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Abstract: On the catalyst surface, crystal facets with different surface atom arrangements and diverse
physicochemical properties lead to distinct catalytic activity. Acquiring a highly reactive facet through
surface regulation is an efficient strategy to promote the oxidative decomposition of wastewater
organic pollutants via peroxymonosulfate (PMS) activation. However, the mechanism through which
crystal facets affect PMS activation is still unclear. In this study, three facet-engineered α-MnO2 with
different exposed facets were prepared via a facile hydrothermal route. The prepared 310-MnO2 exhib-
ited superior PMS activation performance to 100-MnO2 and 110-MnO2. Moreover, the 310-MnO2/PMS
oxidative system was active over a wide pH range and highly resistant to interfering substances from
wastewater. These advantages of the 310-MnO2/PMS system make it highly promising for practical
wastewater treatment. Based on quenching experiments, electron paramagnetic resonance (EPR)
analysis, solvent exchange, and electrochemical measurements, mediated electron transfer was found
to be the dominant nonradical pathway for p-chloroaniline (PCA) degradation. A sulfhydryl group
(-SH) masking experiment showed that the highly exposed Mn atoms on the 310-MnO2 surface were
sites of PMS activation. In addition, density functional theory (DFT) calculations confirmed that the
dominant {310} facet promoted adsorption/activation of PMS, which favored the formation of more
metastable complexes on the α-MnO2 surface. The reaction mechanism obtained here clarifies the
relationship between PMS activation and crystal facets. This study provides significant insights into
the rational design of high-performance catalysts for efficient water remediation.

Keywords: manganese dioxide; surface regulation; peroxymonosulfate activation; nonradical path-
way; crystal facet dependence
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1. Introduction

In recent years, the environmental and health problems caused by non-biodegradable
persistent organic pollutants (POPs) discharged into the aquatic environment have sounded
an alarm, especially due to their fatal toxicity [1,2]. A multitude of treatment technologies,
such as adsorption [3], membrane separation [4], biodegradation [5], and advanced oxi-
dation processes (AOPs) [1], has been developed to protect aquatic systems against these
refractory pollutants. Among these treatment technologies, AOPs are the most effective
against organic pollutant removal owing to the abundance of powerful reactive oxygen
species (ROSs) they produce [6,7]. Currently, many AOPs, such as the traditional Fenton
system (Fe2+/H2O2) [8], photocatalysis [9], ozonation [10], electrochemical oxidation [11],
and their combinations [12], are commonly used for POP removal. However, high energy
input and potential secondary pollution limit their applications.

Persulfate activation, an emerging AOP-like pollutant control approach, is of great
interest since it overcomes the shortcomings above. Persulfate activation not only removes
pollutants by generating highly active radicals (such as E(•OH/OH−) = 1.8–2.7 V and
E(SO4

•−/SO4
2−) = 2.5–3.1 V), but also oxidatively decomposes pollutants by nonradical

pathways (such as singlet oxygen (1O2), surface-activated complex, and direct electron
transfer) [13]. Solid persulfates, including peroxydisulfate (PDS) and peroxymonosulfate
(PMS), are more stable and easier to store and transport than H2O2 and O3 [14]. Given
its asymmetric structure, PMS is more easily activated by various catalysts than PDS [15].
Moreover, aqueous organic pollutants can be effectively removed by activated PMS.

Since PMS has a relatively low reactivity toward POPs, effective PMS activation is
a prerequisite for its environmental remediation application. Compared to traditional
energy-based PMS activation methods (e.g., heat, UV, and ultrasonic), transition metal (Co,
Ni, Ag, Cu, Ru, V) catalyst-based PMS activation is more cost-effective and uses a simpler
reactor/system configuration [16]. Although cobalt-based materials are among the best
options for activating PMS [17], the secondary pollution from the leaching of cobalt ions
would lead to adverse effects on the environment. Therefore, it is imperative to develop
environmentally friendly transition metal oxide catalysts. MnO2 is a promising alternative
PMS activation catalyst due to its low cost, multiple Mn valence states, abundance, and
environmental friendliness [18]. By tuning MnO2’s surface properties, such as crystal
facets [19], crystalline phase [16], material dimension [20], and the number of defects [21],
the catalytic performance of MnO2 towards PMS can be effectively enhanced. Unfortunately,
the mechanism of this enhancement is still ambiguous. Thus, to design more efficient
catalysts for water remediation, it is crucial to understand the relationship between the
PMS activation process and the surface properties.

As an inherent surface property, the crystal facet induces specific physical and chemical
surface activity due to the differences in its atomic distribution and the distorted electronic
structure of its surface [22]. The adsorption and activation of reaction molecules on the
catalyst surface are the key steps during the persulfate-catalyzation process. In addition, the
microstructure of the material surface significantly affects the persulfate activation pathway,
leading to enhanced catalytic efficiency [23]. Previous work [24] demonstrated that CuO
crystal facets played an important role in PS activation. Similarly, it was reported that
the δ-MnO2 {−111} facet exhibited superior persulfate activation performance compared
to the {001} facet [19]. Based on the cases above, we reason that MnO2 with different
exposed crystal facets affects PMS activation efficiency. However, how crystal facets affect
PMS activation is still unknown. Understanding PMS activation on the MnO2 surface
with different exposed facets is of great significance in designing high-performance PMS
activation catalysts for organic pollutant removal.

