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Abstract: Ibuprofen (IBU), a nonsteroidal anti-inflammatory drug, is one of the most widely used and
frequently detected pharmaceuticals and personal care products in water bodies. This study examined
the IBU degradation in aquatic solutions via ferric ion activated peroxydisulfate (PDS) coupled
with electro-oxidation (EC/Fe3+/PDS). The degradation mechanisms involved three synergistic
reactions in the EC/Fe3+/PDS system, including: (1) the electro-oxidation; (2) SO•−4 generated
from the activation of PDS by ferrous ions formed via cathodic reduction; (3) SO•−4 generated from
the electron transfer reaction. The radical scavenging experiments indicated that SO•−4 and •OH
dominated the oxidation process. The effects of the applied current density, PDS concentration, Fe3+

dosage, initial IBU concentration and initial pH as well as inorganic anions and humic acid on the
degradation efficiency, were studied, and the degradation process of IBU followed the pseudo-first-
order kinetic model. About 99.37% of IBU was removed in 60 min ((Fe3+ concentration) = 2.0 mM,
(PDS concentration) = 12 mM, (initial IBU concentration) = 30 mg/L, current density = 15 mA/cm2,
initial pH = 3). Finally, seven intermediate compounds were identified and probable IBU degradation
pathways in the EC/Fe3+/PDS system were speculated.

Keywords: sulfate radicals; hydroxyl radicals; electro-oxidation; mechanism; degradation

1. Introduction

Ibuprofen (IBU), a non-steroidal anti-inflammatory drug, is extensively used to treat
fever and pain, including muscle aches, tooth aches, headache pain and arthritis pain [1,2].
The annual global production of IBU was more than 30 kilotons due to its widespread
utilization in aquaculture, domestic, hospitals and pharmaceutical industries [3]. IBU has
been frequently found in municipal and hospital wastewater with concentrations of up
to 83 µg/L [4]. Conventional wastewater treatment technologies (e.g., activated sludge,
coagulation and filtration) are usually not effective to remove IBU, resulting in the rela-
tively high concentration of IBU in wastewater treatment plants (WWTPs) effluents [5–7].
Constant discharge of IBU into the aquatic environment may pose threat to human health
and affect the safety and balance of the aquatic ecosystem [8,9]. For instance, IBU could
change the intestinal microbial composition of humans via long-term consumption [10]
and the endocrine system could be altered by IBU, inducing compensated hypogonadism
in men [11]. Moreover, apoptosis and a decrease in proliferating cells of humans might
occur after exposure to 10–100 µmol/L of IBU [12]. As reported, IBU may pose acute
toxicity to the reproduction of some aquatic organisms, for example, Japanese medaka and
zebrafish [10,13]. Additionally, IBU could promote cyanobacteria and reduce the eukary-
otic algae biomass, resulting in algal blooms in freshwaters [14]. IBU also had an adverse
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impact on the reproduction and the survival of Oryzias latipes as well as the growth of algae
Synechocystis sp. [15]. Therefore, the development of suitable technologies for removing the
IBU efficiently from water is of great urgency.

Recently, advanced oxidation methods, involving the generation of hydroxyl radical
(•OH), sulfate radical (SO•−4 ), were considered as effective technologies for the treatment of
IBU [16–18]. Compared with •OH (E0 = 2.8 V), SO•−4 also exhibits strong oxidizing ability
(E0 = 2.5–3.1 V) [19–21]. Furthermore, SO•−4 has longer lifetimes (1µs for •OH vs. 30–40 µs
for SO•−4 ), higher selectivity, as well as a broad operative range of pH. Generally, SO•−4 is
produced by activating peroxymonosulfate (PMS) or peroxydisulfate (PDS) with transition
metals, heat, UV, electrochemical and ultrasound. Parallel to other transition metals, Fe2+

has been commonly used for the activation of PDS (Equation (1)) since it is inexpensive,
effective and environmentally friendly [22].

