

Article Hg⁰ Removal by V₂O₅ Modified Palygorskite in Simulated Flue Gas at Low Temperature

Junwei Wang¹, Huan Wang¹, Caihong Jiang¹, Xie Wang^{1,*} and Jianli Zhang^{2,*}

- ¹ College of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246011, China; wangjunweilotus@163.com (J.W.); xiaowanghenwasaiya@163.com (H.W.); jch177512@163.com (C.J.)
- ² State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
- * Correspondence: anhuiss@sina.com (X.W.); zhangjl@nxu.edu.cn (J.Z.)

Abstract: The V₂O₅-modified palygorskite (V₂O₅/PG catalysts) were prepared and used for Hg⁰ removal in simulated flue gas at low temperature. It was found that the V₂O₅/PG catalyst had excellent performance for Hg⁰ removal at 150 °C. O₂ exhibited a positive effect on Hg⁰ removal over V₂O₅/PG, while SO₂ and H₂O showed an inhibiting effect. However, Hg⁰ removal efficiency showed a promotion trend in the presence of H₂O, SO₂, and O₂. The Brunauer–Emmett–Teller (BET) method, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) were applied to characterize the physicochemical properties of the V₂O₅/PG catalyst. Mercury temperature-programmed desorption (Hg-TPD) experiments were also conducted to identify the mercury species adsorbed on the V₂O₅/PG catalyst, and the pathway of Hg⁰ removal over V₂O₅/PG was also discussed. The used V₂O₅/PG catalyst after Hg⁰ removal was regenerated, and its capability for Hg⁰ removal can be completely recovered. The V₂O₅/PG-Re-300 °C catalyst showed excellent performance and good stability for Hg⁰ removal after regeneration.

Keywords: Hg⁰; V₂O₅/PG; palygorskite; catalytic oxidation; low temperature

1. Introduction

Mercury, as a trace toxic chemical, is harmful and threatening to people's health and the environment [1–3]. In China, about 38% of annual mercury emissions are from coal-fired power plants, which are regarded as the main anthropogenic source of mercury emissions [4–6]. Therefore, more and more attention has been paid to mercury emission control from coal-fired flue gas. To control mercury release, a series of environmental regulations and laws have been promulgated. The Minamata Convention on Mercury has been in effect since 16 August 2017, which means that reducing atmospheric mercury emissions has been a consensus-driven and compulsive goal of many countries around the world [7]. Moreover, the new Emission Standard of Air Pollutants for Thermal Power Plants in China has been executed, and explicitly stipulates that the emission limitation of mercury and its compounds in coal-fired flue gas is $30 \ \mu g/m^3$ [8]. Therefore, the control situation of mercury in coal-fired flue gas is very serious. The urgent task is to develop and research effective and economical technology for mercury emissions in coal-fired power plants.

Generally, coal-fired flue gas mainly contains several components, including O₂ (3–7%) (v/v), moisture (8–10%) (v/v), SO₂ (100–3000 ppm), etc. [9,10]. Mercury in coal-fired flue gas mainly exists in three forms: oxidized mercury (Hg²⁺), particulate mercury (Hg^p), and elemental mercury (Hg⁰) [11,12]. Among them, wet flue gas desulfurization (WFGD) can effectively remove Hg²⁺ [13,14], and electrostatic precipitators (ESPs) or fabric filters (FFs) can easily capture Hg^p [15]. However, due to its high volatility, stability, and insolubility, Hg⁰ is difficult to remove by existing air pollution control devices (APCDs) [16,17]. Therefore, researchers focus their efforts on controlling the emission of Hg⁰ from flue gas.

Citation: Wang, J.; Wang, H.; Jiang, C.; Wang, X.; Zhang, J. Hg⁰ Removal by V₂O₅ Modified Palygorskite in Simulated Flue Gas at Low Temperature. *Catalysts* **2022**, *12*, 243. https://doi.org/10.3390/ catal12020243

Academic Editor: Federica Menegazzo

Received: 20 January 2022 Accepted: 17 February 2022 Published: 21 February 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Various methods have been studied and used to control Hg⁰ emission, such as activated carbon injection (ACI) [18,19], catalytic oxidation, photochemical oxidation, and adsorption [20–22]. Among them, ACI technology is considered as the most effective Hg⁰ control technology [23]. However, the large-scale industrial application of ACI technology is limited due to its high operation cost [24–26].

In recent years, the natural mineral has attracted the attention of researchers since the raw materials are abundant in reserves and are cost-effective [27,28]. Palygorskite (noted as PG), as a kind of natural magnesium aluminum silicate clay mineral, has a unique crystal structure, well-developed pores, high specific surface area, high adsorption ability, good cohesiveness and mechanical properties, low price, and can be used as a good catalyst carrier. However, few studies have been reported on Hg⁰ removal by PG from flue gas at low temperature.