In this study, three highly active nano-MnO2 catalysts with different exposed facets
were synthesized via the facile hydrothermal route. Taking PCA as the model contam-
inant, the catalytic performance of α-MnO2 towards PMS was proven to be effectively
enhanced by selectively exposing the high-index {310} facet. The factors affecting PCA
degradation were systematically investigated. The resistance of the system to interfering
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substances from wastewater was also evaluated by introducing humic acid and inorganic
anions. Cyclic experiments and manganese ion leaching experiments were carried out
to test the stability and reusability of 310-MnO2. Different pollutants were degraded in
the 310-MnO2/PMS oxidative system to explore its broad applicability. Based on an in-
termediate analysis, three pathways of PCA degradation in the 310-MnO2/PMS system
were proposed. Combining experimental studies and DFT calculations, the mechanism
through which the crystal facets affected PMS activation was attributed to the different
surface atom arrangements and enhanced adsorption of PMS molecules on the 310-MnO2
surface. Unfortunately, there are few studies on the enhancement of persulfate activation by
regulating crystal facets of manganese oxide, and how crystal facets affect PMS activation is
still unclear. Unlike previous studies of persulfate activation by MnO2, which were mainly
focused on morphology, crystal phase, defect regulation, and manganese-based composites,
this work focuses on regulating the crystal surface of MnO2 to enhance PMS activation.
The effect of crystal facets on PMS activation was comprehensively and deeply studied.
This work provides atomic-scale insights into the relationship between PMS activation
performance and crystal facets, as well as theoretical guidance for the rational design of
high-performance PMS catalysts for practical wastewater treatment.

2. Results and Discussion
2.1. Characterization of Catalyst

Three α-MnO2 with different exposed facets were prepared via the facile hydrothermal
method. The phase structure of the prepared materials was identified by XRD (Figure 1a).
All the samples were consistent with pure α-MnO2 (PDF #44-0141), which has a well-
defined 2 × 2 tunnel structure. However, the XRD peak intensities of the samples differed.
For the 310-MnO2, the diffraction peak corresponding to the {310} facet was sharper than
for the {100} and {110} facets. Therefore, the {310} facet was the dominant exposed crystal
facet of 310-MnO2. This result is consistent with previous reports [25]. Similarly, the MnO2
catalysts with exposed {110} (green line Figure 1a) and {100} (cyan line Figure 1a) facets
were identified.

Electron paramagnetic resonance (EPR) spectroscopy was employed to analyze the dif-
ferences in oxygen vacancy content among the three MnO2 catalysts (Figure 1b). However,
unlike typical EPR spectra of oxygen vacancy [21,23,26], no obvious oxygen vacancy signal
was observed in this work, which means that the oxygen vacancy content was negligible.

To obtain the data from the BET surface area and pore properties, the N2 adsorp-
tion/desorption isotherms of the three MnO2 catalysts were measured (Figure S1). The
relevant data are provided in Table S1. The results demonstrate that the 310-MnO2 had
the largest surface area (116.0 m2/g), followed by 110-MnO2 (104.9 m2/g) and 100-MnO2
(67.8 m2/g). However, the order of the surface area sizes on the three MnO2 catalysts
was inconsistent with the catalytic activity observed in the organic pollutant degradation
experiments, indicating that the specific surface area was not the decisive factor in the
catalytic activity.

The morphologies of the obtained MnO2 samples with different exposed facets were
determined by FE-SEM and HR-TEM analysis. The FE-SEM images (Figure 1c–h) showed
that all the MnO2 samples exhibited a nanowire morphology. The 110-MnO2 nanowire
had a diameter of 60–70 nm and a length of several micrometers, while the 310-MnO2 and
100-MnO2 were thinner, with diameters of 40–50 nm. The energy-dispersive spectrometer
(EDS) results (Figure S2) demonstrated that the surface of the 310-MnO2 had the highest
Mn/O ratio (1.41), followed by 100-MnO2 (0.75) and 110-MnO2 (0.51). The order of the
Mn/O ratio on different exposed crystal facets was consistent with the theoretical atomic
arrangement analysis (Figure 2(a4–c4)).
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Figure 1. (a) XRD patterns of 100-MnO2, 110-MnO2, and 310-MnO2; (b) solid EPR spectra of three
MnO2 catalysts; SEM images of (c,f) 100-MnO2, (d,g) 110-MnO2, and (e,h) 310-MnO2.

