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Abstract: The pyrolytic activated carbon derived from waste tires (PTC) was functionalized to
fabricate the high performance of Pt-based catalysts in the dehydrogenation of methylcyclohexane
and hydrogen production. Structural characterizations evidenced that the modification partially
influenced the surface area, the pore structure, and the oxygen-containing functional groups of the
supports. The techniques of CO pulse, transmission electron microscopy, and hydrogen temperature-
programmed reduction were utilized to investigate the dispersion degrees and particle sizes of the
active component Pt, and its interaction with the various functionalized supports, respectively. The
results manifested that Pt particles loaded on the functionalized PTC-S had the largest dispersion
degree and the smallest size among those loaded on PTC and other functionalized PTC (i.e., PTC-K
and PTC-NH). Finally, the Pt-based catalysts were successfully applied in the dehydrogenation
reaction of methylcyclohexane to yield hydrogen. The results revealed that the Pt catalyst over the
functional PTC-S support exhibited a more excellent conversion of methylcyclohexane (84.3%) and a
higher hydrogen evolution rate (991.5 mmol/gPt/min) than the other resulting Pt-based catalysts.

Keywords: Pt-based catalysts; functional pyrolytic activated carbon; waste tires; hydrogen
energy; methylcyclohexane

1. Introduction

As one of the energies with the highest potential, hydrogen energy has attracted
widespread attention due to its cleanness, conversion efficiency, environmental friendli-
ness, etc. [1–4]. Liquid organic hydride (LOH) has been deemed an alternative hydrogen
energy carrier for the advantages that include high hydrogen storage capacity, high en-
ergy density, facile storage, convenient transportation in safe conditions (i.e., liquid), and
a highly reversible hydrogenation–dehydrogenation process [5–9]. A variety of liquid
organic hydrides have been developed with cyclohexane, methylcyclohexane (MCH),
1, 4-dimethylcyclohexane, decalin, and so on. Among them, MCH is the most promising
LOH for its high reversibility, favorable theoretical hydrogen-storage capacity (6.2 wt%),
and low toxic dehydrogenation product (i.e., toluene) with respect to benzene [10]. The
dehydrogenation of MCH can be accelerated in the presence of catalysts with the active
components (e.g., Pt and Pd) over appropriate supports. Pt-based catalysts exhibited higher
activity and better selectivity than Pd-based catalysts in the dehydrogenation reaction of
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MCH [11–13]. A suitable support could be beneficial to improving the activity and stability
of the Pt-based catalysts. Carbon materials have been considered to be desirable catalytic
supports with the ability to promote the dispersion of platinum atoms because of their high
specific surface area, well-developed porosity, strong mechanical resistance, and abundant
surface oxygen-containing groups [14,15].

With the development of the automobile industry, millions of tires are discarded,
thrown away, or buried all over the world annually, Meanwhile, the accumulation of waste
tires has been sharply augmented by their low biodegradability, with their total reaching
up to 5000 million by 2030 [16]. The growing number of waste tires will cause severe
environmental pollution and threaten human health without being properly handled [17].
Compared to landfills and incineration, pyrolysis has been regarded as an efficient and
eco-friendly handling approach for the high value-added recycled products. As one of
the main pyrolytic products, pyrolytic carbon has shown a similar structure to carbon
materials [18,19]. A significant number of researchers have discussed its utilizations for
adsorbents [20–22], capacitor materials [23–25], catalyst supports [26–29], and so on. Fur-
thermore, carbon supports could be improved in their surface area or functional groups to
build blocks for the covalent attachment of transition-metal complexes [30]. Zhang’s group
reported an efficient support treated by sulfuric acid for the dehydrogenation of MCH [31].
Potassium hydroxide and aminopropyl triethoxysilane were utilized to modify the Al2O3
or SBA-15 due to their high performance on the surface structures, the acidity and basicity
of the supports, and the interaction with the active component, etc. [32–35].