It is well known that V₂O₅-based selective catalytic reduction (SCR) catalysts are widely used for NO_x removal in coal-fired flue gas [29,30]. Meanwhile, it was also found that V₂O₅ exhibited high catalytic oxidation activity for Hg⁰ and can effectively oxidize Hg⁰ to Hg²⁺ [31–34]. However, V₂O₅-based SCR catalysts themselves have limited ability to adsorb the formed Hg²⁺ at high operating temperatures (300–450 °C), and the formed Hg²⁺ must be removed by the downstream WFGD unit [13]. Therefore, it is necessary to develop cost-effective and environmentally friendly technologies for Hg⁰ control in coal-fired flue gas at low temperature.

In this work, palygorskite-supported V₂O₅ catalysts (V₂O₅/PG) were prepared and used to remove Hg⁰ in simulated flue gas at low temperature (120–210 °C). The V₂O₅/PG catalysts were characterized by BET, SEM, XPS, and Hg-TPD. Moreover, the effects of V₂O₅ loading, temperature, flue gas components (SO₂, H₂O, and O₂), space velocity (GHSV), and the reaction pathways were also studied in the presence of SO₂. The regeneration of the used V₂O₅/PG catalyst after Hg⁰ removal and reuse for Hg⁰ removal were also studied.

2. Results and Discussion

2.1. Effect of Reaction Temperature

Figure 1 shows the effect of reaction temperature (120 °C, 150 °C, 180 °C, and 210 °C) on Hg⁰ removal over 5V₂O₅/PG catalyst. It can be seen that the initial E_{Hg} of 5V₂O₅/PG reached 98% at 120 °C, and that it decreased gradually to 73.8% at 420 min. As the temperature increased from 150 °C to 180 °C and 210 °C, E_{Hg} decreased from 83.1%, 78.4%, and 52.5% at 420 min, respectively. Generally, adsorption becomes weaker at high temperature while oxidation will be enhanced. The difference of E_{Hg} at different temperatures may be due to the different effect extent of adsorption and oxidation at different temperatures [35]. The 5V₂O₅/PG catalyst had the highest Hg⁰ removal capability at 150 °C, which was much lower than the operating temperature of the V₂O₅-based SCR catalyst. Furthermore, the optimum reaction temperature (150 °C) was very close to the actual exhaust gas temperature of flue gas in a power plant, indicating that the V₂O₅/PG catalyst can be used to remove Hg⁰ from flue gas without an extra heat supply.

2.2. Effect of V₂O₅ Loading

Figure 2 shows the effect of V_2O_5 loading on Hg^0 removal over V_2O_5/PG at 150 °C. Since it was found that a V_2O_5 loading range of 1% to 5% was favorable in our previous research, V_2O_5 loading (1% to 5%) was selected in this paper [36]. It can be seen that E_{Hg} of the PG carrier was very low, and that it decreased rapidly from 50% to 8.3% in 300 min. The E_{Hg} of the V_2O_5/PG was obviously higher than that of the PG, which was mainly due to the contribution of V_2O_5 . V_2O_5 , as the active site for Hg^0 oxidation, was of great importance in Hg^0 removal by V_2O_5/PG . It was found that lattice oxygen of V_2O_5 played a critical role in Hg^0 oxidation in our previous research, which was consumed in Hg^0 oxidation and can be subsequently replenished by gas-phase O_2 [35]. With the increase of V_2O_5 loading (1% to 5%), the E_{Hg} increased from 38.6% to 86.0% at 420 min. Since the

Figure 1. Effect of temperature on Hg⁰ removal over $5V_2O_5/PG$ (reaction conditions: $O_2 = 8\%$, H₂O = 5%, SO₂ = 0.15%, N₂ as balance, C_{Hg}⁰ = 240 µg/m³, GHSV = 6000 h⁻¹, T = 120–210 °C).

Figure 2. Effect of V₂O₅ loading on Hg⁰ removal (reaction conditions: O₂ = 8%, H₂O = 5%, SO₂ = 0.15%, N₂ as balance, C_{Hg}^0 = 240 µg/m³, GHSV = 6000 h⁻¹, T = 150 °C).

The specific surface areas and other pore parameters of the PG and V_2O_5/PG catalysts are summarized in Table 1. It can be seen that the BET surface area and total pore volume of the V_2O_5/PG catalyst are lower than those of the pure PG carrier. With the increase of the V_2O_5 loading, the BET area of the catalyst decreased obviously (from 151.4 m²/g to 109.3 m²/g). This may be due to the pores of the PG carrier being blocked by the active component of V_2O_5 and/or the sloughing of the PG skeleton during the calcination process, which led to the decrease of the BET area of the V_2O_5/PG catalyst. It is well known that a larger BET area can provide more reaction sites for the adsorption of Hg⁰. However, the specific surface area of the V_2O_5/PG catalyst showed little effect on Hg⁰ removal, i.e., the BET area was not the decisive factor affecting Hg⁰ removal, while the oxidation activity of V_2O_5 played a critical role in Hg⁰ removal. This was similar to the results reported in the literature [35].

