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Abstract: The electrochemical urea oxidation reaction (UOR) is crucial for determining industrial
and commercial applications of urea-based energy conversion devices. However, the performance of
UOR is limited by the dynamic complex of the six-electron transfer process. To this end, it is essential
to develop efficient UOR catalysts. Nickel-based materials have been extensively investigated owing
to their high activity, easy modification, stable properties, and cheap and abundant reserves. Various
material designs and strategies have been investigated in producing highly efficient UOR catalysts
including alloying, doping, heterostructure construction, defect engineering, micro functionalization,
conductivity modulation, etc. It is essential to promptly review the progress in this field to signif-
icantly inspire subsequent studies. In this review, we summarized a comprehensive investigation
of the mechanisms of oxidation or poisoning and UOR processes on nickel-based catalysts as well
as different approaches to prepare highly active catalysts. Moreover, challenges and prospects for
future developments associated with issues of UOR in urea-based energy conversion applications
were also discussed.

Keywords: nickel-based catalysts; urea oxidation reaction; direct urea fuel cells; energy conversion;
nanocomposites

1. Introduction

Urea, a type of nontoxic organic compound that contains carbon, nitrogen, oxygen, and
hydrogen elements, is used as an extremely important nitrogenous fertilizer in agricultural
production [1,2]. From a biomedical view, it is an important component in urine; as a
metabolite of the human body, it is an important metabolic substance [3]. The amount of
urea is closely associated with the health of individuals [4]. Precise early-stage detection
of urea in urine plays a significant role in medical diagnosis as it can effectively indicate
the status of the human body [5,6]. In terms of environmental pollution, large quantities of
untreated wastewater contaminated with urea, including industry production and human
as well as animal urine, can cause serious environmental problems as it decomposes
into ammonia with nitrogen-based pollutants (e.g., NO, NO2) [7–9]. Urea as an energy
carrier is non-flammable, easily stored and transported, and has an energy density of
16.9 MJ L−1 which is 10 times than that of hydrogen. From an energy utilization perspective,
it can release huge amounts of energy when used for fuel combustion [10,11]. Therefore,
effective detection, treatment, and consumption of urea is of great significance to industrial
production, environmental treatment of urea-rich wastewater, and even healthcare [12,13].

Traditional urea treatments including adsorption [14–17], hydrolysis [18,19], biodegra-
dation [20,21], and chemical oxidation [22–24] require excessive energy consummation and
high-cost equipment-dependent processing, which greatly inhibit broader applications of
these methods. These methods are not cost effective or sustainable for the development
of green economies [25–27]. With the development of advanced technology and research,

Catalysts 2022, 12, 337. https://doi.org/10.3390/catal12030337 https://www.mdpi.com/journal/catalysts

https://doi.org/10.3390/catal12030337
https://doi.org/10.3390/catal12030337
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/catalysts
https://www.mdpi.com
https://doi.org/10.3390/catal12030337
https://www.mdpi.com/journal/catalysts
https://www.mdpi.com/article/10.3390/catal12030337?type=check_update&version=1


Catalysts 2022, 12, 337 2 of 23

electrolysis of urea has become a powerful method that takes advantages of the facile
working, huge processing capacity, and non-toxic production of CO2, N2, and H2O [28,29].
More than that, the electrocatalysts in UOR processing can easily be realized without the
utilization of noble metals under alkaline solution, which immensely reduces the cost and
increases the possibility of catalyst application. On the other hand, UOR can be performed
for direct urea fuel cell (DUFC) using an anodic reaction, which converts the chemical
energy of urea directly into electricity [30–32]. During the above procedure, the urea-rich
industrial wastewater or even human or animal urine can be added as electrolytes to
achieve simultaneous wastewater treatment and electricity generation (Scheme 1) [33–36].
Brief and basic chemical reactions in DUFC can be classified by the following equations:
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Scheme 1. An illustration of urea-based energy conversion systems, including urea electrolysis and
urea fuel cell.

Cathodic reaction:

3
2

O2 + 3H2O + 5e_ → 6OH_ Ecanthode = 0.4 V vs. NHE

Anodic reaction:

CO(NH2)2 + 6OH_ → 5H2O + N2 + CO2 + 6e_ Eanode = −0.746 V vs. NHE

Overall reaction:

CO(NH2)2 +
3
2

O2 → CO2 + 2H2O + N2 Ecell = 1.146 V

From the above equations, the DUFC has high open-circuit voltage (OCV) with 1.146 V
and a high theoretical efficiency of 102.9% because of other factors such as absorption heat
from surrounding environments [37–39].
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For electrocatalysts, nickel-based materials are considered the best non-noble cat-
alysts, with promising applications for UORs in alkaline electrolytes [9,40–42]. Owing
to the activity and durability of nickel-based materials, they are far from wide commer-
cialization [43–46]. The basic principles and rules that are commonly used in designing
nickel-based materials to improve electrocatalysis performance are as follows: (i) increasing
activity by alloying with other metals; (ii) increasing intrinsic catalytic activity and sites by
complexing with other inorganic elements and microstructure designs; and (iii) increasing
the surface area to improve activity and stability by complexing with carbon composites.

Based on literature sample survey data, the research field still lacks a comprehensive
and in-depth summary of state-of-the-art design and synthesis strategies of nickel-based
catalysts for UOR. Therefore, this review starts with the electrochemical characteristics of
nickel in alkaline media and summarizes the recent progress in designing concepts and
basic principles of nickel-based materials from elaborately selected examples with detailed
discussions in the following sections. This review emphasizes the catalytic mechanism as
not just an intuitive statistic result of UOR performance. Challenges and development are
presented for research avenues to use advanced UOR catalysts.

