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Abstract: Isospecific polymerization of polar styrenes is a challenge of polymer science. Particu-
larly challenging are monomers bearing electron-withdrawing substituents or bulky substituents.
Here, we report the coordination polymerization of halide- and amino-functionalized styrenes
including para-fluorostyrene (pFS), para-chlorostyrene (pClS), para-bromostyrene (pBrS), and para-
(N,N-diethylamino)styrene (DMAS) using 2,2′-sulfur-bridged bis(phenolate) titanium precursor
(1). The combination of 1 and [Ph3C][B(C6F5)4] and AliBu3 provides crystalline poly(pFS)s with
perfect isotacticity (mmmm > 95%) and high molecular weights (≤16.0 × 104 g mol−1). Upon acti-
vation with a large excess of DMAO, 1 reaches polymerization activity of 5.58 × 105 g molTi

−1 h−1

producing isotactic poly(pFS)s featuring higher molecular weights (≤39.6 × 104 g mol−1). The
distinguished performance of the 1/DMAO system has been extended to the polymerization of pClS
and pBrS, both usually involve halogen abstraction during the polymerization, to produce isotactic
and high molecular weight (Mn = 32.2 × 104 vs. 13.7 × 104 g mol−1) polymers in good activities
(2.18 × 105 vs. 1.31 × 105 g molTi

−1 h−1). Surprisingly, 1/DMAO is nearly inactive for DMAS poly-
merization, on contrary, the system 1/[Ph3C][B(C6F5)4]/AliBu3 displays isoselectivity (mmmm > 95%)
albeit in a moderate activity.

Keywords: isospecific polymerization; halostyrene; amino-substituted styrene; titanium complex

1. Introduction

The stereoselective polymerization of styrenes has made significant progress in recent
years due to the development of novel transition metal catalysts [1–5] since Ishihara et al.
first discovered that half-sandwich titanium complexes could catalyse the syndiospecific
polymerization of styrene in 1985 [6,7]. Much effort has been expended pursuing the synthe-
sis of stereospecific catalysts for the (co)polymerization of styrene derivatives bearing polar
groups [8–12], such as halogen [13–17], alkoxyl [18–23], aminoalkyl [24–26], etc., which will
endow the resultant polymers with distinguished functionalities such as improved surface
properties, self-healing, and shape-memory abilities [27–31]. Group 4 metal-based catalysts
have achieved some limited success in the polymerization of polar styrenes because they
are easily poisoned by the polar groups [32–34]. The half-titanocene Cp*Ti(TEA)/MMAO is
reported to show high catalytic activity and perfect syndioselectivity for the polymerization
of amino-functionalized styrenes [35]. Ti(CH2Ph)4/MAO catalyses para-methoxystyrene
polymerization with low activity, to give an atactic polymer [36]. With respect to the poly-
merization of halostyrene, titanium catalysts usually produce atactic polymers or a mixture
of atactic and syndiotactic polymers, albeit with low catalytic activity [37–40]. Recently,
the group-3 half-sandwich scandium complexes, especially those rare-earth metal-based
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complexes attached to the constrained geometry pyridyl-methylene-fluorenyl ligands,
have shown excellent catalytic activity towards a broad range of polar styrenes to give
syndiotactic polymers [5,8].

