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Abstract: Based on the generalized gradient approximation of density functional theory, the geometric
structure and electronic properties of the intrinsic Ti3C2 and Cu-, Pt-, Co-, Si-, F-, Cl- or Br-doped
Ti3C2 are optimized, and the adsorption process of HCHO on the surface of the intrinsic Ti3C2 and
doped Ti3C2 is calculated. The effects of adsorption energy, stability, DOS and doping on bond length
were discussed. The results show that the adsorption energy of the intrinsic Ti3C2 crystal plane at
the top site is the strongest, at −7.58 eV. The optimal adsorption sites of HCHO on various doping
systems are Cu-Top, Pt-Top, Co-Top, Si-Hollow, Cl-Hollow, F-Bridge and Br-Hollow, respectively.
Among the doped elements, anion (F, Cl, Br) doping at each adsorption site generally reduces the
formaldehyde adsorption activity of the substrate; cationic doping (Cu, Pt, Co, Si) enhances the
adsorption activity of the substrate for formaldehyde at most of the adsorption sites, indicating that
the modification effect of anions on Ti3C2 is not as good as that of cations. The adsorption capacity of
Si-doped Ti3C2 for formaldehyde was significantly improved. Compared with the intrinsic Ti3C2

crystal plane at the same adsorption site, the adsorption activity of HCHO was improved, and the
highest adsorption energy was −8.09 eV.

Keywords: Ti3C2; adsorption; formaldehyde; density functional theory

1. Introduction

Energy shortage and environmental pollution are two major global challenges facing
mankind today [1]. Air pollution is closely related to human health and has attracted consid-
erable attention in the past few years. Formaldehyde has many uses in industry. Commonly
used boards, paints, carpets and wallpapers in interior decoration release formaldehyde.
The incomplete combustion of fuel and tobacco leaves also releases formaldehyde. In
medicine, formaldehyde is often used as an antiseptic and disinfectant. The main ways
humans are exposed to formaldehyde are inhalation through the respiratory tract, ingestion
through the mouth and contact through the skin. Formaldehyde poisoning can cause
congestion, inflammation of the conjunctiva, skin allergies, nasopharyngeal discomfort,
cough, acute and chronic bronchitis and other respiratory diseases. It can also cause nausea,
vomiting and gastrointestinal disorders. Therefore, removing formaldehyde is a necessary
measure to reduce air pollution and protect human health.