Fe2+ +S2O2−
8 → Fe3+ + SO•−4 + SO2−

4 (1)

However, some drawbacks of the Fe2+/PDS process hinder its application [23]. Firstly,
Fe2+ could not be regenerated after transformation to Fe3+, leading to a high Fe2+ dosage
requirement to maintain the reaction. As a result, the process produces a larger amount of
iron sludge [24]. Secondly, excessive Fe2+ would act as a scavenger for SO•−4 (Equation (2)).
Finally, Fe2+ is readily converted to Fe3+ in the existence of oxygen in the air. The above
drawbacks could be solved by the coupling of the Fe3+/PDS system with the electrochemi-
cal system (EC/Fe3+/PDS). In the EC/Fe3+/PDS system, Fe2+ could be regenerated from
Fe3+ reduction at the cathode (Equation (3)), reducing the addition of the Fe concentration.
Moreover, SO•−4 could be generated in the electrochemical system by an electron transfer
reaction of PDS (Equation (4)). Meanwhile, •OH could be produced on the surface of the
dimensionally stable anode (DSA) (Equation (5)), enhancing the degradation process [25].

SO•−4 + Fe2+ → Fe3+ +SO2−
4 (2)

Fe3+ +e− → Fe2+ (3)

S2O2−
8 + e− → SO•−4 +SO2−

4 (4)

M(H2O) → M(•OH) + H+ +e− (5)

Previous studies have demonstrated IBU removal in the Fe/PS system or in the
electro-oxidation system [26–28]. However, to the best of our knowledge, the system of
electro-oxidation combined with Fe/PDS has never been applied to the degradation of
IBU. It is expected that the coupling system would overcome the disadvantages of the
Fe/PDS system, and reduce the reaction time of electro-oxidation, leading to lower energy
consumption. Noteworthily, abundant inorganic anions (HCO−3 , Cl−, NO−3 , H2PO−4 )
and humic acids (HA) as natural organic matter (NOM) exist in water and waste water.
Nevertheless, the effect of these co-existing substances on IBU removal in the processes
based on the electrochemical technology, especially in the EC/Fe3+/PDS system, was rarely
mentioned in the previous literature, limiting their application in the aquatic environment.

Therefore, the objective of this study was to supplement the knowledge gaps as
aforementioned. Firstly, the feasibility of IBU degradation using the EC/Fe3+/PDS system
was determined and the influencing factors of current density, PDS concentration, Fe3+

concentration, initial IBU concentration, initial pH, inorganic anions and humic acid on the
degradation of IBU were systematically explored. Additionally, the degradation kinetics
were also investigated. Moreover, the reaction by-products of IBU and major reactive
oxygen species involved in the EC/Fe3+/PDS system were determined. Finally, the reaction
mechanism of the EC/Fe3+/PDS system and IBU degradation pathways were proposed.
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2. Results and Discussion
2.1. Comparative Study of Different Processes

IBU removal was carried out in various processes: PDS alone, electro-oxidation (EC),
EC/PDS, the Fe3+/PDS process, EC/Fe3+ and EC/Fe3+/PDS system (Figure 1). The kinetic
model of the EC/Fe3+/PDS system for IBU degradation was investigated by the pseudo-
first-order according to Equation (6) [29].

ln
C
C0

= −kt (6)

where k represents the rate constant for IBU removal, min−1; C0 refers to the initial IBU
concentration and Ct refers to the IBU concentration at time t, mg/L; t is the reaction time,
min. As shown in Table 1, the degradation kinetics of IBU obeyed the pseudo-first-order
model according to the correlation coefficient values (R2 > 0.97). As illustrated in Figure 1,
PDS alone could hardly oxidize IBU, and the remaining PDS accounted for 98.0% of the
initial PDS concentration. The reason was that PDS was stable and the oxidation capability
of PDS was limited (E0 = 2.01) at an ambient temperature [21,30]. The IBU removal in
the Fe3+/PDS process was nearly the same as that in the presence of PDS alone, and the
remaining percentage of PDS was 97.6%, indicating that Fe3+ could hardly activate PDS
to generate reactive radicals. A previous study also reported the low effectiveness of the
Fe3+/PDS system in iohexol degradation [31]. In the EC process, about 50.91% of IBU was
eliminated and the k value was 0.0120 min−1. The result of cyclic voltammograms for RuO2-
IrO2/Ti was shown in Figure 2. As observed, no obvious oxidation or reduction peaks
could be identified. This phenomenon indicated that the degradation of IBU was attributed
to the indirect oxidation process by •OH formed by water discharge at the surface of the
DSA anode [25]. The introduction of Fe3+ into the electro-oxidation process formed the
electro-Fenton (EF) reaction, and generated little amounts of •OH, accelerating the IBU
removal [32]. However, these hydroxyl radicals were insufficient to completely degrade
IBU over a 60 min reaction. The combination of EC and PDS slightly improved the removal
of IBU (60.12%) due to the SO4