Herein, we presented a serial of the functionalized pyrolytic activated carbon (PTC)
derived from waste tires and investigated their performance on the dehydrogenation of
MCH and hydrogen production. Characterizations suggested that the surface structures of
PTC, including the surface area, the pore structure, and the oxygen-containing functional
groups, were changed by the sulfuric acid (PTC-S), potassium hydroxide (PTC-K), and
aminopropyl triethoxysilane (PTC-NH). The CO pulse technique and transmission electron
microscopy (TEM) were used to investigate the dispersion degrees and the sizes of the Pt
nanoparticles, and the hydrogen-temperature-programmed reduction (H2-TPR) technique
was utilized to explore the interaction mechanism between the active component Pt and
the various functionalized PTCs. Finally, the prepared Pt-based catalysts were successfully
applied in the dehydrogenation reaction of MCH to produce hydrogen.

2. Experimental Section
2.1. Chemicals and Reagents

Pyrolytic carbon black derived from waste tires was purchased from Shanghai Green-
man ECO Science and Technology Co., Ltd. (Shanghai, China). Chloroplatinic acid hydrate
(99.95%) and ethylene glycol solution (99.5%) were purchased from Tianjin Jinhai Type
Science and Technology Development Co., Ltd. (Tianjin, China) and Tianjin Jiangtian
Chemical Technology Co., Ltd. (Tianjin, China), respectively. MCH (99.0%), toluene
(99.5%), aminopropyl triethoxysilane (98.0%), potassium hydroxide (85.0%), and sulfuric
acid (95.0%) were purchased from Tianjin Concord Technology Co., Ltd. (Tianjin, China).
He (99.99%), 10% H2-90% Ar, and 10% CO-90% He gases were provided by the Beijing
Green Oxygen Tiangang Technology Development Co., Ltd. (Beijing, China). Nitrogen gas
was from Tianjin Sizhi Gas Co., Ltd. (Tianjin, China). Ultrapure water (18.2 MΩ·cm) was
produced by a Milli-Q EQ 7000 (Merck Milipore, Shanghai, China) and utilized throughout
the experiments.

2.2. Instruments

The scanning electron microscopy (SEM) and element mapping images were per-
formed on a JEOL JSM-7500F (JEOL, Tokyo, Japan). TEM and high-resolution transmission
electron microscopy (HRTEM) images were captured on a FEI Tecnai G2 F20 (FEI, Eind-
hoven, Netherlands). The specific surface area and the pore structure of the carbon supports
were obtained by a fully automatic multifunctional gas adsorption instrument ASAP 2020
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(Micromeritics, Atlanta, GA, USA). A Vector 22 Fourier transform infrared (FTIR) spec-
trophotometer (Bruker, Switzerland) and a Kratos AXIS-ULTRA DLD multifunctional
photoelectron spectrometer with Mg-Kα radiation (Shimadzu, Kyoto, Japan) were utilized
to measure the surface functional groups and the X-ray photoelectron spectroscopy data
(XPS), respectively. All the XPS peaks were calibrated with the C1s peak binding energy
of 284.5 eV for adventitious carbon. X-ray diffraction patterns (XRD) were recorded on
a Bruker D8 FOCUS powder X-ray diffractometer (Bruker, Karlsruhe, Germany). A Ren-
ishaw inVia Microraman spectrometer (Renishaw, London, UK) was utilized to measure the
Raman spectra with an excitation light of 514.5 nm. Load capacity of Pt was measured by
an inductively coupled plasma atomic emission spectrometer (ICP-AES, ICP-9000(N+M),
Shimadzu, Kyoto, Japan). A Thermo Plus EVO thermogravimetry-differential thermal
analyzer (TG-DTA, Rigaku, Tokyo, Japan) was employed to measure TG and DTG curves
with a heating rate of 10 ◦C/min in nitrogen. CO pulse and H2-TPR techniques were carried
out on a Micromeritics Chemsorb 2750 equipped with a thermal conductivity detector (Mi-
cromeritics, Atlanta, GA, USA). The dehydrogenation reaction of MCH to yield hydrogen
was performed on a fixed-bed flow reactor from Tianjin Pengxiang Technology Co., Ltd.
(Tianjin, China). A Gas Chromatograph (GC)-7800 (Labthink, Jinan, China) equipped with
a flame ionization detector and an SE-30 column was used to analyze the products of MCH
dehydrogenation. All measurements were taken at room temperature.