In contrast, the isotactic polymerization of polar styrene monomers develops relatively
slowly [17,41], mainly due to the lack of highly efficient catalysts, which struggle to provide
high activity while maintaining the sterically crowded coordination sphere required by
the isotactic selectivity, although isotactic-enriched polystyrene has been synthesized long
before with Ziegler–Natta catalysts or anionic catalysts [42,43]. However, the potential ap-
plications of functionalized isotactic polystyrenes as optically active, helical, etc., functional
materials have led researchers to expend a lot of effort in this research field. In 2015, the
first homogeneous single-site β-diketiminato rare-earth metal catalysts were developed by
our group, showing high isoselectivity for ortho-methoxystyrene without masking reagents
via the unique “self-assisted” mechanism; however, they are nearly inactive towards other
polar styrene derivatives [44,45]. Recently, we developed a series of racemic isopropylidene-
bridged bis(benz[e]indenyl) rare-earth metal alkyl complexes, which served as effective
catalysts for the isoselective polymerizations of styrene, para/meta-methoxystyrenes, para-
methylthiostyrene, and para-vinylphenyldimethylsilanol, etc. [46]. Unfortunately, they
were virtually inert to the halide- and amino-functionalized styrenes. Probably because the
coordination sphere of these catalysts is more open to allow more monomer coordination,
in particular in the inert M-σ-X (X = functional group) mode. The bulkier ansa-bridged
bis(indenyl) allyl yttrium and neodymium complexes developed by Carpentier’s group
are also inactive [47,48], where the vacant coordination site is too crowded to facilitate
the coordination of bulky amino-functionalized styrenes. In addition, the low Lewis acid-
ity of neutral catalysts inhibits the coordination of the electron-deficient double bond of
halostyrene to the metal ion. Thus, we turned to the 2,2′-sulfur-bridged bis(phenolato)
titanium dichloro complex with a higher Lewis acidity (1) (Figure 1) [49–52], an isospecific
catalyst for styrene polymerization reported by Okuda and co-workers, and examined
its catalytic performance for the polymerization of polar styrenes, and in particular, of
halostyrenes, since the resultant halogen styrene polymers feature improved corrosion
resistance, heat resistance, flame retardancy, etc. [53–57]. Moreover, the halogen groups
can be easily converted into other functionalities to impart different properties to the poly-
mers [58]. In addition, this catalyst performs well in catalysing the (co)polymerization
of conjugated dienes [59,60], which provides a possible route for the direct synthesis of
halide-functionalized butyl rubber with faster vulcanization, high energy absorption, and
low elastic modulus [61,62], and halide-functionalized butadiene-styrene rubber possessing
better compatibility with polar fillers which could be used to fabricate tires with low-rolling
resistance and good wet-skid resistance [63–66]. Herein, we report the polymerization
behaviour of para-fluorostyrene (pFS), para-chlorostyrene (pClS), para-bromostyrene (pBrS),
and para-(N,N-diethylamino)styrene (DMAS) by using complex 1 activated by organobo-
rate, alkyl aluminium, MAO and dried MAO (DMAO).
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2. Results and Discussion

At first, a combination of 1 with [Ph3C][B(C6F5)4] and AliBu3 was chosen as the catalyst
for polymerization of para-fluorostyrene (pFS) because organoborate-based activators are
reported to be more efficient reagents than MAO. The polymerization was performed at
25 ◦C in a toluene solution to reach 54% conversion in 30 min. On increasing the reaction
temperature from 25 to 80 ◦C, the highest catalytic activity of 1.12 × 105 g molTi

−1 h−1

was observed at 40 ◦C (Table 1, entries 1–4), probably because the Ti(IV) active species
is readily reduced to the inert Ti(III) by aluminium alkyls at high reaction temperatures.
Subsequently, a kinetics investigation was carried out at 40 ◦C under a pFS-to-1 ratio of
1000:1. Increasing the reaction time from 15 to 120 min resulted in an obvious increase
in monomer conversion from 30% to 79% (Table 1, entries 5–7). The molecular weight
distributions of the resultant polymers consequently broadened from 1.53 to 1.89, but the
molecular weights (Mn = 15.1–16.0 × 104 g mol−1) remained nearly constant (Figure 2),
indicating the chain transfer reaction accompanying the polymerization process.

Table 1. Isoselective polymerization of pFS with complex 1, AliBu3 and [Ph3C][B(C6F5)4].
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[pFS] = 3.125 mol/L in toluene solution; 2 Given in 105 g molTi

−1 h−1; 3 Determined by GPC in
1,2,4-trichlorobenzene at 150 ◦C against polystyrene standard; 4 Determined by 1H and 13C NMR; 5 Determined
by DSC.
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The catalytic system 1/MAO has been reported to exhibit high catalytic activity for
isospecific styrene polymerization [49]. Therefore, complex 1 activated by 2000 equiv-
alents of MAO was utilized to catalyse pFS polymerization at 40 ◦C; however, only
25% of the monomer was consumed in 2 h (Table 2, entry 1). In contrast, the combi-
nation of 1 and 2000 equivalents of DMAO showed a much higher catalytic activity
(5.51 × 105 g molTi