2. Mechanism of UOR in Alkaline Media on Ni-Based Catalysts

Nickel-based catalysts have been widely applied in electro-oxidation of urea as alter-
natives to precious metals. Therefore, understanding the mechanism processing of UOR in
alkaline media is key for preparing highly active catalysts.

2.1. The Oxidation and Electrochemical Oxidation of Metallic Nickel

As a more active element than copper, Ni corrodes spontaneously into thin-layer
structures of NiO/Ni(OH)2 in humid air following the below equations:

Ni + H2O→ (NiOH)ad + H+ + e−

(NiOH)ad + H2O→ (NiOH·H2O)ad

(NiOH·H2O)ad → Ni(OH)2 + H+ + e−

During cyclic voltammetry of metallic Ni electrodes in alkaline solution (typical KOH),
the NiO/Ni(OH)2 layers expand with OH− adsorbed on the surface of intrinsic thin layers
under positive scan at a high voltage. The NiOOH layer eventually forms as a result of
penetration of OH− into NiO/Ni(OH)2 layers at a higher voltage. A typical oxidic peak
occurs around 1.45 V vs. RHE along with the maximum current achieved in the reversible
Ni2+(Ni(OH)2)/Ni3+(NiOOH) transformation following the below equation:

Ni(OH)2 + OH− ↔ NiOOH + H2O + e−

The metastable hydrous α-Ni(OH)2 slowly converts into stable anhydrous β-Ni(OH)2
with forward scan at a high voltage. The latter is partially oxidized to form γ-NiOOH
around 380 mV vs. Hg/HgO and accumulated on the surface of Ni electrodes. Accordingly,
γ-NiOOH is reduced to corresponding β-Ni(OH)2 under backward scan. A significant
current increase occurs at voltages higher than 380 mV vs. Hg/HgO in alkaline urea
solutions, indicating that γ-NiOOH can be an active substance. Hence, higher anodic peak
voltage with positive scan indicates lower activity against poisoning, but lower anodic
peak voltage indicates higher catalytic activity. Meanwhile, KOH was found to be the better
electrolyte for UOR compared to LiOH or NaOH, since K+ ions promote performance
of UOR by releasing C–O bonds and facilitating the detachment of CO2 which is a rate-
determining step in UOR. UOR over Ni catalysts in alkaline solutions occurs through two
pathways, direct or indirect, as follows:

1. The direct mechanism was proposed by Vedharathinam et al. using potential-dependent
in situ surface-enhanced Raman spectroscopy technology. As shown in Figure 1A, two distinct
peaks of Ni−–O bending and stretching appeared on 479 and 559 cm−1 at 300 mV vs. Hg/HgO
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in urea-free KOH electrolytes indicating NiOOH formation. Meanwhile, the two peaks lost
intensity if voltage peaked above 520 mV vs. Hg/HgO, suggesting an OER instead of an
oxidation reaction. The original peaks shifted to 476 and 558 cm−1 and new peaks of symmetric
urea C–N stretch arose at 1003 cm−1 that decreased in intensity with increasing voltage,
indicating UOR on NiOOH. The CO2 produced by UOR and dissolved in solution was
confirmed by detection CO3

2+ at 1062 cm−1 at 500 mV vs. Hg/HgO. The postulated reaction
processes are shown in the following equations:
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Reproduced with permission [47]. Copyright 2013, Elsevier Ltd.

[NiOOH·CO(NH2)2]ads + 6OH− → [NiOOH·CO2]ads + N2 + 5H2O +6e−

NiOOH + OH− → [NiOOH·OH]ads + e−

[NiOOH·CO2]ads + [NiOOH·OH]ads → 3NiOOH + CO3
2− + H2O

[NiOOH·CO2]ads + 2[OH−]sol → NiOOH + CO3
2+ + H2O

2. The indirect mechanism via catalyst regeneration assumes that active sites of
NiOOH oxide to form Ni(OH)2 in reaction with urea, which results in loss of the active
sites. The postulated processes are shown in the following equations:

6Ni(OH)2 + 6OH− ↔ 6NiOOH + 6H2O + 6e−

6NiOOH + CO(NH2)2 + H2O→ 6Ni(OH)2 + N2 + CO2

2.2. Inactivation or Poisoning of Nickel-Based Catalysts

The intermediate of CO or CO* produced in UOR processing can be easily and strongly
absorbed by nickel-based catalysts and block active sites, from which inactivation or
poisoning occurs [36]. Common methods such as cyclic voltammetry and polarity switching
have been used to recover active sites. Vase et al. discovered that Ni could be activated
by polarity switching at 1 min intervals 4 times with two cycles of 2 min intervals and
maintaining catalysts when worked as anode for 1 h. In addition, the activity and stability
of Ni-based catalysts could be significantly improved by increasing the temperature during
the aforementioned activation process from 33 to 66 ◦C or adding LiOH into electrolytes.
Other methods such as cyclic voltammetry also regenerate activity through desorption of
the surface species for intermediates of CO or CO* in reverse scan.

In the following section, we introduce various methods to enhance the activity of
Ni-based catalysts through alloying, oxidation, or composite to achieve the current density,
decrease onset potential or andic peak potential, etc.
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3. Tailoring Ni-Based Catalysts for UOR

Alloying different metals such as hybrids with non-metal elements or composites
with other metallic oxides is a common strategy to enhance catalytic activity of Ni-based
catalysts [30–48]. A few studies have investigated non-Ni-based catalysts. The typical three
electrode system is used to evaluate the activity of UOR and which catalyst directly or
indirectly supports highly conductive substrates such as glass carbon, nickel foam, and
carbon cloth as work electrode, reference electrode (Ag/AgCl, Hg/HgO, or Hg/HgSO4),
and counter electrode (Pt plat, mesh, wire or carbon rod) [12].