HR-TEM further confirmed that the MnO2 with different exposed crystal facets was
synthesized successfully. The observed lattice distances of the {100}, {110}, and {310} facets
were 0.49 nm, 0.69 nm, and 0.31 nm, respectively (Figure 2). These results agree with the
calculated lattice distances based on XRD characterization, where the lattice distances for
the facets were 4.90 Å {100}, 6.92 Å {110}, and 3.09 Å {310}, respectively. Since the α-MnO2
grew along the (001) direction and had four exposed sides as the main exposed facet, it
was easy to find that the 310-MnO2 possessed four {310} facets exposed on the sides of
the nanowires [25]. Similar phenomena were also found in the 100-MnO2 and 110-MnO2.
Combined with the XRD results, the α-MnO2 with different exposed crystal facets was
successfully synthesized. By analyzing the atomic occupancy (Figure 2(a4–c4)) on the
different facets, it was found that the exposed atoms on the {100} and {110} facets were
mainly O, while Mn atoms were significantly enriched on the {310} facet. The MnO2 with
different crystal facets exhibited different PMS activation effects, which might have been
due to different surface active sites, i.e., different Mn atom distributions on the surface [24].
Highly exposed surface Mn atoms might have facilitated electron transfer between the
pollutants and the catalyst [27,28].
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Figure 2. HRTEM images of (a1–a3) 100-MnO2, (b1–b3) 110-MnO2, and (c1–c3) 310-MnO2; profile
analysis and corresponding atom arrangement on the surface of (a4) 100-MnO2, (b4) 110-MnO2,
and (c4) 310-MnO2 in a 2 × 2 unit cell. Small (gold) spheres are oxygen and large (red and green)
are manganese.

The surface chemical states and element composition of the obtained MnO2 were inves-
tigated by XPS. The Mn 2p3/2 peak can be divided into three peaks, located at 642.9, 641.6,
and 640.6 eV, corresponding to the binding energy of Mn4+, Mn3+, and Mn2+, respectively
(Figure 3b) [29]. The ratio of the different types of Mn atom to the total Mn is summarized
in Table S2. Meanwhile, the average oxidation state (AOS) of Mn (Figure 3c) was calculated
by the equation AOS = 8.956–1.126∆E (∆E is the binding energy difference of Mn 3s) [30].
The AOS of different MnO2 was essentially the same, which means a negligible difference
in oxygen vacancy content. In other words, the enhancement of PMS activation on the
MnO2 with different facets was not related to the oxygen vacancy content. Moreover, the O
1s spectrum (Figure 3d) was divided into two peaks, located at 531.5 eV (surface-adsorbed
oxygen (Oads, such as O−, O2− and –OH)) and 529.8 eV (lattice oxygen (Olatt)) [22]. The
relevant data are provided in Table S2. The chemical state of the Mn and the content of the
oxygen species did not change significantly before or after the reaction, suggesting that the
PMS activation process over the MnO2 surface was a catalytic reaction.

2.2. PCA Degradation in the Facet-Engineered MnO2/PMS System
2.2.1. PCA Degradation in Different α-MnO2/PMS Systems

To investigate the PMS activation over MnO2 with different facets, PCA was chosen
as the target pollutant, and the PCA degradation experiments are displayed in Figure 4a.
It was arduous to remove the PCA with α-MnO2 alone, and only a 5% removal efficiency
was achieved through adsorption. In the non-catalytic PMS system, the removal efficiency
of the PCA over 5 min was about 10%, which indicated that the unactivated PMS had
a limited ability to oxidize PCA. By contrast, 100% of the PCA was degraded within
5 min in the facet-engineered α-MnO2/PMS systems, indicating that the facet-engineered
α-MnO2 catalyzed the production of more powerful oxidizing substances from the PMS
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for PCA degradation. Interestingly, among the three facet-engineered α-MnO2 catalysts,
the 310-MnO2 exhibited the best PMS activation performance, in which nearly 100% of
the PCA was degraded in 3 min, while 67% and 84% of PCA were degraded in the 110-
MnO2/PMS and the 100-MnO2/PMS systems, respectively. The reaction rate constant k of
the 310-MnO2/PMS system was three times that of the 110-MnO2/PMS system (Figure 4b).
Consequently, in subsequent optimization experiments, the 310-MnO2 was chosen as the
model catalyst for PMS activation.
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2.2.2. Effect of PMS Concentration

The impact of the PMS concentration (0.5–3 mM) on the PCA degradation was evalu-
ated (Figure 4c). Previous studies pointed out that in some heterogeneous PMS activation
systems, excessive PMS had a negative impact on contaminant degradation [15,31,32].
However, in the 310-MnO2/PMS system, increasing the PMS concentration increased the
PCA degradation. With the PMS concentration increasing from 0.5 mM to 3 mM, the
corresponding k value also increased, from 0.2003 min−1 to 1.3916 min−1 (Figure 4d).
A similar phenomenon was observed in the edge-nitrogenated biochar/PDS system, in
which pollutant degradation occurred through the electron transfer process (nonradical
pathway) [33]. However, only a slight improvement was observed when the PMS exceeded
2 mM, suggesting insufficient active sites on the surface of 310-MnO2 [34].
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without pH adjustment.