−1 h−1 vs. 1.51 × 105 g molTi
−1 h−1) with 90% monomer conversion un-

der identical conditions (Table 2, entry 2). This was attributed mainly to the absence of free
AlMe3, which is able to interact with the active species leading to an inactive dimethyl-
bridged species [67–69]. Notably, a large excess of DMAO against complex 1 is necessary
in order to obtain a highly active species for pFS polymerization. Whenever all complex 1
molecules were converted into the cationic active species, further increasing DMAO loading
amount did not improve the catalytic activity (Table 2, entries 2, 6, and 7). Increasing reac-
tion temperature accelerated the polymerization process to a certain degree, but too-high a
temperature led to declined polymerization activity from 5.51 × 105 g molTi

−1 h−1 at 40 ◦C
to 4.54 × 105 g molTi

−1 h−1 at 60 ◦C, along with a dramatic decrease in molecular weight
from 37.4 × 105 g molTi

−1 to 13.4 × 105 g molTi
−1 h−1 (Table 2, entries 2, 8 and 9).

Table 2. Isoselective polymerization of pFS with complex 1 and DMAO.
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1 General conditions: complex 1, 1 µmol; polymerization time, 120 min; [pFS] = 3.125 mol/L in toluene solution;
dried MAO is used as cocatalyst; 2 Given in 105 g molTi

−1 h−1; 3 Determined by GPC in 1,2,4-trichlorobenzene at
150 ◦C against polystyrene standard; 4 Determined by 1H and 13C NMR; 5 Determined by DSC; 6 MAO is used
as cocatalyst.

All of the resulting poly(pFS)s are nearly insoluble in toluene, tetrahedrofuran (THF),
chloroform, etc., at room temperature, but readily soluble in chlorobenzene, acetylene tetra-
chloride, etc., at high temperature. NMR spectroscopy analysis unambiguously indicated
that the poly(pFS)s produced by both the catalytic systems 1/AliBu3/[Ph3C][B(C6F5)4] and
1/DMAO have an isotactic microstructure, evidenced by the quintet centred at δ 2.14 ppm
and the multiplet centred at δ 1.52 ppm assigned to the methine and asymmetric methy-
lene protons, respectively (Figure 3a). The perfect isotacticity is further confirmed by the
sharp singlets at δ 43.78 ppm for methylene carbon and δ 41.03 ppm for methine carbon.
All the peaks of the fluorine-substituted phenyl carbons split into doublets as a result of
coupling with 19F nuclei (Figure 3b). The ipso-carbon C3 shows a doublet at δ 141.62 ppm
with a coupling constant of 4JC–F = 3 Hz. The coupling constants of ortho-carbon C4
(δ 128.94 ppm, 3JC–F = 8 Hz), meta-carbon C5 (δ 115.12 ppm, 2JC–F = 21 Hz) and para-carbon
C6 (δ 161.55 ppm, 1JC–F = 244 Hz) are significantly enlarged due to gradually closing to the
fluorine atom. The obtained isotactic polymer shows a high glass-transition temperature of
around 104 ◦C and a melting temperature in the range of 242.9–247.8 ◦C (Figure S20–S28),
which are much lower than those observed in syndiotactic poly(pFS) [14].



Catalysts 2022, 12, 439 5 of 9
Catalysts 2022, 12, x FOR PEER REVIEW 5 of 9 
 

 

 
Figure 3. 1H NMR spectrum (a) and 13C NMR spectrum (b) of isotactic poly(pFS) (C6Cl2D4, 110 °C) 
(Table 1, entry 2). 