•− generated through the reaction of electron transfer
(Equation (4)). In this case, the remaining percentage of PDS was 69.5%. Remarkably,
the removal of IBU achieved 90.91% and the residual percent of PDS was 46.1% in the
EC/Fe3+/PDS system. This was because Fe2+ could be formed by the cathodic reduction of
Fe3+, and then sulfate radicals could be continuously formed by the reaction between Fe2+

and PDS, thus enhancing the degradation process.
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Figure 1. IBU removal (a) and remaining percentage of PDS (b) under different systems; ((ini-
tial IBU concentration) = 30 mg/L, (Fe3+ concentration) = 1 mM, (PDS concentration) = 8 mM,
current density = 15 mA/cm2, initial pH = 3).
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Table 1. The kinetics for IBU degradation in the EC/Fe3+/PDS system.

Parameters k (min−1) Half-Life
(t1/2, min) R2

Degradation under
different systems

EC/Fe3+/PDS 0.0408 16.99 0.994
EC 0.0120 57.76 0.998

EC/Fe3+ 0.0143 48.47 0.997
EC/PDS 0.0150 46.21 0.994

PDS concentration (mM)

6 0.0215 32.24 0.996
8 0.0408 16.99 0.994

10 0.0482 14.38 0.994
12 0.0508 13.64 0.995
14 0.0457 15.17 0.994

Fe3+ concentration
(mM)

0.5 0.0255 27.18 0.988
1.0 0.0508 13.64 0.995
1.5 0.0598 11.59 0.997
2.0 0.0851 8.15 0.983
2.5 0.0657 10.55 0.995

Current density
(mA/cm2)

5 0.0193 35.91 0.993
10 0.0364 19.04 0.996
15 0.0851 8.15 0.983
20 0.0829 8.36 0.979

IBU concentration
(mg/L)

30 0.0851 8.15 0.983
40 0.0507 13.67 0.993
50 0.0356 19.47 0.986
60 0.0277 25.02 0.981

pH

3 0.0851 8.15 0.983
5 0.0640 10.83 0.987
7 0.0465 14.91 0.982
9 0.0345 20.09 0.987
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Figure 2. Cyclic voltammograms of RuO2-IrO2/Ti in 0.5 mol/L Na2SO4 solutions in the presence
and absence of IBU (30 mg/L) at a scan rate of 10 mV/s.

2.2. Impact Factors
2.2.1. The Effect of PDS Concentration

PDS is the main source for the generation of SO•−4 . Thus, the influence of initial
PDS concentration on IBU removal efficiency was displayed in Figure 3a. The IBU re-
moval raised gradually from 73.45% to 94.91% with the PDS concentration increasing from
6 to 12 mM, and the k value increasing from 0.0215 min−1 to 0.0508 min−1. However, the
removal of IBU declined to 93.37% as the PDS concentration further increased. Previous
studies have also reported that raising the PDS concentration to a certain value could
generate more reactive radicals [33,34], resulting in acceleration of the decomposition of
IBU. Whereas, in accordance with the literature [35,36], excessive addition of PDS could
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reduce the degradation efficiency due to the self-quenching reactions of reactive radicals
as well as their reaction with PDS (Equations (7)–(11)). Therefore, 12 mM was used as an
optimum value of PDS for the downstream experiments.

SO•−4 + S2O2−
8 → SO2−

4 + S2O•−8 (7)

•OH + S2O2−
8 → OH− + S2O•−8 (8)

SO•−4 + SO•−4 → S2O2−
8 (9)

•OH + SO•−4 → HSO−5 (10)

•OH + •OH→ H2O2 (11)
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Figure 3. Effect of PDS concentration (a), Fe3+ concentration (b), current density (c), initial
IBU concentration (d), initial pH (e), inorganic anions and HA (f) on IBU removal. ((initial
IBU concentration) = 30 mg/L, (Fe3+ concentration) = 1 mM, current density = 15 mA/cm2,
initial pH = 3; (initial IBU concentration) = 30 mg/L, (PDS concentration) = 12 mM, current
density = 15 mA/cm2, initial pH = 3; (initial IBU concentration) = 30 mg/L,
(Fe3+ concentration) = 2 mM, (PDS concentration) = 12 mM, initial pH = 3; (Fe3+

concentration) = 2 mM, (PDS concentration) = 12 mM, current density = 15 mA/cm2, initial
pH = 3; (initial IBU concentration) = 30 mg/L, (Fe3+ concentration) = 2 mM, (PDS concentra-
tion) = 12 mM, current density = 15 mA/cm2; (initial IBU concentration) = 30 mg/L, (Fe3+

concentration) = 2 mM, (PDS concentration) = 12 mM, current density = 15 mA/cm2, initial pH = 3).
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2.2.2. The Effect of the Initial Fe3+ Concentration