3.1. Other Metals Compounded with Nickel Hydroxides

There have been many endeavors to design hierarchical layered double hydroxides
(LDHs), especially Ni(OH)2 including α or β types which are nanostructures that have
been widely used in UOR with abundant edge sites. However, the low electronic con-
ductivity and relatively sparse catalytic edge sites of Ni(OH)2 limits its catalytic activity.
Physicochemical structural modification has been used to improve its conductivity and
catalytic activity, such as interlayer charge compensating with different inorganic or organic
anions (NO3

−, CO3
2−, Cl−, SO4

2−, etc.), embedding various valence transition metal-based
ions into layered structures and thus changing the molar ratio of M2+/M3+. Wang et al.
fabricated a novel hybrid 3D hierarchical architecture on porous NF, a fullerene quantum
dot-decorated CoNi–LDH nanosheet (noted FQD/CoNi–LDH/NF), by a one-step self-
assembly process for both water splitting and UOR. Benefitting from the advantage of
synergistic effects between FQD and CoNi–LDH and the inherent activity of CoNi–LDH,
the as-obtained exhibited impressive activity for overall urea electrolysis (Figure 2A). The
catalyst required only 1.59 and 1.45 V to achieve 10 mA cm−2 for water or urea elec-
trolysis as both anode and cathode [49]. Xie et al. designed hierarchical wire-on sheet
Ni(OH)2 nanoarrays with optimal cerium (Ce) doping and tailoring phase regulation
(Ce:α-Ni(OH)2) via the hydrothermal method in Ni/Ce salts with urea in presence on
NF, which showed high performance for UOR (Figure 2B). Detailed characterization indi-
cated that α-Ni(OH)2 with local Ni3+ species provides higher inherent UOR activity than
β-phase and further promoted via Ce-doping [50]. Kim et al. demonstrated amorphous
and porous 2D NiFeCo–LDH directly grown on NF by the electrodeposition method for
efficient electrolysis of both UOR and water splitting (Figure 2C). Porous confinement in
2D orientation and amorphous and synergistic effects resulted in the excellent performance,
where current density of 10 mA cm−2 for overall water splitting required 1.57 V in 1 M
KOH and 0.280 V (vs. SCE) to drive 10 mA cm−2 for UOR [51]. Cao et al. proposed a
hierarchical triple-layered heterostructure with NF as the bottom layer, Ni(OH)2 as the top
layer, and MnCo2O5 nanosheet in the middle via direct hydrothermal, calcination, and
hydrothermal processes (noted as MnCo2O5@Ni(OH)2/NF) (Figure 2D). The unique inter-
layer structure and synergistic effects between the three parts facilitated the transfer of ions
and molecules and the rapid release of gas; the catalyst presented superior performance for
UOR, achieving 650 mA cm−2 and a small onset potential of 0.19 V (vs. Ag/AgCl) in 5 M
KOH and 0.33 M urea electrolyte [52]. Wang et al. reported that Ni(OH)2 or nanosheets
and nanowire directly grew on NF (noted as Ni(OH)2 NS@NW/Ni foam) via a surface
engineering strategy using 3D anodic electrodes for superior urea electrolysis (Figure 2E).
The integrated electrode afforded a current density of 10 mA cm−2 on a potential of 0.34 V
(vs. SCE) in alkaline electrolytes with urea, surpassing most reported UOR catalysts [53].
Yang et al. systematically synthesized NiCo layered double hydroxide (NiCo–LDH) with
different intercalant such as NO3

−, CO3
2−, and Br− (Figure 2F). Electrocatalytic results

for NiCo–LDH with NO3− intercalant showed the best electrocatalytic performance and
selectivity along with low onset potential and high faradaic efficiency and durability for
UOR. The characterization of structure revealed that larger spacings play a pivotal role
in high activity and selectivity for UOR [54]. Zhang et al. proposed a novel material
of MoP@NiCo–LDH/NF on NF for a bifunctional electrocatalyst that is synthesized via
phosphorylation after NF hydrothermal reaction with ammonium molybdate followed
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by electrodeposition with solutions containing Ni and Co ions. Electrochemical results
indicated that MoP@NiCo–LDH/NF–20 had better performance than others for water
splitting and UOR, which only needs 1.405 V to achieve 100 mA cm−2 [55]. Dau et al.
explored the structural effect of Mn in NiMn nanostructures containing different Mn ion
decompositions on carbon fiber paper (CFP) via the ultrasonic radiation method following
treatment by electrochemical deposition of the Ni-oxyhydroxide layer (for Ni) (Figure 2G).
The strong intimate contact between CFP and the catalyst led to highly efficient charge
and mass transfer, which was an advantage for urea electrocatalysis. The study provided a
mechanistic avenue for designing and fabricating Ni-based catalysts with high activity [56].
Gu et al. designed ultrafine-grained NiCo–LDH nanosheets with partial exfoliation via
structural engineering involving transforming unstable EDTA-intercalated NiCo–LDH into
stable NiCo–CO3