At present, to deal with toxic and harmful gases, the adsorption method and the
catalytic oxidation method are mainly used. Su Yuetan et al. used density functional
theory chemical calculation methods to study the adsorption performance of formalde-
hyde molecules on C2N and Al-modified C2N. The results show that the modification
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of Al atoms changes the nearby electronic structure, thereby changing the chemical and
physical behaviors of the modified Al atoms, making them act as a bridge connecting the
formaldehyde molecules and the C2N layer, which enhances the adsorption capacity [2].
Hong-ping Zhang et al. studied the influence of doped Ti or N atoms on the interaction
of these gases with graphene through density functional theory calculations. The analysis
show that doped Ti atoms can greatly improve the interaction between gas molecules and
graphene [3]. Zhijian Liu et al. found that the doping of N atoms into the graphene plane
can significantly increase the adsorption strength of formaldehyde by adjusting the charge
of the metal atoms. According to the analysis of geometric structure, electron transfer and
density of states (DOS), the adsorption of formaldehyde belongs to a stable chemisorption,
which is a combined action of electron transfer and hybridization effect [4]. Zhenzhong
Zhang et al. used density functional theory to calculate the influence of Pd modification
on the sensitivity of ZnO nanotubes to formaldehyde (HCHO) gas, and the results indi-
cated that electron donation and back-donation processes between the reactants and the
ZnO surface were the main reasons for the enhanced adsorption to formaldehyde [5]. Xi
Zhou et al. studied the adsorption of formaldehyde (HCHO) molecules on pure nanotube
and Pd-doped, Si-doped single-walled carbon nanotubes (SWCNT) by density functional
theory (DFT) method; the results show that conductivities of CNTs with HCHO molecule
adsorption according to their energy gaps between HOMO and LUMO in frontier molec-
ular orbital are, in decreasing order, Pd-doped CNT, Si-doped CNT and pure CNT [6].
Navaratnarajah Kuganathan et al. studied the effect of graphene and graphene doped with
B, Si and N surfaces to remove Pb atoms by using density functional theory calculations,
and the results showed that the bonding of Si-doped graphene surfaces was significantly
enhanced [7]. Hao Luo et al. used first-principles calculations to study the adsorption
of NO2 and NH3 gas molecules on Al, Si and P-doped single-layer MoS2. The results
showed that Al-, Si- and P-doped single-layer MoS2 increased the NO2 and NH3 structural
stability [8]. B. Zhao et al. used first-principles calculations to explore the interaction
between H2O molecules and a single-layer MoS2 surface doped with B and Si atoms, and
the results showed that the introduction of impurity, in the form of B/Si atoms, can destroy
the single-layer MoS2 (001) surface. The chemical insensitivity of this product promotes
the capture of H2O molecules [9]. Xiaoli Jiang et al. stated in the article that, due to the
synergy of different dopants, proper anion–cation double doping can greatly promote the
performance of OER electrocatalysts [10]. Wenpei Kang et al. found that, for the possible
kinetic mechanism, the ultra-fast pseudo capacitance contribution and higher adsorption
energy caused by anion doping may promote its high-rate sodium storage capacity [11].
Yinlong Zhu et al. revealed the effect of Cl-anion doping in perovskite on the improvement
of OER performance; the results demonstrate that proper Cl doping at the oxygen site
of LaFeO3 (LFO) perovskite can induce multiple favorable characteristics for catalyzing
the OER, including rich oxygen vacancies, increased electrical conductivity and enhanced
Fe-O covalency. [12]. Zaheer Ahmed Ujjan et al. found that nonmetal doping via S and
Cl significantly enhanced the photocatalytic properties of ZnO towards methylene blue
(MB), due to the high density of active sites and the decreased charge recombination rate of
electron–hole pairs [13]. These fruitful studies showed that doping with various elements
can change the overall electronic structure of the material, thereby achieving the purpose
of improving the material properties [2–19].

Zhou Junhui et al. used the first-principles calculation method to study the adsorption
and catalytic oxidation performance of formaldehyde molecules on the surface of single-
atom catalysts (monolayer MXene-Ti3C2 modified with Ti atoms). Ti3C2 can automatically
dissociate into CO molecules, and two H atoms and activated O atoms form two *OH
groups [20]. Yang Jianhui et al.’s research on the surface adsorption activity of Ti3C2 is help-
ful in understanding their surface characteristics. First-principles calculation studies have
shown that Ti2C and Ti3C2 have strong adsorption activities for O, OH and F [21]. Studies
by Yujuan Zhang et al. have shown that Ti3C2 nanosheets can provide ideal recyclable
materials for indoor formaldehyde removal and, at the same time, promote formaldehyde
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desorption at higher temperatures [22]. Qui Thanh Hoai Ta et al. used density functional
theory calculations to show that Si atoms may promote the NO2 adsorption process. The
results of this work may highlight the potential of Si@TiO2/Ti3C2TX heterostructures as
multifunctional nanomaterials [23].

The research results of many scholars have shown that Ti3C2 MXene material is a po-
tential adsorption material for harmful gases, and the performance of detecting, capturing
and catalyzing organic vapor pollutants can be improved by doping it with various anions
or cations [20–31].

2. Calculation Method and Structural Model

The calculation is done using the Vienna Ab-initio Simulation Package (VASP 5.5.4)
software based on density functional theory [32]. Among them, the energy exchange
correlation energy function uses the PBE (Perdew–Burke–Ernzerh) function of generalized
gradient approximation (GGA) [33], and the interaction potential between valence electrons
and ions uses the conjugated plane wave pseudopotential method to describe it.

The model used in the study is the Ti3C2 (001) surface, with a 3 × 3 × 1 expanded
cell as the substrate for doping and adsorption [20,21]. The surface was simulated us-
ing multiple atomic layers plus a 15 Å vacuum layer. The 15 Å vacuum layer ensures
that there is no interaction between adjacent plates in the z-axis direction. The lattice
parameter is 3a0 × 3a0 × 20, where a0 is the lattice length obtained by energy optimization.
The calculated a0 is 0.311 nm, which is in good agreement with the results of previous
studies [34,35].