The influence of the Fe3+ concentration on the degradation of IBU was performed
(Figure 3b). Increasing the Fe3+ concentration from 0.5 mM to 2 mM meant the IBU removal
increased from 78.24% to 99.37%, while the k value augmented from 0.0255 min−1 to
0.0851 min−1. The upward trend of removal efficiency implied that increasing Fe3+ could
generate more Fe2+ to activate PDS to degrade the IBU molecules. The continuing increase
in the Fe3+ concentration up to 2.5 mM caused a slight decrease in IBU removal (97.83%)
as well as the k value (0.0657 min−1). This result could be attributed to the scavenging of
reactive radicals by the redundant Fe2+ (Equations (12) and (13)).

SO•−4 +Fe2+ → Fe3+ +SO2−
4 (12)

•OH + Fe2+ → OH− +Fe3+ (13)

2.2.3. The Effect of Current Density

As is well known, in the electrochemical process, current density plays a vital role in
organic contaminant degradation. The influence of current density (5–20 mA/cm2) was
investigated and displayed in Figure 3c. By raising the current density from 5 mA/cm2 to
15 mA/cm2, the IBU removal increased from 67.33% to 99.37%, and the k value increased
progressively from 0.0193 min−1 to 0.0851 min−1. Higher current density would enhance
the cathodic reduction of Fe3+ according to Equation (3), and then accelerate the decompo-
sition of PDS to form active radicals [37]. Moreover, at the cathode, higher current density
would strengthen the electron transfer to activate PDS, resulting in more generation of
sulfate radicals. Meanwhile, higher current density promoted the generation of hydroxyl
radicals at the anode. However, the removal of IBU and k value dropped to 99.30% and
0.0829 min−1, respectively, as the current density further increased to 20 mA/cm2. This
phenomenon was attributed to the occurrence of side reactions initiated by the higher
current density, such as the reaction of H2 evolution at the cathode (Equation (14)) and O2
evolution at the anode (Equation (15)) [32,38,39]. These side reactions would compete with
the IBU removal, PDS activation and Fe3+ reduction.

2H+ +2e− → H2 (14)

4OH− → 2H2O + O2 + 4e− (15)

2.2.4. The Effect of the Initial IBU Concentration

The IBU removal and the k value gradually decreased with the increment of its concen-
tration (Figure 3d). This result was in accordance with the finding of Shen et al. [9]. As the
initial IBU concentration was elevated from 30 mg/L to 60 mg/L, the IBU removal and the
k value reduced from 99.37% and 0.0851 min−1 to 81.07% and 0.0277 min−1, respectively.
The reactive radicals generated were relatively stable when the PDS concentration, Fe3+

dosage and current density were fixed However, higher amounts of intermediates could be
formed at higher initial IBU concentration, which would compete for reactive radicals with
the IBU molecules, slowing the decomposition of the IBU.

2.2.5. The Effect of the Initial pH

As displayed in Figure 3e, the influence of solution pH on IBU removal was carried out
in the range of 3–9. The IBU removal dropped from 99.37% to 88.12% as the pH increased
from 3 to 9, correspondingly, the k value dropped from 0.0851 min−1 to 0.0345 min−1.
Clearly, an acidic pH facilitated the removal of IBU in this system, which agreed with that
of recent studies via the EC/Fe/PS system [40,41]. The phenomenon was interpreted by
the following aspects. In acidic conditions, the presence of H+ enhanced the formation
of sulfate radicals in accordance with Equations (16) and (17) [42]. On the other hand, at
higher pH levels, ferrous ions can be precipitated in the formation of ferric hydroxide,
leading to the decrease in soluble Fe2+, thereby suppressing the activation of PDS [43].
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In addition, under alkaline conditions, the SO•−4 could convert to •OH by reacting with
OH−. The lifetime of •OH was shorter in comparison with SO•−4 . In addition, the standard
oxidation potential of •OH was 2.7 V under acidic conditions, while the standard oxidation
potential of •OH was only 1.8 V with neutral conditions [44], indicating that the oxidation
ability of •OH was stronger at a lower pH level.