2−–LDH in 1 M KOH as electrocatalysts for UOR. The incorporation of Co
content effectively improved conductivity, exposed numerous accessible crystal edge sites
on the basal plane, and promoted the Ni3+/Ni2+ redox reaction. In addition, the catalyst
delivered a current density of 10 mA cm−2 only at the potential of 0.341 V vs. Hg/HgO [57].
Zhang et al. designed Co element-doped Ni(OH)2 hybrid films (noted as Cox–Ni(OH)2
NPs/CF) that assembled 3D networks on Cu foam with ultrafine nanoparticles efficiently
for both urea-assisted overall water splitting. The systematic investigation found that the
content of Co-doped films not only influenced the morphological structure with abundant
activity sites but also modified the electronic structure of host films, providing lower onset
potential for UOR [58]. Wu et al. fabricated hierarchical, porous, and ultrathin Ni(OH)2
nanostructures that are grown in situ on NF as high-performance and stability electrocata-
lysts for UOR (Ni(OH)2@NF). Consequently, the electrode provided a current density of
10 mA cm−2 at 1.35 V vs. RHE [59]. Tang et al. designed hierarchical Cu-incorporated α-
Ni(OH)2 nanoarrays as high performance electrocatalysts for both water splitting and UOR.
Benefitting from the unique 1D–2D–3D structure, the catalyst provided abundant activity
sites, fast charge and mass transporting, and pre-oxidation processes of Ni3+ to Ni2+ [60].
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3.2. Alloying Nickel-Based Catalysts

The activity of nickel-based catalysts for UOR are dramatically improved by alloy
and structure modification with other metals such as noble metals Pt [61], Ru, Ag, Pd, Au,
Ir, and Rh [62], and non-noble metals such as nickel-based NiCo [63–67], NiMn [68–70],
NiZn [71,72], NiWC [73,74], NiFe [75,76], NiCd [77], and NiCr [78,79]. The alloyed nickel-
based catalysts significantly enhanced activity and stability compared to a single nickel.
This finding can be attributed to the electronic effect exerted by the second metal which
reduces onset potential.

3.2.1. Alloying with Noble-Metal Nickel-Based Catalysts

Nickel-based materials alloyed with noble metals can effectively reduce the amount of
precious metals required to maintain high performance for UOR. While earth-abundant
inexpensive catalysts are presently used as anode materials for UOR and DUFC, catalytic
activity still suffers from large-scale application. Low content noble metals and their alloys
still possess extremely important research value. Kim et al. synthesized noble-metal-
and nickel-based alloy carbon materials including Pd–Ni/C, Ag–Ni/C, and Pt–Ni/C via
a co-sputtering method using a shadow mask (Figure 3A). After delicate tailoring, the
Pd–Ni/C catalyst with a ratio of 60:40 showed the highest catalytic performance and
stability [62]. Kim et al. synthesized nanocomposites of Ni/Pd-supported bead-carbonized
nanofibers via electrospinning polyvinyl alcohol (PVA) followed by calcination under
argon atmosphere (Figure 3B). These Ni/Pd-supported bead-carbonized nanofibers can
substitute the costly precious metal (Pt) as they show high activity for UOR [80]. Wang
et al. synthesized ultrathin NiFeRh–LDH nanosheets on the surface of NF via doping Rh
into NiFe–LDH composites through the one-pot ethylene-glycol-assisting hydrothermal
method. UOR electrocatalysis by NiFeRh–LDH nanosheets to achieve 10 mA cm−2 only
requires 1.346 V (vs. RHE) in 1 M KOH with 0.33 M urea, and a constructed urine-mediated
electrolysis cell needs a potential as low as 1.35 V to achieve 10 mA cm−2 (Figure 3C).
Density functional theoretic (DFT) showed larger adsorption-free energy of urea on NiFeRh–
LDH than on NiFe–LDH, indicating that rich oxygen vacancies of NiFeRh–LDH greatly
improved UOR kinetics [81]. Wang et al. reported that in situ growth of low-Ir-content-
doped Ni-based MOF ultrathin nanosheets on NF by the solvothermal method showed
excellent performance in UOR. High-valence and low-content Ir cations incorporated into
Ni–MOF structures can result in a more electrochemically active surface area, accelerated
electron transfer, and chemical stability (Figure 3D). These advantages contribute to the
highly efficient electrocatalytic performance of UOR, which achieves 10 mA cm−2 at
1.349 V in 1 M KOH with 0.5 M urea electrolytes and satisfactory stability [82]. Hong
et al. synthesized 3D NiCo–LDH NSAs with Ag0 or Au0 and Pd0 intercalations by a
hydrothermal treatment and liquid phase reduction via sodium borohydride. Improved
activity in UOR can be attributed to heterostructures that contribute to the synergetic effect
between support and doped nanoparticles [83].
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3.2.2. Alloying with Non-Noble-Metal Nickel-Based Catalysts