Stimulated by the above results, the polymerizations of other chloro-styrene 
derivatives were studied using the system 1/DMAO. In a previous report, chloro- and 
bromo-substituted styrenes needed to be polymerized at low temperatures (≤0 °C) 
because the scandium cationic active species readily cleaved the C-X (X = Cl or Br) bond 
of halostyrene to generate the inert metal-halide species at high temperatures [15]. 
Surprisingly to us, para-chlorostyrene (pClS) was also converted into a perfect isotactic 
polymer at 40 °C with 63% conversion in 2 h (Table 3, entry 1). This may be due to the 
Lewis acidity of titanium cationic active species being lower than that of scandium, which 
would not cause C-X bond cleavage at higher temperatures. Even para-bromostyrene 
(pBrS) polymerization under similar conditions reached 57% monomer conversion in a 
prolonged reaction time (4 h) (Table 3, entry 2). Their polymerization activities relate 
mainly to the electronics of the monomers following the trend pFS > pClS > pBrS, which is 
consistent with the natural bond orbital (NBO) charge of β-CH2 of these monomers; pBrS 
has the lowest electron density (−0.339) as compared to pClS (−0.346) and pFS (−0.353) 
(Figure S38). On the other hand, Cl and Br atoms with larger atomic radii may also 
adversely affect the polymerization. Unexpectedly, 1/DMAO was virtually inactive for the 
polymerization of para-(N,N-diethylamino)styrene (DMAS). Switching to the catalytic 
system of 1/AliBu3/[Ph3C][B(C6F5)4], surprisingly, effective polymerization was achieved 
by converting 82% DMAS in 30 min in an isospecific manner, although the bulky 
dimethylamino group significantly decreased the activity (Table 3, entry 4). Thermal 
analyses revealed all the resultant isotactic poly(pClS), poly(pBrS), and poly(DMAS) 
possess higher glass transition temperatures of 124.7, 135.1, and 130.7 °C, respectively, but 
the melting points were not observed in the DSC curves despite their perfect isotacticity 
(mmmm > 95%) (Figure S39–S43). 

Table 3. Isoselective polymerization of styrene derivatives with complex 1. 

Entry 1 [M] 
[pFS]/[Ti] 
[mol/mol] 

Time 
[min] 

Temp. 
[°C] 

Conv. 
[%] Act. 2 

Mn 3 
[×104] Mw/Mn 3 

mmmm 4 

[%] 
Tg/Tm 5 

[°C] 
1 pClS 5000/1 120 40 63 2.18 32.2 2.06 >95 124.7/- 
2 pBrS 5000/1 240 40 57 1.31 13.7 2.08 >95 135.1/- 

Figure 3. 1H NMR spectrum (a) and 13C NMR spectrum (b) of isotactic poly(pFS) (C6Cl2D4, 110 ◦C)
(Table 1, entry 2).

Stimulated by the above results, the polymerizations of other chloro-styrene deriva-
tives were studied using the system 1/DMAO. In a previous report, chloro- and bromo-
substituted styrenes needed to be polymerized at low temperatures (≤0 ◦C) because the
scandium cationic active species readily cleaved the C-X (X = Cl or Br) bond of halostyrene
to generate the inert metal-halide species at high temperatures [15]. Surprisingly to us,
para-chlorostyrene (pClS) was also converted into a perfect isotactic polymer at 40 ◦C with
63% conversion in 2 h (Table 3, entry 1). This may be due to the Lewis acidity of titanium
cationic active species being lower than that of scandium, which would not cause C-X bond
cleavage at higher temperatures. Even para-bromostyrene (pBrS) polymerization under sim-
ilar conditions reached 57% monomer conversion in a prolonged reaction time (4 h) (Table 3,
entry 2). Their polymerization activities relate mainly to the electronics of the monomers
following the trend pFS > pClS > pBrS, which is consistent with the natural bond orbital
(NBO) charge of β-CH2 of these monomers; pBrS has the lowest electron density (−0.339)
as compared to pClS (−0.346) and pFS (−0.353) (Figure S38). On the other hand, Cl and Br
atoms with larger atomic radii may also adversely affect the polymerization. Unexpectedly,
1/DMAO was virtually inactive for the polymerization of para-(N,N-diethylamino)styrene
(DMAS). Switching to the catalytic system of 1/AliBu3/[Ph3C][B(C6F5)4], surprisingly,
effective polymerization was achieved by converting 82% DMAS in 30 min in an isospe-
cific manner, although the bulky dimethylamino group significantly decreased the ac-
tivity (Table 3, entry 4). Thermal analyses revealed all the resultant isotactic poly(pClS),
poly(pBrS), and poly(DMAS) possess higher glass transition temperatures of 124.7, 135.1,
and 130.7 ◦C, respectively, but the melting points were not observed in the DSC curves
despite their perfect isotacticity (mmmm > 95%) (Figure S39–S43).
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Table 3. Isoselective polymerization of styrene derivatives with complex 1.