H++S2O2−
8 → HS2O−8 (16)

HS2O−8 → H++SO•−4 +SO2−
4 (17)

2.2.6. Effect of Co-Existing Components

It should be noted that the water and waste water had abundant inorganic anions
(HCO−3 , Cl−, NO−3 , H2PO−4 ) and humic acids (HA) as natural organic matter (NOM).
Hence, it is of great importance to investigate their effects on IBU removal in the EC/Fe3+/
PDS system. The experiments were performed with 10 mM inorganic anions and 10 mg/L
HA, respectively (Figure 3f). Inorganic anions inhibited the IBU removal, and the inhibitive
effect of inorganic anions on IBU removal kept the ascending order: HCO−3 > H2PO−4 > Cl−

> NO−3 . After introducing 10 mM of HCO−3 , H2PO−4 , Cl− and NO−3 , the removal of IBU
reduced to 82.11%, 88.50%, 94.07% and 96.83%, respectively.

At the anode, Cl− could be oxidized to free chlorine (e.g., HClO, ClO−) with weaker
oxidation capacity. This was a side reaction compared with the production of •OH at
the anode. Cl− could consume SO•−4 and •OH to form less reactive radicals (Cl• and
HOCl•−) ((Equations (18) and (19)) [45]. As previous reports demonstrate, the occurrence
of complexation reactions of Cl− with Fe3+ and Fe2+ generated FeCl2+, FeCl+, etc, reducing
the concentration of Fe2+ and Fe3+ [46], and consequently weakening the removal of IBU.

SO•−4 + Cl− → SO2−
4 + Cl• (18)

•OH + Cl− → HOCl•− (19)

There are two reasons for a slightly decreasing trend caused by NO−3 . (1) NO−3 could
compete with IBU for the •OH and SO•−4 , leading to the formation of some inactive radicals
((Equations (20) and (21)) [47]; (2) The addition of NO−3 increased the ion strength of the
solution, resulting in a slower decomposition of PDS.

SO•−4 + NO−3 → SO2−
4 +NO•3 (20)

•OH + NO−3 → OH− + NO•3 (21)

The inhibition of HCO−3 could be explained as follows: the reaction of •OH and SO•−4
with HCO−3 , leading to the production of less reactive radical (CO•−3 ) ((Equations (22) and
(23)) [48]. (2) HCO−3 could affect the involved oxidation reactions by changing the solution
pH. As discussed above, increasing the pH had a negative effect on the oxidation process.

HCO−3 + • OH → CO•−3 + H2O (22)

HCO−3 +SO•−4 → SO2−
4 + CO•−3 + H+ (23)

The negative effect of H2PO−4 was related to the scavenging effect ((Equations (24)
and (25)) [49]. In addition, the formation of H2PO−4 -Fe complexes species decreased the
active iron ions, inducing inhibition of the degradation process.

H2PO−4 + SO•−4 → SO2−
4 + H2PO•4 (24)

H2PO−4 +•OH → OH− + H2PO•4 (25)

Besides the inorganic anions, the HA had a detrimental influence on IBU removal.
The removal of IBU decreased from 99.37% to 90.50% after the addition of 10 mg/L HA.
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HA, rich in carboxyl and hydroxyl functional groups, usually acts as a scavenger of SO•−4
and •OH due to the high reactivity towards •OH (k•OH/HA = 1.39 × 108 M−1S−1) and
SO•−4 (kSO•−4 /HA = 7.8 × 107 M−1S−1) [50,51]. Aside from the ability to quench radicals, it

is easier to seize the dissolved Fe2+ and Fe3+ owing to the feature of a strong ligand, leading
to the decrease in IBU removal [52].

Overall, the effects of inorganic ions and HA on the IBU degradation should be
adequately considered.

2.3. Comparison with Other Technologies

The energy consumption of the EC/process was assessed by the electrical efficiency
per log order (EE/O) according to Equation (26) [53].

EE/O (Wh/L) =
U× I× t

V× log(C0
Ct
)

(26)

where U is the recorded average electrolysis voltage (V), V is volume (L), I is the electrolysis
current (A), t is the electrolysis time (h).