In the selection of the doping position, the doping of Cu atoms is used as the verifica-
tion, because the Ti3C2 (001) of the 5-layer structure is symmetrical on the upper and lower
sides, and only the upper 3 layers are required to be verified. On the Ti3C2 (001) surface of
the 5-layer structure, one Ti atom was replaced by Cu atom in the first and third layers, and
one C atom was replaced by Cu atom in the second layer. After structure optimization, it
was found that the energies of doping in layers 1 to 3 were −387.96 eV, −257.50 eV, and
−383.81 eV, respectively. When the first layer was doped, the energy was lower and the
structure was more stable. Furthermore, based on many studies, the first layer of the Ti3C2
(001) plane is generally selected for doping.

The cutoff energy used for structural optimization and calculations was 500 eV. When
the structure is optimized, the next three layers of atoms are fixed. The atomic relaxation
uses a conjugate gradient algorithm to optimize atomic positions with a maximum relax-
ation step of 500. In terms of the iterative loop convergence criterion for electrons, EDIFF is
set to 1 × 10−5 eV. The value of K-point is 3 × 3 × 1 [21]. After the structure optimization
is completed, the electronic structure information of each system is calculated to discuss
the adsorption stability and adsorption mechanism of each adsorption system.

The adsorption energy of HCHO molecule is calculated by the following formula:

Eads = Etotal − Edoping atom/slab − EHCHO (1)

In the formula: Etotal represents the total energy of the system after adsorption;
Edoping atom/slab represents the energy of the intrinsic Ti3C2 surface before adsorption or
the Ti3C2 surface after doping, and EHCHO represents the energy of the free gas molecule
HCHO. Eads is a negative value, indicating that energy is released during the adsorption
process, and the more negative its value, the stronger the adsorption.

3. Results and Discussion
3.1. The Adsorption Characteristics of HCHO on the Surface of Ti3C2

In order to find the best adsorption site on the Ti3C2 surface, three possible preliminary
adsorption methods were designed in the study, as shown in Figure 1. The first method of
adsorption is to adsorb formaldehyde molecules perpendicularly to the titanium atoms in
the center of the Ti3C2 surface; the second method is to place formaldehyde molecules in
parallel on the gaps between the three titanium atoms; the third method of adsorption is to
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adsorb formaldehyde molecules on the gap between the three titanium atoms. The plane is
vertically adsorbed on the bridge between two titanium atoms.
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It is found from Table 1 that, when formaldehyde is adsorbed on the top site on the
Ti3C2 surface, the two C–H bonds change from 1.12 Å to 1.41 Å and 1.41 Å after adsorption,
which is larger than the sum of the covalent radii of C and H (1.09 Å). There is a tendency
to dissociate, and its adsorption energy is −7.58 eV. When formaldehyde is adsorbed at
the hollow site, the C–O bond length of formaldehyde is reduced by 0.12 Å compared to
the bond length when it is not adsorbed, while the two C–H bonds increase by 0.30 Å,
indicating that the C–O bond is strengthened after formaldehyde is adsorbed on the Ti3C2
surface, while the C–H bond is activated and its adsorption energy is −7.54 eV. When
formaldehyde is adsorbed on the bridge site, the formaldehyde is decomposed into oxygen
atoms and methylene groups (–CH2), and the oxygen atoms are adsorbed between the three
titanium atoms of the substrate. The two C–H bonds increase by 0.06 Å, and the two C–H
bonds do not change a lot, and the adsorption energy is −5.42 eV. By comparing the three
adsorption methods, it is found that the system energy is the lowest when formaldehyde is
adsorbed at the top site, and the adsorption energy produced is also the largest, which is
the best adsorption method for formaldehyde on the intrinsic Ti3C2 crystal surface.

Table 1. System energy, adsorption energy and related parameters of the three forms of formaldehyde
adsorption on the intrinsic Ti3C2 surface.