Sample	BET Surface Area (m²/g)	Average Pore Size (nm)	Total Pore Volume (cm ³ /g)
PG	151.43	10.51	0.32
$1V_2O_5/PG$	139.91	10.67	0.30
$3V_2O_5/PG$	130.24	10.85	0.26
$5V_2O_5/PG$	109.31	11.04	0.21

Table 1. Properties of the PG and V_2O_5/PG catalysts.

Figure 3A,B shows the SEM morphology of $5V_2O_5/PG$. It can be seen that the V_2O_5/PG catalyst had a porous structure, which was conducive to the distribution of V_2O_5 on the surface of the PG carrier and the adsorption of Hg^0 on the surface of the V_2O_5/PG catalyst. The Lewis acid–base properties of the PG and V_2O_5/PG catalysts were analyzed and the detailed results are shown in the Supporting Information. The results showed that there were several different acid sites on the V_2O_5/PG catalyst surface, which were beneficial for Hg^0 adsorption on V_2O_5/PG .

Figure 3. SEM morphology of 5V₂O₅/PG (**A**): ×10,000; (**B**): ×25,000.

2.3. Effect of Flue Gas Components on Hg⁰ Removal

Figure 4A shows the effects of flue gas components on Hg⁰ removal over $5V_2O_5/PG$. It can be seen that the $5V_2O_5/PG$ catalyst exhibited excellent Hg⁰ removal capability ($E_{Hg} = 90.9\%$) within 400 min in a N₂ atmosphere. However, after 0.15% SO₂ was introduced, an obviously inhibitive effect was observed, and the E_{Hg} decreased to 43.5%. A similar negative effect ($E_{Hg} = 53.48\%$) was also observed by adding 5% H₂O into N₂. These may be due to the competitive adsorption of SO₂ (or H₂O) with Hg⁰ on the surface of $5V_2O_5/PG$ in a N₂ atmosphere, as well as the reaction of SO₂, H₂O, and V₂O₅ [18,35]. Adding 8% O₂ into the N₂ atmosphere promoted Hg⁰ removal over V₂O₅/PG, and the E_{Hg} increased to 96.8%, indicating that O₂ played a positive role in Hg⁰ removal. Since no Hg⁰ oxidation by O₂ was measured in the gas phase, the effect of O₂ should be on V₂O₅, i.e., V₂O₅ was reduced to V⁴⁺ in Hg⁰ oxidation and lost its oxidation activity, while O₂ can replenish O to the used V₂O₅ sites and resume its oxidation activity. This was consistent with SO₂ removal and Hg⁰ oxidation over V₂O₅/AC catalysts in our previous research [37], and is similar to Hg⁰ oxidation on metal oxide catalysts [38,39].

Figure 4B shows Hg⁰ removal over $5V_2O_5/PG$ in a complex atmosphere containing more components. As mentioned above (Figure 4A), E_{Hg} was 43.5% in N₂ + SO₂, and it decreased to 34.2% after adding 5% H₂O into N₂ + SO₂. However, after 8% O₂ was added into N₂ + SO₂ or N₂ + H₂O, the E_{Hg} increased to 72.4% and 77.4%, respectively. This suggested that O₂ played a critical role and could offset the negative effect of H₂O (or SO₂) on Hg⁰ removal to a certain extent [18,40–42]. The E_{Hg} increased to 86.9% after

5% H₂O was added into N₂ + O₂ + SO₂, which may be due to the formation of SO₄²⁻, which could react with Hg⁰ [43–45]. HgSO₄ was formed, as shown in the following TPD experiment results.

Figure 4. Effect of flue gas components on Hg⁰ removal over 5V₂O₅/PG ((**A**) single component; (**B**) multi-components. reaction conditions: O₂ = 8%, H₂O = 5%, SO₂ = 0.15%, N₂ as balance, $C_{Hg}^{0} = 240 \ \mu g/m^{3}$, GHSV = 6000 h⁻¹, T = 150 °C).

2.4. Effects of GHSV on Hg⁰ Removal

The GHSV, as an important industrial parameter, can directly affect the contact time between the flue gas components and catalyst bed, and it has an important influence on the Hg⁰ removal process. Figure 5 shows the results of Hg⁰ removal by $5V_2O_5/PG$ at different GHSV (6000 h⁻¹, 10,000 h⁻¹, and 15,000 h⁻¹) at 150 °C. It can be seen that GHSV had an obvious effect on Hg⁰ removal over $5V_2O_5/PG$. As the GHSV increased from 6000 h⁻¹ to 15,000 h⁻¹, the E_{Hg} decreased from 86.9% to 57.9% in 400 min. The lower GHSV (6000 h⁻¹) is more beneficial for Hg⁰ removal over $5V_2O_5/PG$. This may be due to the lower GHSV increasing the contact time of Hg⁰ and $5V_2O_5/PG$ [35]. The $5V_2O_5/PG$ catalyst exhibited good Hg⁰ removal activity at 6000 h⁻¹, which can match the actual GHSV of flue gas in a power plant and was suitable for mercury removal in power plants.