Moreover, the energy efficiency was estimated by Equation (27) [54].

Energy efficiency (mg/Wh) =
m

U× I× t
(27)

where U is the recorded average electrolysis voltage (V), I is the electrolysis current (A), t is
the electrolysis time (h), m is the amount of contaminant degraded (mg).

The EE/O of the EC/Fe3+/PDS process was 2.79 Wh/L, which was lower than the
EE/O for electro-oxidation of IBU by Ti/SnO2-Sb/Ce-PbO2 (4.3–30.6 Wh/L) [2]. Moreover,
the energy efficiency was 8.15 mg/Wh in our study, which was much higher than the
decomposition of IBU by ozonation (2.15 mg/Wh) or by DBD plasma (2.5 mg/Wh) [55].
Moreover, the degradation performance of the EC/Fe3+/PDS system was compared with
other technologies. As can be seen from Table 2, the EC/Fe3+/PDS system performed better
in IBU removal than other methods, indicating that the EC/Fe3+/PDS system is a potential
technology for IBU degradation in water.

Table 2. Comparison with other technologies for IBU degradation.

Technology Experimental Conditions IBU Removal (%) Reference

Electro-oxidation
(Ti/SnO2-Sb/Ce-PbO2)

V = 30 mL; IBU = 20 mg/L; current
density = 10 mA/cm2 90% removal in 60 min [2]

BaTiO3/PDS under
ultrasonic-wave

V = 25 mL, PS = 1.0 mM,
IBU = 6.0 mg/L, BaTiO3 = 2.0 g/L 99% removal in 60 min [7]

Electro-Fenton V = 200 mL, IBU = 10 mg/L,
pH = 3.0, Fe2+ = 0.7 mM 94.8% removal in 150 min [56]

UV/H2O2
IBU = 10 µM, H2O2 = 0.5 mM,

pH = 5.2 95% removal in 240 min [57]

Photo-Fenton
(HSO3-MIL-53(Fe))

V = 50 mL, IBU = 10 mg/L,
H2O2 = 20 mM, HSO3-MIL-53(Fe) =

200 mg/L, pH0 = 8.0
100% removal in 90 min [58]

Photocatalysis
(phosphorus and sulfur

co-doped graphitic carbon
nitride (PSGCN) and AgBr

particle)

Photocatalyst = 100 mg/100 mL,
IBU = 15 mg/L 90% removal in 100 min [59]

EC/Fe3+/PDS
V = 200 mL; pH = 3; IBU = 30 mg/L;

current density = 10 mA/cm2;
Fe3+ = 2.0 mM; PDS = 12 mM

99.37% removal in 60 min this work

2.4. Determination of Reactive Species

Quenching experiments were conducted to determine the generation of reactive
radicals. Methanol (MA) was utilized as a capturer for both SO•−4 and •OH, as it had
similar quenching rate with •OH (k•OH/MA 9.7 × 108 M−1S−1) and SO•−4 (kSO•−4 /MA
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1.61 × 107 M−1S−1) [60,61]. Tert-butyl alcohol (TBA) was regarded as •OH scavenger
(k•OH/TBA 9.7 × 108 M−1S−1) as its rate constant with •OH was approximately 1000-fold
times than that for SO•−4 [62]. As displayed in Figure 4, both MA and TBA inhibited IBU
removal. Specifically, the removal of IBU reached 99.37%, whereas it decreased to 29.36%
and 63.92% after the addition of MA and TBA. The result indicated that both SO•−4 and •OH
participated in the process, and the contribution of SO•−4 and •OH for IBU degradation in
the EC/Fe3+/PDS system was almost equal.
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(MA concentration) = 500 mM, (TBA concentration) = 500 mM).