Adsorption Method rC–O/Å r1
C–H/Å r2

C–H/Å Etotal/eV Eads/eV

Top 1.09 1.41 1.41 −421.32 −7.58
Hollow 1.10 1.42 1.41 −421.29 −7.55
Bridge - 1.18 1.18 −419.16 −5.42

In order to further understand the mechanism of formaldehyde adsorption and dis-
sociation on Ti3C2 surface, this paper analyzes the electronic structure of the most stable
adsorption position from the charge density distribution [36]. As shown in Figure 2, the
yellow area around the atom indicates that the charge density of the bond area increases,
and the blue area indicates that the charge density of the bond area decreases. In addition,
the differential charge analysis method is used to calculate the charge of each atom in
the adsorption system. It can be seen from Figure 2 that, when formaldehyde is stably
adsorbed at each adsorption site on the Ti3C2 surface, electron transfer occurs between
the oxygen atom and the hydrogen atom. The oxygen atom loses electrons, while the two
hydrogen atoms gain electrons, causing the two hydrogen atoms to have a tendency to be
catalytically decomposed. When formaldehyde is adsorbed on the top and hollow sites,
the C atom of formaldehyde and the Ti atom of the substrate generate Ti–C bonds during
the electron transfer process. When formaldehyde is stably adsorbed at the bridge site, the
carbon and oxygen atoms in the adsorption system lose part of their electrons, the charge
density of the Ti–O bond area decreases, and the Ti–O bond is formed.



Catalysts 2022, 12, 387 5 of 12

Catalysts 2022, 12, x FOR PEER REVIEW 5 of 13 
 

 

the two hydrogen atoms gain electrons, causing the two hydrogen atoms to have a ten-
dency to be catalytically decomposed. When formaldehyde is adsorbed on the top and 
hollow sites, the C atom of formaldehyde and the Ti atom of the substrate generate Ti–C 
bonds during the electron transfer process. When formaldehyde is stably adsorbed at the 
bridge site, the carbon and oxygen atoms in the adsorption system lose part of their 
electrons, the charge density of the Ti–O bond area decreases, and the Ti–O bond is 
formed. 

 
Figure 2. Side and top views of the differential charge density plots of the stable adsorption con-
figuration of HCHO on the Ti3C2 surface. (Isosurface value is 0.002 e/Å3). 

3.2. The Adsorption of Formaldehyde by Element-Doped Ti3C2 
3.2.1. Doping System Structure Optimization 

Replacing the central titanium atom on the Ti3C2 surface with Cu, Pt, Co, Si, F, Cl or 
Br, obtained after structure optimization: Cu-Ti3C2 surface, Pt-Ti3C2 surface, Co-Ti3C2 
surface, Si-Ti3C2 surface, Cl-Ti3C2 surface, F-Ti3C2 surface and Br-Ti3C2 surface, as shown 
in Figure 3. 

 
Figure 3. (a) Intrinsic Ti3C2 relaxation side view, (b) Cu-doped Ti3C2 configuration relaxation side 
view, (c) Pt-doped Ti3C2 configuration relaxation side view, (d) Co-doped Ti3C2 configuration re-
laxation side view, (e) Si-doped Ti3C2 configuration relaxation side view, (f) F-doped Ti3C2 config-
uration relaxation side view, (g) Cl-doped Ti3C2 configuration relaxation side view, (h) side view of 
the relaxation of the Br-doped Ti3C2 configuration. 

After the structures of Cu-Ti3C2 surface, Pt-Ti3C2 surface and Co-Ti3C2 surface are 
optimized, and the three neighboring carbon atoms around the top doping atom all move 
to the center of the doping atom. For example, Cu–C bond’s length is shortened from 2.08 
Å to 2.02 Å; the surface dopant insertion energy of the three is −386.14 eV, −389.03 eV and 
−383.61 eV, respectively. The Pt-doped surface has the lowest energy and is the most 
stable, followed by the Cu-doped. The Cl-Ti3C2 surface, the F-Ti3C2 surface and the 
Br-Ti3C2 surface doped with non-metal anions, after the structure optimization, the top 

Figure 2. Side and top views of the differential charge density plots of the stable adsorption configu-
ration of HCHO on the Ti3C2 surface. (Isosurface value is 0.002 e/Å3).