2.2.3. Effect of Catalyst Dosage

The catalyst dosage had a significant impact on the PCA degradation (Figure 4e).
As the catalyst dosage increased from 0.03 g·L−1 to 0.3 g·L−1, the PCA degradation rate
increased markedly from 0.2321 min−1 to 6.5713 min−1 (Figure 4f). In addition, the PCA
degradation with different catalyst dosages fitted the pseudo-first-order kinetic model
(Figure S3). The presence of more catalyst resulted in more active sites, facilitating PMS
adsorption and activation on the MnO2 surface [35]. Moreover, compared with the PMS
concentration, the catalyst dosage played a more significant role in the PCA degradation.
A similar phenomenon was also observed by Chen et al. [36], who found the sulfacetamide
degradation rate was impacted more by the catalyst dosage than the PMS concentration.

2.2.4. Effect of Initial pH

The solution pH is a significant factor affecting the generation of ROSs in the chemical
oxidation process [37]. Hence, the PCA removal efficiency under different initial pH
conditions was systematically investigated. At an initial pH ranging from 3–9, the PCA
was completely degraded within 5 min, indicating that the 310-MnO2 was effective at
activating the PMS over a wide initial pH range (Figure 5a). Moreover, the PMS was
more easily activated at pH = 9 because the pKa of PMS was 9.4 [18]; therefore, the 310-
MnO2/PMS system at pH = 9.0 exhibited a slightly higher PCA degradation rate than for
pH = 3–7. The isoelectric point (pHpzc) of 310-MnO2 was 3.3 (Figure S4) and the pKa of the
PCA was 4.2 [38]. When the solution pH = 3, the catalyst surface was positively charged,
which favored the adsorption of PMS anions on the catalyst surface, thereby achieving a
marginally faster PCA degradation rate than at pH = 5–7.
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2.3. Stability and Universal Adaptability
2.3.1. Universal Adaptability of 310-MnO2

The natural organic matters (NOMs) and inorganic anions from actual water bodies
tend to affect contaminant degradation during the PMS-based oxidation process by quench-
ing radicals, generating other reactive species, or adsorbing on the catalyst surface [39–42].
For example, humic acid (HA) inhibits pollutant degradation by competing for reactive
oxidizing substances [33]. Besides, another quintessential example is that Cl− reacts with
SO4

•− and •OH to produce fewer reactive Cl• radicals, resulting in a significant inhibi-
tion of pollutant degradation [43]. Therefore, it is necessary to explore their influence on
pollutant degradation in the 310-MnO2/PMS system. In this work, the impact of HA and
different co-existing anions (ClO4

−, Cl−, SO4
2−, NO3

−) on PCA degradation were investi-
gated. As shown in Figure 5b, HA had little impact on PCA degradation. Furthermore, the
presence of anions only slightly reduced the PCA degradation rate (Figure 5c–f), which is
attributed to the negative impact of the increased ionic strength [44]. Due to fact that the
solution pH (pH ≈ 3) was lower than the isoelectric point of 310-MnO2 (pHpzc = 3.3), the
catalyst surface was positively charged and could adsorb PMS anions. However, increased
ionic strength reduces the zeta potential of catalyst particles in solution [43], which is
unfavorable for the electrostatic attraction between the catalyst and the PMS. The above
results suggested that the 310-MnO2/PMS system was strongly resistant to interference.

Different pollutants, including PCA, Rhodamine B (RhB), phenol, tetracycline (TC),
and imidacloprid (IMI), were degraded in the 310-MnO2/PMS oxidative system to explore
its broad applicability. As shown in Figure 6a, the 310-MnO2/PMS system had an excellent
removal effect on RhB and PCA: both were completely degraded within 5 min. Moreover,
100% of the phenol was removed in 15 min, while 80% of the TC was decomposed within
30 min. Interestingly, only 28% of the IMI was degraded in 30 min. Previous studies
showed that radical systems degrade IMI effectively, while nonradical oxidation systems
show low reactivity toward IMI [45]. Similarly, the selective removal of contaminants
was also reported in other nonradical systems [34,46–48]. Thus, we speculated that the
310-MnO2/PMS did not depend on free radicals.
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Figure 6. (a) Removal of various organic pollutants by 310-MnO2/PMS system and (b) corresponding
reaction rate constant k, reaction conditions: (PMS)0 = 1.5 mM, (MnO2)0 = 0.1 g/L, (PCA)0 = 1.0 mM,
(RhB)0 = 20 mg/L, (TC)0 = 25 mg/L, (Phenol)0 = 20 mg/L, (IMI)0 = 10 mg/L, without pH adjust-
ment; (c) degradation of PCA in actual water by 310-MnO2/PMS system; (d) cycle tests of PCA
degradation and (e) corresponding reaction rate constant k, reaction conditions: (PCA)0 = 1.0 mM,
(PMS)0 = 1.5 mM, (MnO2)0 = 0.1 g/L, without pH adjustment; (f) the dissolution of manganese ions
during the reaction, reaction conditions: (PCA)0 = 1.0 mM, (PMS)0 = 1.5 mM, (MnO2)0 = 0.1 g/L,
without pH adjustment.