2.5. Proposed Mechanism of the EC/Fe3+/PDS Process

According to the results and previous reports, the reaction mechanism of the EC/Fe3+

/PDS process was proposed (Figure 5). Fe2+ could be reproduced from the reduction of
Fe3+ at the cathode, and then activated PDS to produce SO•−4 . What is more, SO•−4 could
be generated by an electron transfer reaction. Additionally, •OH could be produced on the
surface of the DSA anode, enhancing the degradation process. SO•−4 could be converted to
•OH by reacting with H2O and OH−. Finally, IBU was degraded to CO2 and H2O by the
oxidation of both SO•−4 and •OH.
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2.6. Oxidation Products and Proposed Pathway of IBU Degradation

The degradation intermediates of IBU were identified using LC-MS/MS. Consequently,
a total of seven intermediates were determined (Figure 6). The chemical structure, reaction
time, molecular formula and weight of IBU degradation products were summarized in
Table 3, and the oxidation pathways of IBU degradation were presented in Figure 7.
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The attack of •OH at different side chains of the IBU molecular formation produced
product 1 (m/z, 222) and product 4 (m/z, 222). It is noteworthy that hydroxylated ibuprofen
was commonly observed in the process of IBU degradation [63,64]. In the pathway I, the
side chains of product 1 (m/z, 222) could be subsequently separated from the benzene ring,
followed by oxidation reactions for the formation of product 2 (m/z, 164) [65]. Product
2 (m/z, 164) could be transformed to product 3 (m/z, 134) via the decarboxylation. For
pathway II, product 4 (m/z, 222) underwent the decarboxylation of the side chains, resulting
in the generation of the product 5 (m/z, 178). Then, the dehydration and hydroxylation
occurred on the side chain of the benzene ring of product 5 (m/z, 178), leading to the
production of product 6 (m/z, 150). With the continuous oxidation reaction, the aromatic
rings of product 3 (m/z, 134) and product 6 (m/z, 150) opened, resulting in the formation
of product 7 (m/z 118). Finally, products 7 could be easily oxidized to CO2 and H2O [66].

3. Materials and Methods
3.1. Materials

Ibuprofen and sodium persulfate (Na2S2O8) were obtained from Sigma-Aldrich Chem-
ical Co., Ltd. HPLC grade acetonitrile, methanol, formic acid and acetic acid were bought
from Sinopharm Chemical Reagent Beijing Co., Ltd. Sulfuric acid (H2SO4), sodium hydrox-
ide (NaOH), sodium sulfate (Na2SO4), Ferric sulfate (Fe2(SO4)3), sodium chloride (NaCl),
sodium dihydrogen phosphate (NaH2PO4), sodium bicarbonate (NaHCO3), sodium nitrate
(NaNO3), tert-butanol and acetonitrile were obtained from Xilong Science Co., Ltd. RuO2-
IrO2/Ti mesh and Ti plate electrode were bought from Beijing Hengli Ti Co., Ltd., China.
All chemicals were analytic-grade. All aqueous solutions were prepared with Millipore
water (18 MΩ cm).

3.2. Analytical Methods

IBU concentration was determined using a high-performance liquid chromatography
system (LC-20AT, Shimadzu, Japan) with a chromatographic separation of an Inertsil
ODS-3 C18 column (250 mm × 4.6 mm, 5 µm). The UV-visible detector was set at 220 nm.
A mixture of 63:37 (v/v) acetonitrile/water (containing 0.1% acetic acid) was used as
the mobile phase, at a flow rate of 1.0 mL/min. The byproducts were analyzed with
a Waters Acquity UPLC-QTOF-MS/MS (Xevo G2) system, operating in a negative ion
mode with an electrospray ionization source. A Waters Acquity UPLC BEH C18 column
(50 mm × 2.1 mm, 1.7 µm) was used to separate chromatograph. The mobile phase was
composed of acetonitrile (A) and water containing 0.1% formic acid (B), with 0.3 mL/min
flow rate. Component B was maintained at 10% during the first 1 min, then B was changed
to 100% in 1–10 min. Finally, component B returned to 10% during the last 2 min.

The degradation efficiency is calculated by the Equation (28) [67].

Degradation efficiency =
C0−Ct

C0
(28)

where C0 refers to the initial IBU concentration and Ct refers to the IBU concentration at
time t, mg/L.
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3.3. Experimental Procedure