3.2. The Adsorption of Formaldehyde by Element-Doped Ti3C2
3.2.1. Doping System Structure Optimization

Replacing the central titanium atom on the Ti3C2 surface with Cu, Pt, Co, Si, F, Cl
or Br, obtained after structure optimization: Cu-Ti3C2 surface, Pt-Ti3C2 surface, Co-Ti3C2
surface, Si-Ti3C2 surface, Cl-Ti3C2 surface, F-Ti3C2 surface and Br-Ti3C2 surface, as shown
in Figure 3.
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Figure 3. (a) Intrinsic Ti3C2 relaxation side view, (b) Cu-doped Ti3C2 configuration relaxation side
view, (c) Pt-doped Ti3C2 configuration relaxation side view, (d) Co-doped Ti3C2 configuration relax-
ation side view, (e) Si-doped Ti3C2 configuration relaxation side view, (f) F-doped Ti3C2 configuration
relaxation side view, (g) Cl-doped Ti3C2 configuration relaxation side view, (h) side view of the
relaxation of the Br-doped Ti3C2 configuration.

After the structures of Cu-Ti3C2 surface, Pt-Ti3C2 surface and Co-Ti3C2 surface are
optimized, and the three neighboring carbon atoms around the top doping atom all move
to the center of the doping atom. For example, Cu–C bond’s length is shortened from 2.08 Å
to 2.02 Å; the surface dopant insertion energy of the three is −386.14 eV, −389.03 eV and
−383.61 eV, respectively. The Pt-doped surface has the lowest energy and is the most stable,
followed by the Cu-doped. The Cl-Ti3C2 surface, the F-Ti3C2 surface and the Br-Ti3C2
surface doped with non-metal anions, after the structure optimization, the top dopant
atoms protrude above the surface, and the surface dopant insertion energy is −385.11 eV,
−385.52 eV, and −384.91 eV; the energy of the three as well as the optimized structure is
similar, and the change trend is the same, indicating that non-metal anion doping may have
a consistent aspect for the modification of Ti3C2 substrate. The surface of Si-Ti3C2 doped
with non-metallic cations is relatively special, and the structural change is consistent with
the former cation doping. The three C atoms around Si atoms on the surface of Si-Ti3C2
move to the center of the Si atom, and the Si–C bond length is 2.07 Å is shortened to 1.94 Å,
and its surface dopant insertion energy is −388.34 eV.
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3.2.2. Adsorption Characteristics of Doped System to HCHO

In order to study the influence of metal atomsand non-metal atom doping on the
adsorption of formaldehyde molecule and to compare it with the intrinsic Ti3C2, an ad-
sorption site consistent with Figure 1 was adopted, and three possible adsorption methods
were designed for the top site, bridge site and gap site. Ti3C2 was doped with Cu, Pt, Co,
Si, F, Cl and Br atoms to optimize the structure. The bond length changes of HCHO in
different adsorption systems and the adsorption energy of HCHO are shown in Table 2.
The comparison of the adsorption energy of each adsorption system is shown in Figure 4.

Table 2. Energy and adsorption energy of different adsorption systems.

Adsorption
Site

Adsorption
of Basal Etotal/eV Esubstrate/eV rC–O/Å r1

C–H/Å r2
C–H/Å Eads/eV

Top

Ti3C2 −421.32 −391.61 1.09 1.41 1.41 −7.58
Cu-Ti3C2 −416.26 −386.09 1.10 1.42 1.43 −8.04
Pt-Ti3C2 −416.23 −389.03 - 1.13 1.11 −5.07
Co-Ti3C2 −412.73 −389.96 - 1.13 1.11 −0.64
Si-Ti3C2 −418.21 −388.34 1.09 1.38 1.43 −7.74
F-Ti3C2 −415.40 −385.52 - 1.10 1.13 −7.75
Cl-Ti3C2 −413.81 −385.11 - 1.10 1.12 −6.57
Br-Ti3C2 −413.23 −384.92 - 1.10 1.12 −6.18

Hollow

Ti3C2 −421.28 −391.61 1.10 1.42 1.41 −7.54
Cu-Ti3C2 −414.88 −386.09 1.10 1.30 1.28 −6.66
Pt-Ti3C2 −414.03 −389.04 - 1.11 1.13 −2.86
Co-Ti3C2 −411.83 −389.95 - 1.11 1.11 0.25
Si-Ti3C2 −418.56 −388.34 1.10 1.43 1.43 −8.09
F-Ti3C2 −412.09 −385.53 1.55 1.10 1.10 −4.43
Cl-Ti3C2 −414.62 −385.12 - 1.11 1.12 −7.37
Br-Ti3C2 −413.23 −384.92 - 1.13 1.10 −6.18

