The photocatalytic capacity of the g-C3N4/CoAl-LDH nanocomposites
is enhanced accordingly.
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(3) A higher photocatalytic capacity was found in the g-C3N4/CoAl-LDH cement mortar
than in the g-C3N4 cement mortar in view of NOx degradation. A sufficient com-
bination of g-C3N4 with LDH can effectively accelerate the separation and transfer
of photo-induced carriers, and also prevent the reduction in photocatalytic ability
caused by the high alkalinity of cementitious materials.

(4) The g-C3N4/CoAl-LDH photocatalytic cement mortars, including those fabricated
by internal mixing, coating, and spraying, can effectively degrade NOx pollutant in a
relatively short period under UV-visible light, and they all present good wear.
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