Nickel-based alloys especially with non-noble-metal materials have shown higher
current density and lower oxidation potentials for UOR compared to single-metal nickel-
based catalysts. Additionally, various novel nickel-based catalysts based on morphology
modification have been developed; e.g., nickel nanoribbons [84], nickel-carbon sponges [85],
nickel nanowires [86,87], and nickel nanoparticles [75]. Al-Deyab et al. synthesized NiMn
nanoparticle-decorated carbon nanofibers through calcination, and electrospun mats com-
posed with nickel and Mn ions and poly(vinyl alcohol) at 850 ◦C as effective electrocatalysts
for UOR. The Mn-containing nanofibers distinctly enhanced electrocatalytic activity of UOR
(Figure 4A). The electrochemical measurements indicated achievement of current densities
of 300 mA cm−2g−1 with an initial potential of 290 mV (vs. Ag/AgCl) [69] Yoon et al.
developed a novel free-standing Ni- and Cr-impregnated nanofiber by electrospinning poly-
acrylonitrile (Figure 4B). Further electrochemical measurements showed that 40% doping
Cr-based NiCr4–CNT@C led to the best catalytic performance, achieving peak current den-
sities of 145.5 mA cm−2 at 0.62 V (vs. SCE) [78]. Xia et al. studied a bifunctional NiMo alloy
nanotube for efficient hydrogen production as well as UOR via the hydrothermal and sub-
sequent calcination process under Ar/H2 atmosphere (Figure 4C). Benefiting from excellent
metallicity and electronic structure, the Mo center was identified as the main activity site for
urea chemisorption and O–H bond. The catalysts showed ultralow potentials of −44 mV
and 1.36 V (vs. RHE) to achieve 10 mVcm−2 [88]. Wei et al. designed a NiMo@ZnO/NF
electrode with ZnO as the template and a core covered by NiMo alloys via electrodeposition.
A 3D hierarchical NiMo alloy arrayed on nickel foam as a microrod for high-performance
HER and UOR was a bifunctional catalyst which only required −110 mV and 1.405 V
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to achieve 10 mA cm−2 towards HER and UOR, respectively [89]. Liu et al. designed
bimetallic NiCo/Cr nanoparticle-encapsulated carbon nanofibers via electrospinning and
carbonization. The trimetallic (CoNi/Cr) system showed the highest current density and
the peak current density of 21.34 mA cm−2 [90]. Arandiyan et al. developed free-standing
Ni–Co alloy nanowire arrays with strong adherence on the Ti substrate that act as current
collectors using modified template-assisted electrodeposition. The as-obtained sample
during optimized possesses showed low onset oxidation potential of 0.372 V (vs. Hg/HgO)
and peak current density of 322.82 mA cm−2 [91]. Chen et al. proposed a novel nickel-iron
alloy nanoparticle encapsulated by carbon spheres on 3D microporous nickel foam (NF)
via direct carbonization of nickel-organic frameworks (Figure 4D). An ultrathin layer of
nitrogen-doped carbon which encapsulated on NiFe alloy nanoparticles tightly attached 3D
NF and alloyed, allowing electrolyte migration and diffusion into hollow carbon spheres
and increasing the performance for UOR [92]. Liu et al. designed nitrogen-doped carbon
sheets supporting Ni@NiO–Cu@CuO composites via calcination of Ni- or Cu-containing
metal-organic frameworks as bifunctional hybrid electrocatalysts. Owing to the syner-
gistic effects of electrochemical conductivity, heteroatom-doped carbon composites and
highly active mixed metals with their oxide composites exhibited superior performance
and stability for UNFC [93]. Schechter et al. synthesized Ni- and Sn-dendrite catalysts
by direct electrodeposition of Ni on Sn-dendrite applications for UOR (Figure 4E). The
as-obtained catalyst showed current densities of 44 mA cm−2 on 0.55 V, owing to the lower
charge-transfer resistance in Ni and Sn dendrites [94].Catalysts 2022, 12, x FOR PEER REVIEW 10 of 23 
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3.3. Heteroatom Modified Nickel-Based Catalysts
3.3.1. Nickel-Based Chalcogenides

Chalcogen elements including O, S, Se, and Te with obvious metallic or non-metallic
characteristics that have formed compounds with nickel elements are regarded as excellent
candidates for UOR due to unique electron properties and good conductivity. Feng. et al.
demonstrated a sample freeze-drying and annealing strategy to tune phase the struc-
ture of graphene, which supported Ni–NiO nanoparticle systems in efficiently boosting
UOR performance (Figure 5A). The results showed that 450 ◦C was the best annealing
temperature for performance since it increases the synergistic effect and conductivity of
the Ni–NiO system [95]. Wang et al. fabricated Ni3S2 nanowires directly grown on NF
by one-step hydrothermal sulfurization. Ni3S2@NF displayed excellent catalytic activity
for both UOR and HER in 1 M NaOH with 0.33 M urea; it achieved 100 mA cm−2 and
only need 360 mV overpotential [96]. Lu et al. proposed a unique strategy to control
the synthesis of the different phases of NiTe on NF coated with GO. The electrocatalyst
showed advanced activity at low potentials of 1.33 V for UOR in a mixed electrolyte of 1
M KOH and 0.33 M urea (Figure 5B). DFT calculations revealed the essential relationship
between metallicity, ultrahigh conductivity of NiTe, and different binding interactions with
CO2 in UOR [89]. Li et al. successfully fabricated NiTe2/Ni(OH)2 hybrid nanosheets via
hydrothermal reaction on carbon fiber cloths (Figure 5C). The unique and strong electron
synergistic interaction between NiTe2 and Ni(OH)2 led the as-fabricated catalyst to achieve
10 mA cm−2 with a low overpotential of 73 mV for UOR in 1 M KOH with 0.33 M urea [97].
Wang et al. prepared a bifunctional electrocatalyst with NiCo–BDC nanosheet arrays that
were covered by a thin film of Ni–S on NF substrates via a one-step hydrothermal process
(Figure 5D). The as-obtained catalyst presented promising catalytic activity and stability for
both OER and UOR, which reached a current density of 10 mA cm−2 at a small potential of
1.31 V [98]. The secondary transition of metal into monometallic chalcogenides has been
introduced as a strategy to tailor electronic and intermediate absorption energy to promote
catalytic performance. Chen et al. developed self-supporting caterpillar spinal NiCo2S4
arrays on nanosheet skeletons that were used to create trifunctional electrocatalysts for
HER, OER, and UOR. The catalyst only needed 0.358 V vs. SCE to reach a current density of
50 mA cm−2 for UOR [99]. Liu et al. designed 3D NiO/c–ESM nanocomposites using NiO
immobilized in carbonized eggshell membranes through a two-step method. Carbonized
3D networks provide more catalyst surface area and activity sites, which enables wetting
of the electrolyte and exhibits high selectivity and stability for UOR [100].
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3.3.2. Nickel-Based Nitrogen-Element-Doped Compounds