To further assess the potential of 310-MnO2 in practical applications, PCA degradation
experiments were carried out in deionized water (DW), tap water (TW), lake water (LW),
and river water (RW) (Figure 6c). Compared with the rate in DW, the degradation rate
of the PCA in actual water decreased slightly. However, after 5 min of reaction, the PCA
removal rate still reached 97.5%, 94.4%, and 95.5% in TW, LW, and RW, respectively. The
above results suggest that the 310-MnO2/PMS system is highly promising for practical
wastewater treatment.

2.3.2. Stability of 310-MnO2

The stability of the catalytic materials is one of the core issues that needs to be consid-
ered before practical application. Materials with low stability increase the cost of operation
and cause secondary pollution. Therefore, we carried out a cycle test (Figure 6d) to eval-
uate the stability of the 310-MnO2. The results indicated that the 310-MnO2 had high
stability, with the PCA degradation efficiency remained at 80% after the 10th cycle. As
the number of cycles increased, the PCA degradation rate constant (k) on the 310-MnO2
slightly decreased, but the k value after the 10th cycle was still equivalent to that of the
fresh 110-MnO2 (Figure 6e). In addition, nearly no manganese ions were dissolved during
the reaction process (Figure 6f). This result might have been caused by the material oxalate
ions serving as a capping agent, both the stability and percentages of the {310} facet were
improved [14,25]. Accordingly, the reason for the decrease in reaction rate might be related
to the generated intermediate products adsorbing on the catalyst surface, thus inhibiting
the exposure of the active sites [49]. Due to the 310-MnO2’s outstanding stability and
universal adaptability, it will have broad applications in actual wastewater treatment.
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2.4. Mechanism of PMS Activation by 310-MnO2
2.4.1. Quenching Experiments and PMS Decomposition Experiments

To unveil the PMS activation mechanism on the 310-MnO2 catalyst, a series of quench-
ing experiments were performed by adding different scavengers to the 310-MnO2/PMS
system. EtOH is commonly used as a scavenger for •OH (k•OH/ethanol = 1.2 × 109–
2.8 × 109 M−1 S−1) and SO4

•− (kSO4
•−

/ethanol = 1.6 × 107–7.7 × 107 M−1 S−1) due to its
high reactivity [50]. TBA is an effective scavenger that distinguishes between SO4

•− and
•OH, since its reaction rate with •OH (k•OH/TBA=3.8 × 108–7.6 × 108 M−1 S−1) is nearly
1000 times higher than with SO4

•− (kSO4
•−

/TBA = 4 × 105–9.1 × 105 M−1 S−1) [51,52]. The
addition of 750 mM EtOH or 750 mM TBA showed a negligible impact on PCA oxidation
(Figure 7a), suggesting that neither •OH nor SO4

•− were the dominant active oxidizing
species for PCA degradation. The p-BQ, with a high reaction rate constant with O2

•−

(kO2
•−

/p-BQ = 0.9–1.0 × 109 M−1 S−1), was selected to explore the possible role of O2
•− in

the reaction system [53]. However, the PCA degradation was not inhibited at all by the
introduction of 1.5 mM or 15 mM p-BQ (Figure 7a), thus excluding the presence of O2

•− in
the 310-MnO2/PMS system. The experimental results suggested that nonradical species
rather than radicals played the dominant role in the PCA degradation. Based on previous
reports, three major nonradical oxidation pathways were proposed, including singlet oxy-
gen (1O2) oxidation, direct electron transfer, and surface-bound active species [13,54–57].
1O2 is a potential active oxidizing species that can be produced during PMS activation
by transition metal oxide or carbon-based material [58–60]. To verify whether 1O2 took
part in the PCA degradation in 310-MnO2/PMS system, FFA, a typical scavenger for 1O2
(k1

O2/FFA = 1.2 × 108 M−1 S−1), was chosen [61]. The addition of 2.5 mM FFA only slightly
inhibited the PCA degradation (Figure 7b). However, increasing the FFA to 75 mM inhibited
nearly 40% of the PCA degradation.
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Figure 7. (a) PCA degradation in the presence of various free radical scavengers and (b) singlet
oxygen scavenger, reaction conditions: (PCA)0 = 1.0 mM, (PMS)0 = 1.5 mM, (MnO2)0 = 0.1 g/L,
without pH adjustment; (c) FFA degradation by the 310-MnO2/PMS system in the presence of PCA,
reaction conditions: (PCA)0 = 0.5–1.0 mM, (FFA)0 = 0.1 mM, (PMS)0 = 1.5 mM, (MnO2)0 = 0.1 g/L,
without pH adjustment; (d) decomposition of PMS in PMS alone, 310-MnO2/PMS, PMS+PCA,
310-MnO2/PMS/PCA systems, reaction conditions: (PCA)0 = 1.0 mM, (PMS)0 = 1.5 mM,
(MnO2)0 = 0.1 g/L, without pH adjustment; EPR signals of different PMS activation system with
the existence of (e) DMPO and (f) TEMP, reaction conditions: (PMS)0 = 1.5 mM, (MnO2)0 = 0.1 g/L,
(DMPO)0 = 0.05 M, (TEMP)0 = 0.1 M, without pH adjustment.
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Further experiments were performed to investigate the removal of FFA with PCA
present in the 310-MnO2/PMS system. Considering that FFA has a high reaction rate
constant with 1O2 (k1