Entry 1 [M] [pFS]/[Ti]
[mol/mol]

Time
[min]

Temp.
[◦C] Conv. [%] Act. 2 Mn

3 [×104] Mw/Mn
3 mmmm 4 [%] Tg/Tm

5 [◦C]

1 pClS 5000/1 120 40 63 2.18 32.2 2.06 >95 124.7/-
2 pBrS 5000/1 240 40 57 1.31 13.7 2.08 >95 135.1/-
3 DMAS 5000/1 90 40 trace - - - - -

4 6 DMAS 200/1 30 40 82 0.32 7.5 1.37 >95 130.7/-

1 General conditions: complex 1, 1 µmol; [Ti]/[DMAO] = 1/2000 (mol/mol); toluene, 1.6 mL; 2 Given
in 105 g molTi

−1 h−1; 3 Determined by GPC in 1,2,4-trichlorobenzene at 150 ◦C against polystyrene stan-
dard; 4 Determined by 1H and 13C NMR; 5 Determined by DSC; 6 complex 1, 10 µmol; [Ti]/[Ph3C]
[B(C6F5)4]/[AliBu3] = 1/1/30 (mol/mol/mol).

3. Conclusions

We have demonstrated that the isospecific polymerizations of halostyrene and amino-
functionalized styrenes with high activity have been achieved using titanium bisphenolate
catalyst 1. Compared with scandium, yttrium, and lutetium rare-earth metal-based cata-
lysts, titanium catalysts have suitable Lewis acidity, which not only compensates for the low
coordination ability of the double bond on halostyrenes, but also does not cause C-X bond
cleavage at high temperatures. The polymerization activity is strongly influenced by the co-
catalysts and the reaction temperature. Upon activation with AliBu3 and [Ph3C][B(C6F5)4],
complex 1 furnishes perfect isospecific poly(pFS) with high molecular weight and narrow
molecular weight distribution for the first time; however, the polymerization activity is
relatively low. When DMAO is used as the cocatalyst, the pFS polymerization process is
greatly accelerated under a suitable reaction temperature, resulting in an isotactic product
with a higher molecular weight and a narrow molecular weight distribution. A reaction
temperature over 40 ◦C is not detrimental to isoselectivity but decreases the polymer-
ization activity and the molecular weight, probably due to the reduction of Ti (IV) to Ti
(III) by alkyl aluminium and the chain transfer reaction. In addition, the combination of
1/DMAO also shows high catalytic activity and perfect isoselectivity for the polymerization
of pClS and pBrS, but the isospecific polymerization of DMAS is only accomplished by the
system 1/[Ph3C][B(C6F5)4]/AliBu3. This work paves a new avenue to access isotactic poly-
halostyrenes, which can be easily transferred to other functionalized isotactic polystyrenes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal12040439/s1, Experimental procedures; Figure S1: 1H NMR
spectrum of poly(pFS) (400MHz, C6Cl2D4, 110 oC) (Table 1, entry 1); Figure S2: 13C NMR spectrum
of poly(pFS) (100MHz, C6Cl2D4, 110 oC) (Table 1, entry 1); Figure S3: 1H NMR spectrum of poly(pFS)
(400MHz, C6Cl2D4, 110 oC) (Table 1, entry 3); Figure S4: 13C NMR spectrum of poly(pFS) (100MHz,
C6Cl2D4, 110 oC) (Table 1, entry 3); Figure S5: 1H NMR spectrum of poly(pFS) (400MHz, C6Cl2D4,
110 oC) (Table 1, entry 4); Figure S6: 13C NMR spectrum of poly(pFS) (100MHz, C6Cl2D4, 110 oC)