Nitrogen element compounds with nickel, especially N and P, have extremely en-
hanced charge density states around the Fermi level which endows it with high electrical
conductivity, beneficial for electrocatalytic processes in terms of electron transfer rate.
Numerous efforts have been devoted for N- and P-based nickle compounds to modulate
electronic structure and geometric effect to improve UOR electrocatalytic performance.
Mei et al. demonstrated a novel bifunctional MOF-derived Ni3N, which firstly synthesizes
Ni(OH)2 on NF by hydrothermal reaction followed by calcination (Figure 6A). The 3D
catalyst was shown to be highly active and durable for UOR, requiring 1.337 V to achieve
10 mA cm−2 [102]. Sun et al. proposed a method using porous Ni3N nanosheet arrays on
carbon cloths (CC), called Ni3N/CC, via nitridation with NH3 from a Ni(OH)2 nanoarray
precursor on CC. Ni3N/CC exhibited high and durable performance for UOR and achieved
10 mA cm−2 with only 1.35 V in 1 M KOH with 0.33 M urea [103]. Hong et al. developed
carbon-doped hetero-structured Ni2P nanoparticles (named C@Ni2P) by a hydrothermal
strategy and tailored by surface engineering of peapod-assisted nanorods and nanoparti-
cles. C@Ni2P presented high performance for UOR in terms of current density and initial
potential. These outcomes can be attributed to a higher surface area which leads to more
accessible active centers and decreased blocking effect [104]. Cao et al. synthesized a porous
Ni2P nanoflower which was supported on NF (Ni2P@Ni foam) by a hydrothermal method
and phosphating strategy (Figure 6B). After delicately tailoring the catalyst structure, the
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Ni2P@Ni foam reached peak current density of 750 mA cm−2 with initial potential of 0.24 V
(vs. Ag/AgCl) and superb stability in 0.60 M urea with 5.00 M KOH solutions [105].
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3.3.3. Nickel-Based Sulfides and Nitrogen-Dual-Doped Compounds

Nickel-based sulfides have been widely researched for UOR due to low cost, environ-
ment benignity, and high electrocatalytic activity. Nevertheless, poor electrical conductivity,
low intrinsic activity, and less active site exposure restricted their widespread applica-
tion. Incorporating nitrogen elements including N and P can efficiently tailor the electron
structure of inner sulfides, influencing the catalyst structure and creating abundant active
sites to enhance intrinsic activity. Feng et al. designed an activity catalyst by constructing
nickel sulfides doped by N, simultaneously using amidino thiourea and thioacetamide
as S and N sources for the catalyst fabrication process (Figure 7A). Benefiting from high
activity, favorable kinetics, and rapid electron transfer leading to interfacial coupling and
synergistic effect, the as-prepared N-doped NiS/NiS2 achieved 100 mA cm−2 at 1.47 V
for UOR [106]. Sun et al. reported a novel bifunctional Ni2P/Ni0.96S microsphere cluster
structure on nickel foam that was synthesized through two calcination steps (Figure 7B).
The unique synergistic effect between Ni2P and Ni0.96S improved the performance of UOR
and HER in terms of charge transfer resistance and number of exposed active sites, and
we obtained 100 mA cm−2 with a voltage of only 1.453 V, lower than those of 186 mV
in 1 M KOH without 0.5 M urea [107]. Liu et al. designed growing coaxial Ni/NiS2- or
Ni3S2@N-doped carbon nanofibers on NF as free-standing electrodes that presynthesized
amorphous Ni3S2-coated N-doped nanofibers and crystalline Ni3S2 nanoparticle shells by
annealing in Ar. The metallic Ni nanoparticles were integrated into the shell during the
annealing process which mixed Ar/H2 into Ar gas under high temperatures (Figure 7C).
The as-obtained electrodes displayed efficient HER and UOR performance, serving as the
anode and cathode, respectively. The synthesized catalysts delivered a high current density
of 20 mA cm−2 at 1.5 V, outperforming most previously researched electrocatalysts for
urea electrolysis [108].
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3.3.4. Heteroatom-Doped Nickel-Based Metal Compounds