2.3. Preparation of the PTC

20 g of the pyrolysis carbon black derived from waste tires was extracted in 300 mL of
the toluene solution for 96 h to remove the organic impurities, subsequently acid-washed
by 100 mL 0.1 mol·L−1 of the dilute sulfuric acid at 40 ◦C for 12 h to eliminate the inorganic
ash, and dried in an oven at 55 ◦C for 12 h. Finally, the purified carbon black was activated
with steam at 850 ◦C for 2 h in a tube furnace to develop its porous system to prepare
the PTC.

2.4. Preparation of the Functionalized PTC Supports

10 g of PTC was functionalized by 100 mL 2 mol/L of dilute sulfuric acid at 65 ◦C for
8 h, cooled naturally, washed, filtered, dried in an oven at 110 ◦C for 12 h, and marked as
PTC-S. PTC-NH and PTC-K supports were prepared using the operations identical to PTC-S,
but functionalized by aminopropyl triethoxysilane and potassium hydroxide, respectively.

2.5. Preparation of the Pt-Based Catalysts

Pt was loaded on the surface of the functionalized PTC supports to yield the Pt-based
catalysts, which were prepared with the impregnation method as follows: 2.0 g PTC was
dispersed into 20 mL ultrapure water and stirred for 20 min. 0.6 mL 6.98 mg·mL−1 of
chloroplatinic acid was added dropwise into the suspension and stirred for another 30 min.
Then, 20 mL of ethylene glycol solution was added to pre-reduce the Pt-based precursor at
100 ◦C for 4 h. Finally, the stock solution cooled to room temperature, filtered, and collected
the solid product (i.e., the Pt/PTC catalyst), which was washed with ultrapure water and
dried in a vacuum at 55 ◦C for 12 h for further characterizations and applications. The
loaded amount of Pt in the catalysts was around 0.2 wt%, which was measured by ICP-AES.
The Pt/PTC-S, Pt/PTC-K, and Pt/PTC-NH catalysts were prepared by the same operations
as the Pt/PTC catalyst, applying PTC-S, PTC-K, and PTC-NH as the supports, respectively.

2.6. Catalytic Reaction

Dehydrogenation reaction of MCH to produce hydrogen and toluene was performed
in a fixed-bed flow reactor (10 mm inner diameter (ID) × 250 mm). Briefly, 0.03 mL/min
of MCH was continuously injected into the reactor under a nitrogen stream. The reaction
occurred at 300 ◦C for 12 h under 0.3 g of the Pt-based catalyst, which was freshly reduced
with H2 at 400 ◦C for 2 h. The products of catalytic reaction were separated by a gas–
liquid separator under condensation conditions, which collected the liquid every hour.
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The conversions of MCH were measured by a GC instrument. Each catalytic reaction was
performed three times in parallel.

2.7. Recycling Assays

The heterogeneity and stability of the Pt-based catalyst were investigated by recycling
assays. After the first run of the catalytic reaction finished, the catalyst was recovered,
reduced with H2 at 400 ◦C for 2 h, and reused for the next run’s catalytic reaction. And
it was implemented in another three runs. At the same time, the amounts of Pt in the
recovered Pt-base catalyst and the filtrate were detected by ICP-AES after the first run.