Figure 5. Effect of GHSV on Hg⁰ removal over 5V₂O₅/PG (reaction conditions: O₂ = 8%, H₂O = 5%, SO₂ = 0.15%, N₂ as balance, C_{Hg}^{0} = 240 µg/m³, GHSV = 6000–15,000 h⁻¹, T = 150 °C).

2.5. The Pathway of Hg^0 Removal over V_2O_5/PG

The speciation of Hg adsorbed on the surface of V_2O_5/PG was characterized by XPS, and the results are shown in Figure 6. It can be seen that there was only one peak, at 102.90 eV, for the fresh $5V_2O_5/PG$, which could be attributed to Si 2p in the PG carrier. As for the spent $5V_2O_5/PG$ after Hg⁰ removal, two peaks were observed at 103.1 eV and 107.15 eV, respectively. The peak at 103.1 eV can be assigned to Si 2p of the PG carrier, while the peak at 107.15 eV was attributed to Hg²⁺ [24,28].

Figure 6. XPS of Hg 4f for fresh and spent V₂O₅/PG catalyst.

To further investigate the mercury species adsorbed over V_2O_5/PG , the experiments of Hg temperature-programmed desorption (Hg-TPD) were performed for the fresh and spent $5V_2O_5/PG$. As shown in Figure 7, it can be seen that there was no Hg release peak during the whole Hg-TPD process for the fresh $5V_2O_5/PG$ sample. However, as for the spent $5V_2O_5/PG$ sample, two Hg release peaks appeared at 240 °C and 495 °C, respectively. This indicated that there were two forms of mercury on the surface of the spent $5V_2O_5/PG$, which can be ascribed to HgO and HgSO₄ [46,47]; the relevant reactions may be described as follows, and the enthalpy change of adsorption and reactions were calculated in the Vienna ab initio simulation package (VASP 5.4.4) [48]:

$\mathrm{Hg}^{0}\left(\mathrm{gas} ight) ightarrow\mathrm{Hg}^{0}\left(\mathrm{ad} ight)$	$(\triangle H = -18.337 \text{ kJ/mol})$
$O_2 (gas) \rightarrow O_2 (ad)$	$(\triangle H = -12.589 \text{ kJ/mol})$
$SO_2 (gas) \rightarrow SO_2 (ad)$	$(\triangle H = -33.545 \text{ kJ/mol})$
$2Hg^{0}\ (ad)$ + $O_{2}\ (ad)$ \rightarrow $2HgO\ (ad)$	$(\triangle H = 147.448 \text{ kJ/mol})$
$SO_2 \; (ad) + O_2 \; (ad) + Hg^0 \; (ad) \rightarrow HgSO_4 \; ($	(\triangle H = -161.557 kJ/mol)

Additionally, it can be seen that the Hg adsorbed on $5V_2O_5/PG$ began to release at 150 °C, which could well explain the result of Figure 2 that the E_{Hg} decreased as the temperature was higher than 150 °C.

2.6. Regeneration of V_2O_5/PG Catalyst after Hg^0 Removal

The above results showed that the $5V_2O_5/PG$ catalyst had an excellent Hg⁰ removal capability at low temperature. To investigate the reusability of the $5V_2O_5/PG$ catalyst, the $5V_2O_5/PG$ after Hg⁰ removal was regenerated and reused for Hg⁰ removal again. Since the V_2O_5/PG catalyst was prepared by calcining at 300 °C in air, a regeneration temperature was chosen from 300 °C to 500 °C to resume its catalytic activity. The results of the PG, $5V_2O_5/PG$, $5V_2O_5/PG$ -Re-300 °C, $5V_2O_5/PG$ -Re-400 °C, and $5V_2O_5/PG$ -Re-500 °C for Hg⁰ removal are shown in Figure 8. It can be seen that, with the rise of regeneration temperature (from 300 °C to 500 °C), the E_{Hg} of $5V_2O_5/PG$ -Re-x decreased obviously. $5V_2O_5/PG$ -Re-300 °C showed the highest activity ($E_{Hg} = 90.3\%$) at 420 min, even higher than that of the fresh $5V_2O_5/PG$ catalyst ($E_{Hg} = 83.1\%$). The E_{Hg} of $5V_2O_5/PG$ -

Re-400 °C and $5V_2O_5/PG$ -Re-500 °C were 66.7% and 46.8%, respectively. This may be due to the change of structure and chemical properties of $5V_2O_5/PG$ during regeneration, which caused partial active sites loss on the surface of the $5V_2O_5/PG$ catalyst at higher regeneration temperatures (400 °C and 500 °C) [36].

Figure 7. TPD profiles of fresh and spent $5V_2O_5/PG$ (reaction conditions: T = 30–600 °C, $N_2 = 200 \text{ mL/min}$, heating rate = 5 °C/min).