Constructing nickel-based sulfide, oxide, and nitride hybrid nanostructures with other
non-noble transition metals can effectively synergize their strengths to achieve superior
activity and stability for UOR. Hou et al. reported a 3D hybrid nanostructure supported
on NF, which was prepared by two-step calcination at 800 ◦C via immersion in an am-
monium tetrathiomolybdate solution and at 400 ◦C in an ammonia atmosphere. The
N–MoO2/Ni3S2 hybrid with a particle grown on NF showed high activity and robust
durability for both HER and UOR, achieving 100 mA cm−2 with only 2.08 V, as well as a
high biomass conversion ratio over 90% [109]. (Figure 8A) Yu et al. synthesized two types
of nickel-molybdenum-based nanocomposite catalysts, i.e., NiMoO–Ar and NiMoO–H2,
for high efficiency and performance in HER and UOR, fabricated via a gas-selected cal-
cination process using NiMoO4·xH2O nanorods as precursors and model materials. An
electrolyze composed of NiMoO–Ar and NiMoO–H2 as anode and cathode achieved a
current density of 10 mA cm−2 with only 1.38 V and showed higher stability than the
current best noble-metal-free electrocatalysts [1]. Shi et al. successfully prepared lantern-
like porous and hollow NiO and Ni0.9Fe0.1Ox microspheres composed of 2D nanosheets
with ultrahigh SSA and ECSA using a coprecipitation strategy (Figure 8B). The as-obtained
catalysts showed excellent catalytic activity for both HER and UOR and reached a current
density of 10 mA cm−2 while only requiring 1.455 V for overall urea splitting [110]. Cao
et al. successfully constructed in situ vertical growth of thorny leaf-like NiCoP on CC (2D
nanosheets supported by 1D nanowires named NiCoP/CC) as highly efficient bifunctional
electrocatalysts (Figure 8C). Because of the unique hierarchical structure composed of 1D
nanowires, 2D nanosheets, and 3D CC substrate as well as the synergistic effect between
Ni and Co, the electrocatalyst showed excellent performance for both HER and UOR,
with a current density of 10 mA cm−2 at 1.42 V when used as the cathode and anode for
overall urea splitting electrolyze [111]. Liu et al. provided a method that achieved a partial
substitution of S in NiMoO4 on NF (Figure 8D). Results of the electrocatalytic measure-
ment and theoretical analysis showed that the electronic structure was extremely induced
by S around density states near the EF, which optimized the NiMoO3S/NF catalyst and
displayed better inherent kinetics as well as high catalytic activity [112]. Shahrokhian et al.
synthesized flower-like structures (NixCo2-xP/C) in developing an MOF-carbon-based
composite (Figure 8E). The authors utilized in situ emulsion polymerization of the mixture
of aniline and pyrrole in the presence of Triton X-100 and followed with a carbonization
process. Owing to the unique and novel electrocatalysts comprising 3D nanostructures,
eNixCo2–xP/C@HCNs only needed 1.33 V to achieve 10 mA cm−2 in 1 M KOH containing
0.33 M urea [113]. Wen et al. designed and synthesized hybrid nanostructures composed
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of nitrogen-doped carbon sheets via direct annealation of Cu- and Ni-containing metal
organic frameworks (MOFs). The as-synthesized nanohybrid showed excellent electro-
catalytic activity for both UOR and nitrate reduction reaction (NRR) in alkali and acidic
electrolytes, and urea-nitrate fuel cells (UNFCs) exhibited improved fuel cell performance
of 22.55 ± 2.3 mW cm−2 for both the cathode and anode [93]. Lei et al. designed and
successfully prepared 3D hierarchical Ni4N/Cu3N nanotube array structures on copper
foam (CP) that exhibited excellent performance for both HER and UOR and achieved a
current density of 10 mA cm−2 on−0.098 V and 1.34 V, respectively. The high activity could
be attributed to high morphologic and electrochemical characterization of metal nitrides
and the unique hierarchical nanoarray structure [114]. Wang et al. prepared a highly
activated NiCo2S4 phase with novel nanosheet array topology structures on CC (noted
as NiCo2S4NS/CC) via traditional wet-chemistry sulfurization (anion exchange) of the
precursor (NiCo2O4). The flexible and versatile electrocatalyst showed high performance
for both HER and UOR, and only needed 1.66 V and 1.49 V to achieve 10 mA cm−2 for
overall water splitting and UOR [115].
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of NFO powders [110]. Reproduced with permission [110]. Copyright 1996, Royal Society of
Chemistry. (C) Schematic illustration of the fabrication process and low-high-magnification SEM
and TEM images of the NiCoP/CC electrode [111]. Reproduced with permission [111]. Copyright
2013, Royal Society of Chemistry. (D) Low-high-magnification SEM images of the NiMoO3S/NF
electrode [112]. Reproduced with permission [112]. Copyright 1996, Royal Society of Chemistry.
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with permission [93]. Copyright 2021, Elsevier B.V.
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3.4. Nickel-Based Materials Compound with Carbon-Based Materials

The different substrates combined with nickel-based materials can significantly change the
physical composition of catalysts and affect the physicochemical properties and catalytic activity.
Carbon-based materials including carbon nanotube, active carbon, graphene and graphite,
biomass carbon, and carbonaceous materials can significantly enhance the conductivity, rate
of charge, and mass transfer and dispersion, and have been widespread applied to support
catalysts in electrocatalysis. Nickel-based materials are widely compounded with the above
carbon materials as one of the methods to improve catalytic activity of UOR via enhancing
dispersion and conductivity. Yang et al. synthesized a tungsten carbide- and cobalt-modified
Ni-based catalyst (MWCNTs) via an impregnation method for UOR. In this study, multiwall
carbon nanotubes enhanced conductivity and dispersion which simultaneously improved and
reduced the current density and overpotential, respectively [116]. Wang et al. synthesized
a series of multivariate MOFs based on Zn2+/Ni2+ and 1,3,5-trimesic acid (BTC) by tuning
the ration of Zn/Ni and solvothermal method (Figure 9A). The materials were thoroughly
characterized by XRD and XPS which confirmed the existence of Ni metal and NiO. Owing
to the highly porous pomegranate-like Ni/C-1 that is derived from Zn/Ni–BTC under the
Zn/Ni atom ration of 1, the catalyst exhibited superb HER performance and a small onset
potential of 1.33 V vs RHE in 1 M KOH [117]. Yang et al. designed active nickel nanoparticles
embedded into nitrogen-doped carbon nanotubes (named Ni@NCNT) via carbonization of
the nickel precursor and dicyandiamide in the nitrogen atmosphere as an efficient and stable
UOR electrocatalyst (Figure 9C). Due to the unique structure of N-doped carbon and Ni
nanoparticles for wetting electrolytes and facilitating metallic Ni electrochemical conversion to
active Ni3+ species leading to a robust UOR activity, the well configuration of N atom electronic
structures in modulation of catalytic activity weaken the binding strength between generated
CO2 species and adjacent active sites to accelerate the CO2 adsorption. As a result, the as-
fabricated materials only need 1.5 V vs. RHE to achieve a current density of 45.8 mA cm−2,
which is 3.8 times better than commercial Pt/C in 1 M KOH with 0.5 M urea electrolyte [118].
Sathe et al. proposed an effective strategy to decorate Ni nanoparticles on GO via a chemical
reduction method and characterize them by infrared spectroscopy (IR), X-ray diffraction (XRD),
transmission electron microscopy (TEM), etc. Structural and morphological studies confirm
the particle size of Ni NPs (10 nm) and thickness of GO (20 nm) (Figure 9B). Benefitting from
the large active area which creates an easy path for electron and mass transfer and electronic
support of Ni species, Ni@GO enhanced the electrocatalytic activity compared to individual
counterparts (e.g., Ni NPs and GO) [119].
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3.5. Others Structural Modifications of Nickel-Based Materials