Bridge

Ti3C2 −419.16 −391.61 - 1.18 1.18 −5.42
Cu-Ti3C2 −413.67 −386.09 - 1.18 1.18 −5.45
Pt-Ti3C2 −413.84 −389.03 1.90 1.10 1.09 −2.68
Co-Ti3C2 −412.33 −389.95 - 1.13 1.11 −0.25
Si-Ti3C2 −415.92 −388.34 - 1.18 1.18 −5.45
F-Ti3C2 −415.57 −385.52 - 1.11 1.13 −7.92
Cl-Ti3C2 −414.16 −385.11 - 1.10 1.13 −6.92
Br-Ti3C2 −408.43 −384.92 - 1.09 1.09 −1.38
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As it can be seen from Table 2, among all metal cations (Cu, Pt, Co), copper doping
had the best modification effect on Ti3C2, improving the adsorption effect of the Ti3C2
substrate on formaldehyde at the top and bridge sites, and the adsorption energy increased
by 0.46 eV and 0.03 eV, respectively. In the hollow position, it decreased by 0.8802 eV.
Among the nonmetallic anions (F, Cl, Br), fluorine doping had the best modification effect
on Ti3C2 and improved the adsorption capacity of the Ti3C2 substrate to formaldehyde at
the top and bridge sites by 0.17 eV and 2.50 eV, respectively, and decreased by 3.11 eV at
the hollow site. Among all the doped elements, only silicon doping significantly increased
the adsorption energy of formaldehyde at the three adsorption sites on Ti3C2 substrate and
the adsorption energy at the top. Hollow and bridge sites increased by 0.17 eV, 0.55 eV and
0.03 eV, respectively. In addition, only chlorine-doped Ti3C2 improved by 1.50 eV at the
bridge site, while Ti3C2 doped with other elements had poor effects at all adsorption sites.
Based on the judgment of adsorption energy, it can be known that Cu, Si and F have better
modification effect on Ti3C2 substrate. Further research can be carried out by doping Ti3C2
with these three elements.

When formaldehyde adsorbed stably on the top position of the Cu-doped Ti3C2
surface, the two H–C bond lengths increased by 0.01 Å and 0.02 Å, respectively, and the
C–O bond lengths increased by 0.01 Å. When formaldehyde adsorbed stably on the bridge
site of Cu-doped Ti3C2, formaldehyde decomposed into oxygen atoms and methylene
group (–CH2). When formaldehyde adsorbed at the hollow position on Cu-doped Ti3C2,
the H–C bond length was shortened by 0.12 Å and 0.14 Å, respectively, and the C–O bond
length was basically unchanged. When formaldehyde was stably adsorbed on the surface
of F-doped Ti3C2, it decomposed into oxygen atoms and methylene group (–CH2) at two
positions (top and bridge) where the adsorption energy increased. At the hollow site, the
H–C bond lengths of formaldehyde were shortened by 0.32 Å and 0.31 Å, respectively, and
the C–O bond lengths increased by 0.45 Å. When formaldehyde was stably adsorbed on the
top position of the Si-doped Ti3C2 surface, one H–C bond was shortened by 0.03 Å, and the
other H–C bond increased by 0.02 Å, and the C–O bond length was basically unchanged.
When formaldehyde was stably adsorbed at hollow sites on the Si-doped Ti3C2 surface, the
H–C bond lengths increased by 0.01 Å and 0.02 Å, respectively, and the C–O bond length
length was basically unchanged. When formaldehyde adsorbed stably on the bridge site of
Si-doped Ti3C2, formaldehyde was catalyzed to decompose into methylene (–CH2).

In order to study the adsorption mechanism of metal atom doping and non-metal
atom doping on formaldehyde, the density of states and differential charges of the metal
cation Cu atom, non-metal anion F atom and non-metal cation Si atom doping system
were calculated.