Figure 8. Comparison of Hg⁰ removal over PG, 5V₂O₅/PG, 5V₂O₅/PG-Re-300 °C, 5V₂O₅/PG-Re-400 °C, and 5V₂O₅/PG-Re-500 °C (reaction condition: O₂ = 8%, H₂O = 5%, SO₂ = 0.15%, N₂ as balance, $C_{Hg}^{0} = 240 \ \mu g/m^{3}$, GHSV = 6000 h⁻¹, T = 150 °C).

3. Materials and Methods

3.1. Catalysts Preparation

The PG was mixed with distilled water in a certain proportion (1 g: 4–8 mL), dried at 110 $^{\circ}$ C for 6 h, then calcined at 300 $^{\circ}$ C for 6 h in air. The obtained PG samples were crushed and screened into a 40–60 mesh.

The xV_2O_5/PG catalysts (*x* is the mass fraction of V_2O_5 in the V_2O_5/PG catalyst, and x = 0-5 wt%) were prepared by impregnating PG particles with different V_2O_5 loadings,

which was similar to the V₂O₅/AC catalysts in our previous research [36]., Briefly, the PG particles are impregnated in ammonium metavanadate solution with the required concentration for 1 h, dried at 60 °C for 5 h, then 110 °C for 8 h. Finally, the samples were calcined at 300 °C for 4 h in air.

3.2. Catalytic Activity Evaluation of V₂O₅/PG

The catalytic activity of the V₂O₅/PG catalyst for Hg⁰ removal was tested in a benchscale fixed-bed reactor; a detailed description of the experimental schematic is in Figure 9. The Hg⁰ removal activity evaluation device system mainly includes simulated flue gas, a programmed temperature controller, a fixed-bed reactor, an online mercury analyzer and a tail gas treatment cleaner. A total of 0.5 g V₂O₅/PG was loaded into the quartz tube. The simulated flue gas includes 8% O₂, 0.15% SO₂, 5% H₂O and balance N₂, and was controlled by a mass flowmeter. The GHSV was approximately 6000 h⁻¹. The temperature (120–210 °C) was controlled by a digital temperature controller. The Hg⁰ vapor was produced from a mercury permeation tube (VICI Metronics) and carried out by N₂ with a constant flow rate. Hg⁰ concentration was detected by an online RA-915M Mercury Analyzer (Lumex Co, Ltd., St. Petersburg, Russia). Finally, the tail gas was treated by a device equipped with activated carbon.

Figure 9. Schematic diagram of the fixed-bed reactor for Hg^0 removal by V_2O_5/PG .

The Hg⁰ removal efficiency (E_{Hg}) was defined as follows:

$$E_{Hg}(\%) = \frac{C_0 - C_1}{C_0} \times 100 \%$$
(1)

where C_0 and C_1 represent the Hg⁰ concentration ($\mu g/m^3$) at the inlet and outlet of the reactor, respectively.

3.3. Characterization

The N₂ adsorption–desorption tests were carried out by an Autosorb-iQ analyzer (Quantachrome, Boynton Beach, FL, USA). The specific surface areas were calculated by the Brunauer–Emmett–Teller (BET) method, the pore structure parameters were analyzed by the Barrett–Joyner–Halenda (BJH) method.

The morphologies of the V_2O_5/PG samples were observed, which was performed on a scanning electron microscope (SEM) (JSM-7001F, JEOL, Akishima City, Japan).

The X-ray photoelectron spectroscopy (XPS) analysis was performed on an ESCALAB 250Xi spectrometer (Thermo Fisher, Waltham, MA, USA) using an Al K α X-ray source at room temperature. All binding energies (BE) were adjusted with the C 1s binding energy value of 284.6 eV.

The Hg temperature-programmed desorption (Hg-TPD) experiments were conducted in a quartz tube reactor using a 0.1 g sample in N₂ (200 mL/min). The sample was firstly used to remove Hg⁰ at 150 °C for 6 h, then swept with N₂ at 150 °C for 2 h, and finally, heated from 30 °C to 600 °C with a heating rate of 5 °C/min. The outlet gas from the reactor was introduced into a KBH₄ solution to reduce the possibly existing Hg²⁺ to Hg⁰. The Hg⁰ concentration in the effluent gas after the KBH₄ solution was continuously measured by an on-line mercury analyzer (RA-915M, Lumex, St. Petersburg, Russia).

4. Conclusions

The V₂O₅/PG catalyst had excellent Hg⁰ removal capability, which was mainly due to the V₂O₅/PG catalyst combined with the adsorption ability of PG and the catalytic oxidation activity of V₂O₅. Hg⁰ was oxidized to form HgO and HgSO₄, and then adsorbed on the V₂O₅/PG catalyst. The E_{Hg} of the V₂O₅/PG catalyst increased with the increase of V₂O₅ loading, and the 5V₂O₅/PG catalyst showed the highest E_{Hg} at 150 °C. O₂ exhibited a promoting effect on Hg⁰ removal, while SO₂ and H₂O showed an obvious inhibitory effect. However, when O₂, H₂O, and SO₂ were added together, the E_{Hg} showed a promoting trend. The used V₂O₅/PG catalyst after Hg⁰ removal can be regenerated and its capability for Hg⁰ removal can be completely recovered, and the V₂O₅/PG-Re-300 °C catalyst showed excellent performance and good stability for Hg⁰ removal after regeneration.