(Table 1, entry 4); Figure S7: The DSC curve of poly(pFS) (Table 1, entry 1); Figure S8: The DSC curve
of poly(pFS) (Table 1, entry 2); Figure S9: The DSC curve of poly(pFS) (Table 1, entry 3); Figure S10:
The DSC curve of poly(pFS) (Table 1, entry 4); Figure S11: The DSC curve of poly(pFS) (Table 1, entry
5); Figure S12: The DSC curve of poly(pFS) (Table 1, entry 6); Figure S13: The DSC curve of poly(pFS)
(Table 1, entry 7); Figure S14: The GPC curve of poly(pFS) (Table 1, entry 1); Figure S15: The GPC curve
of poly(pFS) (Table 1, entry 2); Figure S16: The GPC curve of poly(pFS) (Table 1, entry 3); Figure S17:
The GPC curve of poly(pFS) (Table 1, entry 4); Figure S18: 1H NMR spectrum of poly(pFS) (400MHz,
C6Cl2D4, 110 oC) (Table 2, entry 2); Figure S19: 13C NMR spectrum of poly(pFS) (100MHz, C6Cl2D4,
110 oC) (Table 2, entry 2); Figure S20: The DSC curve of poly(pFS) (Table 2, entry 1); Figure S21: The
DSC curve of poly(pFS) (Table 2, entry 2); Figure S22: The DSC curve of poly(pFS) (Table 2, entry 3);
Figure S23: The DSC curve of poly(pFS) (Table 2, entry 4); Figure S24: The DSC curve of poly(pFS)
(Table 2, entry 5); Figure S25: The DSC curve of poly(pFS) (Table 2, entry 6); Figure S26: The DSC
curve of poly(pFS) (Table 2, entry 7); Figure S27: The DSC curve of poly(pFS) (Table 2, entry 8); Figure
S28: The DSC curve of poly(pFS) (Table 2, entry 9); Figure S29: The GPC curve of poly(pFS) (Table 2,
entry 1); Figure S30: The GPC curve of poly(pFS) (Table 2, entry 2); Figure S31: The GPC curve of
poly(pFS) (Table 2, entry 3); Figure S32: The GPC curve of poly(pFS) (Table 2, entry 4); Figure S33:
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The GPC curve of poly(pFS) (Table 2, entry 5); Figure S34: The GPC curve of poly(pFS) (Table 2, entry
6); Figure S35: The GPC curve of poly(pFS) (Table 2, entry 7); Figure S36: The GPC curve of poly(pFS)
(Table 2, entry 8); Figure S37: The GPC curve of poly(pFS) (Table 2, entry 9); Figure S38: NBO charge
of the monomers. (a) St; (b) pFS; (c) pClS; (d) pBrS; Figure S39: 1H NMR spectrum of poly(pClS)
(400MHz, C6Cl2D4, 110 oC) (Table 3, entry 1); Figure S40: 13C NMR spectrum of poly(pClS) (100MHz,
C6Cl2D4, 110 oC) (Table 3, entry 1); Figure S41: 1H NMR spectrum of poly(pBrS) (400MHz, C6Cl2D4,
110 oC) (Table 3, entry 2); Figure S42: 13C NMR spectrum of poly(pBrS) (100MHz, C6Cl2D4, 110 oC)
(Table 3, entry 2); Figure S43: 13C NMR spectrum of poly(DMAS) (100MHz, CDCl3, 25 oC) (Table 3,
entry 4); Figure S44: The DSC curve of poly(pClS) (Table 3, entry 1); Figure S45: The DSC curve of
poly(pBrS) (Table 3, entry 2); Figure S46: The DSC curve of poly(DMAS) (Table 3, entry 4); Figure S47:
The GPC curve of poly(pClS) (Table 3, entry 1); Figure S48: The GPC curve of poly(pBrS) (Table 3,
entry 2); Figure S49: The GPC curve of poly(DMAS) (Table 3, entry 4).
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