Differential charge density can be used to analyze the electron rearrangement of the
system after adsorption [37], as shown in Figure 5. Yellow represents electron enrichment,
and blue represents electron reduction. It can be seen that, in the Cu-Ti3C2-HCHO system,
an oxygen atom loses part of its electrons at three adsorption sites, and a copper atom
and two hydrogen atoms gain part of their electrons, and formaldehyde and the substrate
produce electron transfer. Formaldehyde is mainly chemisorbed at the top and hollow sites,
and decomposed at the bridge sites. In the Si-Ti3C2-HCHO system, oxygen also loses some
of its electrons and the two hydrogen atoms gain some of their electrons. Similarly, electron
transfer between formaldehyde and the substrate occurs between the top and bridge sites.
At the bridge site, formaldehyde is also decomposed and oxygen atoms are adsorbed on
the substrate. At each adsorption site of the F-Ti3C2-HCHO system, an oxygen atom loses
some electrons and a fluorine atom gains some electrons. The F atom moves from the center
of the Ti3C2 surface up to the surface and bonds with the Ti atom.
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In order to further understand the change of Ti3C2 doped with Cu, Si and F elements,
the density of states of intrinsic Ti3C2 and doped Ti3C2 were compared and analyzed.
It can be seen from Figure 6 that Cu-, Si- and F-doped elements significantly changed
the electronic structure of the intrinsic Ti3C2 crystal plane. Compared with the intrinsic
state density of Ti3C2, the peak of the state density of Cu- and Si-doped Ti3C2-adsorbed
formaldehyde shifted to the lower-energy region by 0.2 eV~0.5 eV as a whole and the peak
also decreased, indicating that the introduction of Cu or Si elements made the adsorption
of Ti3C2 substrate for formaldehyde tend to be more stable. The overall peak of the
state density of formaldehyde adsorbed by F-doped Ti3C2 migrated to the high-energy
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region, about 0.2 eV~0.5 eV, and decreased as well, indicating that the stability of the Ti3C2
substrate was reduced by F. The results of state density analysis showed that, compared
with intrinsic Ti3C2, F-doped Ti3C2 adsorbed formaldehyde at the top and bridge sites and
its adsorption energy increased, but the overall structure was not stable enough, which was
also reflected in the structure optimization and differential charge. The adsorption energy
of formaldehyde on the Cu-doped Ti3C2 hollow site decreased compared with the intrinsic
Ti3C2, but the structural system tended to be stable. Si-doped Ti3C2 not only enhanced the
adsorption energy at the three adsorption sites but also had the largest state density shift
to the lower-energy region, so its system structure was the most stable among all of the
doping systems studied.
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Figure 7 compares electron local density maps of formaldehyde adsorption by intrinsic
Ti3C2 and Cu-, Si- or F-doped Ti3C2. Electron localization function (ELF) is often used to
determine the chemical bonding properties among atoms, and its value ranges from 0 to 1;
when the electrons are completely localized or there are no electrons, the ELF is 0; when the
ELF is 0.5, it indicates that a charge distribution similar to an electron gas is formed among
atoms, which is a typical metallic bond; when the electrons are completely localized, that is,
when the ELF is 1, the typical covalent bonding among atoms is shown [38]. Figure 7 shows
that a small amount of Cu, Si or F doping has little effect on the chemical bond environment
of Ti3C2, and the electrons of Ti atoms are completely delocalized, which shows that the
main effect of doping Cu, Si or F is to improve the adsorption and decomposition of
formaldehyde, rather than direct strong adsorption of formaldehyde. Taken together, these
theoretical studies suggest that Cu, Si and F additions enhance the electron delocalization
of the Ti3C2 catalytic center, thereby enhancing the adsorption and decomposition of
formaldehyde.
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4. Conclusions

The adsorption of formaldehyde on Ti3C2 and Cu-, Pt-, Co-, Si-, F-, Cl- and Br-doped
Ti3C2 was studied by density functional theory. The results show that, in the metal cations,
Cu, Pt and Co, only the same Cu element at the two adsorption sites improved the ad-
sorption capacity of the Ti3C2 substrate for formaldehyde. Among the nonmetallic anions
Cl, F and Br, only F improved the adsorption capacity of the substrate to formaldehyde
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at the two adsorption sites. In addition, non-metallic cation Si doping enhanced the ad-
sorption performance of formaldehyde on the substrate at three adsorption sites, and the
system structure was the most stable. In general, cationic doping is better than anionic
doping. These conclusions provide a theoretical reference for designing new formaldehyde
gas-detection materials.
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