Author Contributions: Conceptualization, J.W. and X.W.; methodology, J.W.; validation, H.W., C.J. and J.W.; formal analysis, H.W.; investigation, H.W.; data curation, C.J.; writing—original draft preparation, J.W.; writing—review and editing, J.Z.; visualization, H.W.; supervision, J.W.; project administration, X.W.; funding acquisition, J.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (21203003, 51404014), Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (2020-KF-28) and Anhui Provincial Discipline (Professional) Top Talent Academic Funding Project (gxbjZD2021062).

Data Availability Statement: Not available.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Horowitz, H.M.; Jacob, D.J.; Amos, H.M.; Streets, D.G.; Sunderland, E.M. Historical mercury releases from commercial products: Global environmental implications. *Environ. Sci. Technol.* **2014**, *48*, 10242–10250. [CrossRef] [PubMed]
- Nriagu, J.O.; Pacyna, J.M. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. *Nature* 1988, 333, 134–139. [CrossRef] [PubMed]
- Gao, Y.S.; Zhang, Z.; Wu, J.W.; Duan, L.H.; Umar, A.; Sun, L.H. A critical review on the heterogeneous catalytic oxidation of elemental mercury in flue gases. *Environ. Sci. Technol.* 2013, 47, 10813–10823. [CrossRef] [PubMed]
- Kocman, D.; Horvat, M.; Pirrone, N.; Cinnirella, S. Contribution of contaminated sites to the global mercury budget. *Environ. Res.* 2013, 125, 160–170. [CrossRef] [PubMed]
- Li, H.L.; Wu, C.Y.; Li, Y.; Li, L.Q.; Zhao, Y.C.; Zhang, J.Y. Impact of SO₂ on elemental mercury oxidation over CeO₂-TiO₂ catalyst. *Chem. Eng. J.* 2013, 219, 319–326. [CrossRef]
- Streets, D.G.; Hao, J.M.; Wu, Y.; Jiang, J.K.; Chan, M.; Tian, H.Z. Anthropogenic mercury emissions in China. *Atmos. Environ.* 2005, 39, 7789–7806. [CrossRef]
- Wu, Q.R.; Wang, S.X.; Liu, K.Y.; Li, G.L.; Hao, J.M. Emission-limit-oriented strategy to control atmospheric mercury emissions in coal-fired power plants toward the implementation of the Minamata Convention. *Environ. Sci. Technol.* 2018, 52, 11087–11093. [CrossRef]
- Zhao, Y.; Ma, X.Y.; Xu, P.Y.; Wang, H.; Liu, Y.C.; He, A.E. Elemental mercury removal from flue gas by CoFe₂O₄ catalyzed peroxymonosulfate. *J. Hazard. Mater.* 2018, 341, 228–237. [CrossRef]
- Liu, W.; Vidic, R.D.; Brown, T.D. Impact of flue gas conditions on mercury uptake by sulfur-impregnated activated carbon. *Environ. Sci. Technol.* 2000, 34, 154–159. [CrossRef]
- 10. Luo, J.J.; Zhang, L.D.; Huang, H.W.; Zhang, J.R. Effects of flue gas components and fly ash on mercury oxidation. *J. Univ. Sci. Technol. Beijing* **2011**, *33*, 771–776.
- Yang, Y.J.; Liu, J.; Liu, F.; Wang, Z.; Miao, S. Molecular-level insights into mercury removal mechanism by pyrite. J. Hazard. Mater. 2018, 344, 104–112. [CrossRef] [PubMed]
- 12. Zhou, Z.J.; Liu, X.W.; Zhao, B.; Shao, H.Z.; Xu, Y.S.; Xu, M.H. Elemental mercury oxidation over manganese-based perovskite-type catalyst at low temperature. *Chem. Eng. J.* 2016, 288, 701–710. [CrossRef]
- 13. Díaz-Somoano, M.; Unterberger, S.; Hein, K.R. Mercury emission control in coal-fired plants: The role of wet scrubbers. *Fuel Process. Technol.* 2007, *88*, 259–263. [CrossRef]