O2/FFA = 1.2 × 108 M−1 S−1), if 1O2 is the dominant active oxidizing
substance in the PCA degradation system, FFA is decomposed preferentially. However, it
was found that the 310-MnO2/PMS system preferentially decomposed the PCA oxidatively,
and the FFA only began to degrade after the PCA was completely decomposed (Figure 7c).
We also investigated the FFA degradation with different PCA concentrations (0.5 mM
and 1 mM). Interestingly, the time when the FFA degradation began was delayed with
increasing PCA concentration due to the preferential degradation of the increased PCA.
These results indirectly indicate that 1O2 is not the main active oxidizing substance. The
inhibition of PCA degradation by FFA is likely to have been due to the high concentration
of FFA altering the surface properties of the catalyst, eventually resulting in the inhibition
of pollutant adsorption and degradation [62].

The corresponding PMS consumption was also determined to reveal the possible PMS
activation mechanism (Figure 7d). A slight decomposition of PMS was observed in the
PMS-only, PMS/PCA, and 310-MnO2/PMS systems. However, in the presence of PCA,
notable PMS decomposition occurred in the 310-MnO2/PMS system, suggesting that both
310-MnO2 and PCA were necessary for efficient PMS decomposition. These results further
excluded the existence of radicals.

2.4.2. EPR Detection and Solvent Exchange Experiment

To shed light on the PMS activation mechanism, EPR tests were conducted using
TEMP to capture 1O2 and DMPO to capture short-lifetime radicals. The absence of classical
radical adduct signals (Figure 7e) further confirmed that •OH, SO4

•−, and O2
•− were

not generated during the reaction. However, a clear six-line spectrum with a large span
was observed in the EPR spectrum, which was attributed to Mn [63]. The ~3500 G signal
was due to the direct oxidation of DMPO to DMPOX instead of a radical attack [32]. The
PMS led to weak triplet signals (1:1:1) due to its small amount of self-decomposition
(Figure 7f) [7]. As the catalysts were introduced into the PMS solution, a remarkable
TEMPO triplet signal was obtained; this is usually employed as evidence for the existence
of 1O2 [21,48]. However, solvent exchange (replacing H2O with D2O) (Figure 8a) did
not accelerate the PCA degradation. As we know, the degradation rate of the oxidative
system based on 1O2 should be faster in D2O than in H2O, since the lifetime of 1O2 in
D2O (20–32 µs) is significantly longer than in H2O (2 µs) [64]. These contradictory results
suggested that the TEMPO signal obtained in the 310-MnO2/PMS system did not prove the
formation of 1O2 [33]. Nardi et al. proposed that it may be misleading to detect 1O2 using
the TEMPO/EPR method, since the excited intermediate also can extract one electron from
TEMP to form TEMP+·, which combines with the dissolved oxygen to generate TEMPO [65].
A similar phenomenon was also observed in the edge-nitrogenated biochar/PDS system, in
which pollutant degradation occurred through the electron transfer process [33]. In addition,
a significant increase in dissolved oxygen (DO) concentration was observed (Figure 8b) in a
typical singlet oxygen system (p-BQ/PMS), which is consistent with the research of Zhou
et al. [66]. However, no significant DO increase occurred in the 310-MnO2/PMS system.
Therefore, 1O2 did not contribute to PCA degradation in the 310-MnO2/PMS system.

2.4.3. Electrochemical Analysis and Sulfhydryl Modification Experiments

According to the above results, other nonradical pathways, instead of 1O2, may
be involved in the 310-MnO2/PMS/PCA system. The electron transfer pathway was
confirmed in some single-atom catalysts, transition metal oxide catalysts, and carbon-based
materials [18,32,33,49]. To further identify the oxidative mechanism in our system, cyclic
voltammetry (CV) experiments were carried out. The current density of the 310-MnO2
changed slightly after adding PMS (Figure 8c). The slight charge rearrangement between
the catalyst and PMS to form a metastable complex might have been responsible for
this [67]. However, an apparent increase in the current density appeared once the PCA was
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introduced, indicating that a current flow formed from PCA to the metastable complex [32].
The interaction between the 310-MnO2 and PMS was confirmed by ATR-FTIR. A red-shift
of about 8 cm−1 was observed at the wavelength of 1095 cm−1 (S-O stretching) when
the 310-MnO2 was added into the PMS solution (Figure S5a), suggesting the formation
of complexes on the 310-MnO2 surface [16,18]. Moreover, both a strong reduction and
oxidation peaks were observed in the CV curves, suggesting the reversibility of the process,
which is essential for continuous PMS activation.
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As mentioned above, the exposed atoms on the {100} and {110} facet were mainly O,
while many Mn atoms were enriched in the surface of the {310} facet. To determine whether
the surface Mn atoms were the sites of PMS activation, the sulfhydrylization reagent 4-
mercaptobenzoic acid was employed to block surface Mn atoms through complexation
between the Mn and the sulfhydryl group [24]. After modification with 4-mercaptobenzoic
acid, a characteristic peak of the thiophenol S-H bond appeared at 2561 cm−1 in the 310-
MnO2 FTIR (Figure S5b), indicating that the modification was successful. In addition,
PCA degradation was almost completely inhibited in the 310-MnO2/PMS system after
surface modification with the -SH group (Figure 8d), confirming that Mn atoms on the
catalyst surface were sites of PMS activation. Thus, in the 310-MnO2/PMS/PCA system,
PMS was adsorbed on the surface Mn sites, forming a metastable complex. Next, the PCA
was adsorbed on the metastable complex surface through a “donor-acceptor complex”
mechanism. There, the 310-MnO2 served as a bridge for electron transfer between the PCA
and the PMS.