Other modifications of nickel-based materials occur on macro and micro levels such
as oxygen vacancy, Schottky heterojunction, and nickel vacancy and have important influ-
ences in the electrocatalytic field and understanding the underlying correlations between
microstructures and intrinsic UOR activity. Peng et al. proposed a lattice-oxygen-involved
UOR mechanism on Ni4+ which has more favorable reaction kinetics than conventional
UOR mechanisms. In accordance with DFT, in situ IR spectroscopy, mass spectroscopy,
and performance testing, 18O isotope-labeling is directly involved in UOR, which could
transfer CO* to CO2 and accelerate the reaction rate. Finally, the resulting catalyst con-
taining Ni4+ exhibits a high current density of 264 mA cm−2 at 1.6 V vs. RHE on a glassy
carbon electrode, outperforming the state-of-the-art catalysts for UOR by five times [120].
Wang et al. proposed that metals and semiconductors can combine through phases to form
the Mott-Schottky heterojunction, which promotes non-precious-metal catalysts for UOR
activities. According to the above concept, the author designed a Mott-Schottky catalyst
through an electrochemical reduction converting the semiconductor CoMn2O4 to metallic
CoMn. The catalyst enhanced metallicity and electron redistribution, reduced reaction
barriers, and promoted the breaking of chemical bonds in UOR processing, which finally
exhibited superior catalytic activity that achieved a 100 mA cm−2 current density with
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only 1.36 V vs. RHE, as well as excellent stability [121]. Song et al. developed various
nickel hydroxide (α-Ni(OH)2) samples with adjustable nickel vacancy concentrations by
an electrochemical reconstruction method to comprehensively understand the correlation
between intrinsic structure and catalytic mechanisms (Figure 10A). Based on DFT and
experimental measurements, the reconstruction of α-Ni(OH)2 showed that the introduction
of VNi-enhanced intrinsic conductivities and thereby improved activities for UOR [122].
Xie et al. fabricated oxygen-vacancy-rich NiMoO4 through a defect engineering strategy
using a top-down hydrothermal method on NF (Figure 10B). Experimental and DFT results
further confirmed that O-vacancies rich in NiMoO4 can have synergetic effects with higher
exposed active sites, faster electron and mass transformation, and low reaction barriers of
UOR processing, significantly enhancing electrocatalytic activity [123].
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4. Conclusions and Perspectives

The extensive use of urea has made important contributions to the development and
progress of modern human society. Along with this is pollution of water and soil that also
greatly affects the normal ecological environment. Much of urea in the urine of human and
animal excretes in the natural environment further deteriorate of the local environment,
and the amount of urea present directly affects human health. Therefore, it is of great
significance to effectively purify urea-rich wastewater and improve the detection of human
health. Among the many detection strategies, electrochemical oxidation is one of the most
effective methods that is fast, easy, extremely selective, and easy to operate. Many research
studies report that nickel-based catalysts have been considered as the most effective energy
utilization and strategy to enhance detection and treatment for UOR. In this review, we
summarized the types of nickel-based catalysts and the main methods and mechanisms of
catalysts in structure and design. To advance the research on technologies and nickel-based
catalysts for UOR, the following are several foreseeable challenges and research directions:

(1) The formation of alloys including noble metals and non-noble metals allows
changes the microstructure of materials which significantly improves the activity and
stability of the catalyst;

(2) Nickel-based layered double hydroxide compounds with other metals and nanos-
tructures through intercalation and modification can effectively improve conductivity and
increase the number of edge active sites;
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(3) The negative charge of sulfur group elements (O, S, Se, and Te) can effectively
change the charge distribution of nickel metals and enhance the adsorption and desorption
of reactive intermediates in UOR, enhancing catalytic activity;

(4) Complexing with nitrogen group elements (mainly the unique electronic properties
of N and P) changes the Fermi energy level window and electron geometry distribution of
the materials, improving conductivity of the materials and promoting activity;

(5) Various carbon material composites with nickel-based materials can effectively
improve dispersion on the nanoscale, improving the conductivity, electron and mass
transfer capacity, and catalytic activity; and

(6) Various structural designs such as oxygen vacancy, Schottky heterojunction, nickel-
based vacancy, and defect-rich structureƒ can help deeply understand and modify materials
from an atomic nucleus microstructure perspective.

Until now, despite encouraging progress in the development of high-efficiency nickel-
based UOR catalysts and the continual accumulation of experimental data in this field to
understand fundamental catalytic mechanisms and processes, the field still faces severe
challenges in terms of practical operation and cost-effectiveness. On one hand, more and
more in situ characterizations and theoretical studies continue to reveal details of reaction
steps and intermediates. On the other hand, it also requires researchers to collaborate
with industries to advance the performance of catalysts in electrolytic cells and fuel cells.
We believe that the introduction of novel and promising catalyst supports contributes
to improving the conductivity, stability, and electrochemical activity of catalysts for urea
splitting and DUFC, as well as creating more sustainable and cost-effective technologies
that can be used in such energy conversion systems for sewage treatment and urea detection
and conversion.
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