- 14. Li, B.; Wang, H.L. Effect of flue gas purification facilities of coal-fired power plant on mercury emission. *Energy Rep.* 2021, 7, 190–196. [CrossRef]
- 15. Li, H.; Wu, C.Y.; Li, Y.; Zhang, J.Y. CeO₂-TiO₂ catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas. *Environ. Sci. Technol.* **2011**, *45*, 7394–7400. [CrossRef]
- 16. Fukuda, N.; Takaoka, M.; Doumoto, S.; Oshita, K.; Morisawa, S.; Mizuno, T. Mercury emission and behavior in primary ferrous metal production. *Atmos. Environ.* **2011**, *45*, 3685–3691. [CrossRef]
- 17. Zhao, S.J.; Mei, J.; Xu, H.M.; Liu, W.; Qu, Z.; Cui, Y. Research of mercury removal from sintering flue gas of iron and steel by the open metal site of Mil-101(Cr). *J. Hazard. Mater.* **2018**, *351*, 301–307. [CrossRef] [PubMed]
- Yang, H.Q.; Xu, Z.H.; Fan, M.H.; Bland, A.E.; Judkins, R.R. Adcatalyst for capturing mercury in coal-fired boiler flue gas. J. Hazard. Mater. 2007, 146, 1–11. [CrossRef]
- Scala, F. Simulation of mercury capture by activated carbon injection in incinerator flue gas in-duct removal. *Environ. Sci. Technol.* 2001, 35, 4367–4372. [CrossRef]
- 20. Chen, W.M.; Pei, Y.; Huang, W.J.; Qu, Z.; Hu, X.F.; Yan, N.Q. Novel effective catalyst for elemental mercury removal from coal-fired flue gas and the mechanism investigation. *Environ. Sci. Technol.* **2016**, *50*, 2564–2572. [CrossRef]
- Yuan, Y.; Zhang, J.Y.; Li, H.L.; Li, Y.; Zhao, Y.C.; Zheng, C.G. Simultaneous removal of SO₂, NO and mercury using TiO₂-aluminum silicate fiber by photocatalysis. *Chem. Eng. J.* 2012, 192, 21–28. [CrossRef]
- 22. Wu, J.; Xu, K.; Liu, Q.Z.; Ji, Z.; Qu, C.; Qi, X.M. Controlling dominantly reactive (010) facets and impurity level by in-situ reduction of BiOIO₃ for enhancing photocatalytic activity. *Appl. Catal. B* **2018**, 232, 135–145. [CrossRef]
- Pavlish, J.H.; Sondreal, E.A.; Mann, M.D.; Olson, E.S.; Galbreath, K.C.; Laudal, D.L. Status review of mercury control options for coal-fired power plants. *Fuel Process. Technol.* 2003, 82, 89–165. [CrossRef]
- 24. Xu, H.M.; Qu, Z.; Zong, C.X.; Quan, F.Q.; Mei, J.; Yan, N.Q. Catalytic oxidation and adsorption of Hg⁰ over low-temperature NH₃-SCR LaMnO₃ perovskite oxide from flue gas. *Appl. Catal. B* **2016**, *186*, 30–40. [CrossRef]
- Cai, J.; Shen, B.X.; Li, Z.; Chen, J.H.; He, C. Removal of elemental mercury by clays impregnated with KI and KBr. *Chem. Eng. J.* 2014, 241, 19–27. [CrossRef]
- He, C.; Shen, B.X.; Chen, J.H.; Cai, J. Adsorption and oxidation of elemental mercury over Ce-MnO_x/Ti-PILCs. *Environ. Sci. Technol.* 2014, 48, 7891–7898. [CrossRef]
- 27. Ding, F.; Zhao, Y.C.; Mi, L.L.; Li, H.L.; Li, Y.; Zhang, J.Y. Removal of gas-phase elemental mercury in flue gas by inorganic chemically promoted natural mineral catalyst. *Ind. Eng. Chem. Res.* **2012**, *51*, 3039–3047. [CrossRef]
- Li, H.L.; Zhang, M.G.; Zhu, L.; Yang, J.P. Stability of mercury on a novel mineral sulfide sorbent used for efficient mercury removal from coal combustion flue gas. *Environ. Sci. Pollut. Res.* 2018, 25, 28583–28593. [CrossRef]
- 29. Takagi, M.; Kawai, T.; Soma, M.; Onishi, T.; Tamaru, K. The mechanism of the reaction between NO_x and NH₃ on V₂O₅ in the presence of oxygen. *J. Catal.* **1977**, *50*, 441–446. [CrossRef]
- 30. Zhao, L.K.; Li, C.T.; Zhang, J.; Zhang, X.N.; Zhan, F.M.; Ma, J.F. Promotional effect of CeO₂ modified support on V₂O₅–WO₃/TiO₂ catalyst for elemental mercury oxidation in simulated coal-fired flue gas. *Fuel* **2015**, *153*, 361–369. [CrossRef]
- Lee, W.; Bae, G.N. Removal of elemental mercury (Hg⁰) by nanosized V₂O₅/TiO₂ catalysts. *Environ. Sci. Technol.* 2009, 43, 1522–1527. [CrossRef] [PubMed]
- 32. Zhang, X.P.; Li, Z.F.; Wang, J.X.; Tan, B.J.; Cui, Y.Z.; He, G.H. Reaction mechanism for the influence of SO₂ on Hg⁰ adsorption and oxidation with Ce-0.1-Zr-MnO₂. *Fuel* **2017**, *203*, 308–315. [CrossRef]
- Zhang, A.C.; Xing, W.B.; Zhang, Z.H.; Meng, F.M.; Liu, Z.C.; Xiang, J. Promotional effect of SO₂ on CeO₂-TiO₂ material for elemental mercury removal at low temperature. *Atmos. Pollut. Res.* 2016, *7*, 895–902. [CrossRef]
- 34. Yang, Z.Q.; Li, H.L.; Liu, X.; Li, P.; Yang, J.P.; Lee, P.H. Promotional effect of CuO loading on the catalytic activity and SO₂ resistance of MnO_x/TiO₂ catalyst for simultaneous NO reduction and Hg⁰ oxidation. *Fuel* **2018**, 227, 79–88. [CrossRef]
- 35. Wang, J.W.; Shen, Y.Y.; Dong, Y.J.; Qin, W.; Zhang, Q.P.; Lu, L.; Zhang, Y.G. Oxidation and adsorption of gas-phase Hg⁰ over a V₂O₅/AC catalyst. *RSC Adv.* **2016**, *6*, 77553–77557. [CrossRef]
- Zhang, Q.P. Removal of Hg⁰ from Simulated Flue Gas by CuO/PG and V₂O₅/PG. Master's Thesis, Anqing Normal University, Anqing, China, 2018. (In Chinese)
- Zhu, Y.C.; Han, X.J.; Huang, Z.G.; Hou, Y.Q.; Guo, Y.; Wu, M.H. Superior activity of CeO₂ modified V₂O₅/AC catalyst for mercury removal at low temperature. *Chem. Eng. J.* 2018, 337, 741–749. [CrossRef]
- Ma, Y.P.; Mu, B.L.; Yuan, D.L.; Zhang, H.Z.; Xu, H.M. Design of MnO₂/CeO₂-MnO₂ hierarchical binary oxides for elemental elemental mercury removal from coal-fired flue gas. *J. Hazard. Mater.* 2017, 333, 186–193. [CrossRef]
- 39. Ye, D.; Wang, X.X.; Wang, R.X.; Wang, S.Y.; Liu, H.; Wang, H.N. Recent advances in MnO₂-based adsorbents for mercury removal from coal-fired flue gas. *J. Environ. Chem. Eng.* **2021**, *9*, 105993. [CrossRef]
- 40. Zhu, Y.C.; Hou, Y.Q.; Wang, J.W.; Guo, Y.P.; Huang, Z.G.; Han, X.J. Effect of SCR atmosphere on the removal of Hg⁰ by a V₂O₅–CeO₂/AC catalyst at low temperature. *Environ. Sci. Technol.* **2019**, *53*, 5521–5527. [CrossRef]
- 41. Li, H.L.; Wu, C.Y.; Li, Y.; Li, L.Q.; Zhao, Y.C.; Zhang, J.Y. Role of flue gas components in mercury oxidation over TiO₂ supported MnO_x-CeO₂ mixed-oxide at low temperature. *J. Hazard. Mater.* **2012**, 243, 117–123. [CrossRef]
- He, C.; Shen, B.X.; Li, F.K. Effects of flue gas components on removal of elemental mercury over Ce–MnOx/Ti-PILCs. J. Hazard. Mater. 2016, 304, 10–17. [CrossRef] [PubMed]