2.4.4. DFT Calculations

Crystal facet engineering can modify surface atomic distribution and decrease ad-
sorption energy [19]. To further explore why different crystal facets of α-MnO2 produce
distinct catalytic performances, the adsorption energies of the PMS molecule on the α-
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MnO2 surface were calculated using density functional theory (DFT).The DFT calculation
method is provided in Text S1. The adsorption energies (Eads) of the PMS molecules over
the α-MnO2 with {100}, {110}, and {310} facets were −1.50 eV, −0.41 eV, and −2.11 eV,
respectively (Figure 8e–g). Due to the relatively negative adsorption energy and the highly
exposed surface Mn atoms of the {310} facet, the PMS molecules were easily adsorbed on
the {310} facet to form more metastable complexes, thereby promoting PMS activation and
pollutant degradation.

2.5. Removal of TOC and Proposed Pathway of PCA Degradation

To investigate the mineralization of PCA degradation, the degradation of the total
organic carbon (TOC) in the PCA by the 310-MnO2/PMS system was tested (Figure S6). In
120 min, 67.6% of the TOC was removed, indicating the incomplete mineralization of the
PCA and the generation of intermediates.

Interestingly, the solution changed from colorless to wine-red during the reaction,
indicating the presence of chromophore in the intermediate products, possibly due to the
formation of –N=N–. GC-MS was further used to understand the degradation pathway
of the PCA in the 310-MnO2/PMS system. Possible intermediate products are provided
in Figure S7, and three pathways of PCA degradation are proposed (Figure 9). In the
first pathway (I), one molecule of PCA loses the Cl atom, the other molecule loses the
amino group (–NH2), and they further dimerize to form N-(4-chloro-phenyl)-benzene-1,4-
diamine (a). Next, hydroquinone (b) was produced from the oxidation of (a) [68]. In the
second pathway (II), the PCA molecule was first dechlorinated to produce aniline (c) and
then reacted to form azobenzene (d) [34]. In the third pathway (III), two PCA molecules
dimerized to generate 4,4′-dichloroazobenzene (e). Although further intermediates were
not detected, 4-chloro-phenyl-diazen (f) was reported as an oxidation by-product of (e) [68].
Finally, the PCA and its intermediates were mineralized into H2O and CO2.
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3. Materials and Methods
3.1. Chemicals

All chemicals used in the experiments were analytical (AR)- or HPLC-grade. Detailed
information is shown in the Supporting Information (Text S2).
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3.2. Preparation of α-MnO2 with Different Facets

Synthesis of 310-MnO2: In a typical procedure, KMnO4 (3.161 g, 20 mmol) and
(NH4)2C2O4·H2O (1.421 g, 10 mmol) were mixed in deionized (DI) water (70 mL) un-
der magnetic stirring for 30 min. The solution was then transferred to a Teflon-lined
stainless-steel autoclave and kept at 180 ◦C for 24 h. After the reaction was finished, the
obtained precipitates were further washed several times with DI water and ethanol, and
then dried at 105 ◦C for 24 h.

Synthesis of 110-MnO2: 110-MnO2 was carried out by the same route as for 310-MnO2,
but (NH4)2C2O4 was replaced by (NH4)2SO4.

Synthesis of 100-MnO2: In a typical procedure, MnSO4·H2O (1.352 g, 8 mmol),
(NH4)2S2O8 (1.826 g, 8 mmol), (NH4)2SO4 (1.982 g, 15 mmol), and KNO3 (0.809 g, 8 mmol)
were mixed in DI water (40 mL) under magnetic stirring for 30 min. Next, the mixture
was transferred to a Teflon-lined stainless-steel autoclave and kept at 120 ◦C for 20 h. The
obtained precipitates were further washed several times with DI water and ethanol, and
then dried at 105 ◦C for 24 h.

3.3. Experimental Procedures

All solutions were prepared with DI water. Batch experiments were carried out in
150-millilitre conical flasks containing 100 mL reaction solution with magnetic stirring
(650 rpm). To completely disperse the catalyst into water solution, 10 mg catalyst was
added to 90 mL of DI water and sonicated for 5 min before the catalytic reaction. Next,
10 mL of 10 mM PCA and 46 mg of PMS were added in sequence. At the given time
intervals, 0.5 mL of the mixture was removed and filtered (0.45 um), and the reaction was
terminated by adding Na2S2O3 (1 M, 0.5 mL).