The removal of IBU was performed in an undivided 250 mL glass beaker which
contained 200 mL of IBU solution. The glass beaker was immersed in a water bath to
keep the temperature constant at 25 ◦C. The reaction solution was mixed continuously
with a magnetic stirrer. The schematic of EC/Fe3+/PDS system was shown in Figure 8. A
RuO2-IrO2/Ti mesh (3 cm × 5 cm) was applied as anode while Ti plate (3 cm × 5 cm) was
served as cathode. 0.05 mol/L Na2SO4 was applied as supporting electrolyte. Ferric sulfate
(Fe2(SO4)3) was employed to provide Fe3+ to avoid the interference of other anions. The
distance between the anode and the cathode was maintained as 1.5 cm. The solutions were
unbuffered to avoid the quenching effect of buffers, and the initial pH of the IBU solution
was adjusted with H2SO4 and NaOH (0.1 mol/L) and measured with a pH meter (FE28-CN,
Mettler Toledo). A digital DC power (DH1718E-5, 35 V, 5 A, Dahua Electronic Co., Beijing,
China) was used to provide constant electric current for electrochemical experiments. After
addition of a certain amount of PDS and Fe3+ solution, the DC power supply was started
immediately. Periodically, reaction solution samples (2 mL) were withdrawn and directly
filtered using a 0.45 µm microfiltration membrane and quenched with methanol before
analysis. All the experiments were performed in triplicate.
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netic stirrer. The schematic of EC/Fe3+/PDS system was shown in Figure 8. A RuO2-IrO2/Ti 
mesh (3 cm × 5 cm) was applied as anode while Ti plate (3 cm × 5 cm) was served as 
cathode. 0.05 mol/L Na2SO4 was applied as supporting electrolyte. Ferric sulfate 
(Fe2(SO4)3) was employed to provide Fe3+ to avoid the interference of other anions. The 
distance between the anode and the cathode was maintained as 1.5 cm. The solutions were 
unbuffered to avoid the quenching effect of buffers, and the initial pH of the IBU solution 
was adjusted with H2SO4 and NaOH (0.1 mol/L) and measured with a pH meter (FE28-
CN, Mettler Toledo). A digital DC power (DH1718E-5, 35 V, 5 A, Dahua Electronic Co., 
Beijing, China) was used to provide constant electric current for electrochemical experi-
ments. After addition of a certain amount of PDS and Fe3+ solution, the DC power supply 
was started immediately. Periodically, reaction solution samples (2 mL) were withdrawn 
and directly filtered using a 0.45 μm microfiltration membrane and quenched with meth-
anol before analysis. All the experiments were performed in triplicate. 

 
Figure 8. Schematic of the EC/Fe3+/PDS system. Figure 8. Schematic of the EC/Fe3+/PDS system.

The cyclic voltammetry was performed using an electrochemical workstation (Chenhua,
CHI 660, China) equipped with a typical three-electrode system. The Ti (10 mm × 20 mm)
was used as the working electrode. A platinum plate (10 mm × 20 mm) was employed as
the counter electrode. The Ag/AgCl electrode was employed as the reference electrode.
The cyclic voltammetry experiment was conducted at room temperature with the absence
and presence of 30 mg/L IBU in 0.5 mol/L Na2SO4. The scan rate was set at 10 mV/s.

4. Conclusions

An electro-assisted Fe3+/PDS process (EC/Fe3+/PDS) was investigated for IBU degra-
dation in an aqueous solution. The combination of Fe3+/PDS and electro-oxidation was
displayed to be effective to degrade IBU. The synergistic effect was attributed to the fol-
lowing aspects: (1) the electro-oxidation; (2) sulfate radicals generated from the activation
of PDS by ferrous ions formed via cathodic reduction; (3) sulfate radicals generated from
the electron transfer reaction. Free radicals quenching experiments revealed that both
SO•−4 and •OH contributed to the excellent removal of IBU. Based on the above anal-
ysis, the enhanced catalytic mechanism was also elucidated. Furthermore, increasing
the current density (5–15 mA/cm2), PDS concentration (6–12 mM) or Fe3+ concentration
(0.5–2 mM) enhanced the IBU degradation while a slight inhibitory effect was obtained
with a further increase in these parameters. Compared with neutral and alkaline conditions,
an acidic pH facilitated the IBU degradation. Moreover, the removal of IBU decreased
with increasing the initial IBU concentration. All degradation processes of IBU in the
system followed the pseudo-first order reaction kinetic models. At optimum conditions
((Fe3+ concentration) = 2.0 mM, (PDS concentration) = 12 mM, (initial IBU concentration)
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= 30 mg/L, current density = 15 mA/cm2, initial pH = 3), IBU removal and the k value
reached 99.37% and 0.0851 min−1 within a 60 min reaction. Furthermore, inorganic anions
and HA inhibited the degradation of IBU. Finally, seven intermediates were determined by
LC-MS/MS analysis, and a plausible IBU degradation route was suggested.
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