- 43. Wang, Y.Y.; Shen, B.X.; He, C.; Yue, S.J.; Wang, F.M. Simultaneous removal of NO and Hg⁰ from flue gas over Mn-Ce/Ti-PILCs. *Environ. Sci. Technol.* **2015**, *49*, 9355–9363. [CrossRef]
- 44. Zhao, L.K.; Li, C.T.; Li, S.H.; Wang, Y.; Zhang, J.Y.; Wang, T. Simultaneous removal of elemental mercury and NO in simulated flue gas over V₂O₅/ZrO₂-CeO₂ catalyst. *Appl. Catal. B* **2016**, *198*, 420–430. [CrossRef]
- 45. Morris, E.A.; Kirk, D.W.; Jia, C.Q.; Morita, K. Roles of sulfuric acid in elemental mercury removal by activated carbon and sulfur-impregnated activated carbon. *Environ. Sci. Technol.* **2012**, *46*, 7905–7912. [CrossRef] [PubMed]
- 46. Zhou, Q.; Duan, Y.F.; Chen, M.M.; Liu, M.; Lu, P. Studies on mercury adsorption species and equilibrium on activated carbon surface. *Energy Fuels* **2017**, *31*, 14211–14218. [CrossRef]
- 47. Rumayor, M.; Diaz-Somoano, M.; López-Antón, M.A. Temperature programmed desorption as a tool for the identification of mercury fate in wet-desulphurization systems. *Fuel* **2015**, *148*, 98–103. [CrossRef]
- Ranea, V.A. A DFT + U study of H₂O adsorption on the V₂O₅(0 0 1) surface including van der Waals interactions. *Chem. Phys. Lett.* 2019, 730, 171–178. [CrossRef]