To assess the effect of solution pH on PMS activation, the initial solution pH of the
reaction system was adjusted to the desired value with NaOH (0.1 mol/L) or H2SO4
(0.1 mol/L). Experiments with varying PMS concentrations, amounts of catalyst and
anion species were conducted to investigate the influence of these parameters. Quenching
experiments were carried out utilizing EtOH, TBA, p-BQ, and FFA as quenchers.

3.4. Analytical Techniques

A scanning electron microscope (SEM, SU8010, Hitachi Limited, Tokyo, Japan) was
used to observe the surface morphology of the materials. A transmission electron micro-
scope (TEM, Talos F200X, FEI, Hillsboro, OR, USA) was used to observe the morphology
and exposed crystal facet of the materials. The phase structure of the catalysts was char-
acterized by an X-ray diffractometer (XRD, D8 Advance, Bruker, Karlsruhe, Germany).
X-ray photoelectron spectrometry (XPS, PHI X-tool, ULVAC–PHI, Chigasaki, Kanagawa,
Japan) was used to investigate the chemical valence and composition of the catalysts. The
surface interaction between the 310-MnO2 and PMS was confirmed by Fourier-transform
infrared spectroscopy (ATR-FTIR, Thermo Scientific iD5 and Thermo Scientific Nicolet iS5,
Shanghai Linglu Instrument Equipment Co., Ltd., Shanghai, China).

Pollutant concentrations were determined by high-performance liquid chromatogra-
phy (HPLC) equipped with a reversed-phase C18 column (250 mm × 4.6 mm). Analytical
details for the organic compounds are provided in the Supporting Information (Table S3).
The PMS concentration was determined by the iodide ion color spectrometry [69]. The
manganese ion leaching during the reaction process was detected by ICP-OES (Optima
8300, PerkinElmer, Waltham, MA, USA). The dissolved oxygen concentration in the reac-
tion solution was determined by a portable dissolved oxygen analyzer (ST300D, Ohaus,
Changzhou, China). Total organic carbon (TOC) was measured by an Elementar vario
TOC (Elementar Analysensysteme GmbH, Hanau, Germany). Radicals in solution were
analyzed by electron paramagnetic resonance (Bruker A300, Bruker, Karlsruhe, Germany).
The parameters were set as follows: microwave frequency 9.8752 GHz, sweep width 100 G,
center field 2504.12 G, modulation amplitude 1 G, time constant 327.68 ms, and sweep time
40 s.



Catalysts 2022, 12, 342 15 of 18

4. Conclusions

In summary, three α-MnO2 with different dominant exposed crystal facets were
successfully prepared via the facile hydrothermal route. The prepared 310-MnO2 exhibited
excellent PMS activation performance and extremely high stability. In addition, the 310-
MnO2/PMS system could degrade a wide range of pollutants and remove the target
pollutants effectively in an actual water body. More importantly, the 310-MnO2/PMS
oxidative system exhibited a wide pH adaptation range and showed good selectivity in the
presence of natural organic matter and inorganic anions. The quenching experiments, EPR
analysis, solvent exchange, and CV curves demonstrated that mediated electron transfer
was the dominant mechanism in the PCA degradation. During the reaction, the electron
was transferred from the adsorbed PCA (as an electron donor) to the adsorbed PMS (as
an electron acceptor) on the catalyst’s surface with the 310-MnO2 acting as an electron
transporter. The Mn atoms on the catalyst surface were confirmed to be sites of PMS
activation by modifying MnO2 with -SH group. The DFT calculations verified that PMS
molecules can be strongly adsorbed on the {310} facet with low adsorption energy, thereby
promoting PMS activation and pollutant degradation. In this study, we demonstrated that
for transition metal oxides, the dominant exposed facets significantly affect PMS activation.
The reaction mechanism we discovered provides guidance for the design of novel and
efficient wastewater treatment catalysts.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal12030342/s1, Text S1: DFT Calculation Method; Text S2:
Reagents used in the experiment; Text S3: Experimental sample preparation; Table S1: Properties of
the three MnO2 catalysts; Table S2: Chemical and surface compositions of facet engineered MnO2
before and after the reaction; Table S3: Analytical details for organic compounds by HPLC; Figure S1:
The N2 adsorption/desorption isotherms of the three MnO2 catalysts; Figure S2: EDS-mapping
images of (a) 100-MnO2, (b) 110-MnO2, and (c) 310-MnO2; Figure S3: (a) Effect of MnO2 dosage
in 310-MnO2/PMS system and (b) correlation of the rate constants to the MnO2 dosage; Figure S4:
The zeta potential curves of the 310-MnO2; Figure S5: (a) ATR-FTIR spectra demonstrating the PMS
complexation on the catalyst surface and (b) ATR-FTIR spectra of 310-MnO2 solid before and after
modifying with -SH group; Figure S6: TOC removal of PCA degradation with 310-MnO2/PMS
system; Figure S7: Mass spectra and proposed structure of possible intermediate products.
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