3. Results and Discussion
3.1. Characterizations of the Functional PTC Supports

SEM (Figure 1A) showed that PTC was composed of a large number of regular spher-
ical particles and various pores, both in favor of the loading of active components. As
presented in the XRD patterns (Figure 1B), the diffraction peaks at 24◦ and 44◦ in PTC
XRD originated from the (110) and (002) crystal faces of graphite microcrystalline (PDF#
041-1487), respectively. The same diffraction peaks were observed in PTC-S, PTC-K, and
PTC-NK, which indicated that the crystal structure of the supports was little changed after
being treated by dilute sulfuric acid, potassium hydroxide, and aminopropyl triethoxysi-
lane. All the N2 adsorption isotherms of the functional PTC supports (Figure 1C) were
found in the H4 hysteresis loops, which indicated the presence of the mesopores [36]. The
distribution of pore diameter (Figure 1D) verified that the presented supports exhibited an
abundant pore structure, including a great number of micropores (0.45–0.7 nm, 1–2 nm)
and a small number of mesopores (2–4 nm), which was the same result as N2 adsorption
isotherms. Compared to PTC, the pores of PTC-S appeared to slightly move to lower aper-
ture. Moreover, the intensity of the 0.4~0.5 nm pores significantly decreased, which might
have resulted from the sulfuric acid molecules entering into the pore structure and blocking
the partial pores. Meanwhile, the porous distribution of PTC-K appeared the addition of the
0.3–0.4 nm micropore in comparison to PTC, which indicated that the potassium hydroxide
had a little influence on the pore structure. Whereas the pore structures of PTC-NH were
extremely changed, which might be attributed to the blockage of small pores (less than
0.5 nm) and the addition of the 0.7–3 nm pores, suggesting that the surface structures of
PTC were affected by aminopropyl triethoxysilane. Table 1 lists the specific surface areas
and the pore structures of the PTC, PTC-S, PTC-K, and PTC-NH supports. The specific
surface area, pore volume, and pore size of PTC were 902 m2/g, 1.071 cm3/g, and 4.75 nm,
respectively, which were slightly changed in those of PTC-S and PTC-K. Nevertheless,
the surface area and pore volume of PTC-NH decreased to 490 m2/g and 0.833 cm3/g,
respectively, while the pore size increased to 6.80 nm, which resulted from the blockage of
small pores and the expansion of partial pores during the treatment [37].
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Figure 1. (A) SEM of PTC, (B) XRD patterns, (C) N2 adsorption isotherms, and (D) pore size
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Table 1. The surface structural properties of the PTC, PTC-S, PTC-K, and PTC-NH supports.

Supports Surface Area (m2/g) Pore Volume (cm3/g) Pore Size (nm)

PTC 902 1.071 4.75
PTC-S 898 1.133 5.05
PTC-K 906 1.160 5.12

PTC-NH 490 0.833 6.80

The structural properties of PTC and PTC-S were further analyzed by the characteri-
zations of Raman, FTIR, DG, DTG, and XPS techniques. As revealed in Figure 2A, both
D-band peaks (1345 cm−1, 1342 cm−1) and G-band peaks (1589 cm−1, 1600 cm−1) were ob-
served in the Raman spectra of PTC and PTC-S, respectively, which indicated the presence
of the amorphous carbon (sp3) and the crystal carbon (sp2) in PTC and PTC-S [38]. The
result was consistent with that of XRD patterns. The proportion of D-band peak intensity
(ID) to G-band peak intensity (IG) expressed the disorder degree of carbon materials [39].
ID/IG was 0.909 for PTC and 1.01 for PTC-S, which displayed the increase in the disorder
degree after the treatment by dilute sulfuric acid. The probable reason was that the sp2

type carbon (C=C) was partly oxidized to the sp3 type carbon (C-C/C-S) by dilute sulfuric
acid. This phenomenon was similar to that of the reported literature [40]. Moreover, the
intensities of the 2D-band peak (2677 cm−1) and 2G-band peak (2928 cm−1) in the Raman
spectrum of PTC-S were obviously enhanced in comparison to those in the PTC Raman
spectrum. The FTIR spectrum (Figure 2B) evidenced the abundant oxygen-containing
functional groups on the surface of PTC and PTC-S. The absorption peaks at 3450 cm−1

and 1630 cm−1 were attributed to the stretching vibration of the O-H bond [41] and the
C=O bond [42], respectively. The peaks ca. 1100 cm−1 and 540 cm−1 were assigned to the
stretching vibration of the C-O bond [43] and C-S bond [44,45]. Compared to PTC, the new
absorption peak at 620 cm−1 was ascribed to the stretching vibration of the S=O bond in the
sulfuric acid group [46], which further indicated that the surface functional groups of PTC
were modified by sulfuric acid. As displayed in Figure 2C of the PTC TG and DTG profiles,
the peaks at 250 ◦C and 460 ◦C were ascribed to the decomposition of the carboxyl group
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and carboxyl anhydrides [47]. The peak at 156 ◦C in the TG and DTG curves of PTC-S
(Figure 2D) was attributed to the loss of moisture, and those at 248 ◦C and 400 ◦C were
assigned to the decomposition of the carboxyl group and carboxyl anhydrides/sulfuric
acid groups, respectively [48,49].

XPS further evidenced the surface structure of PTC and PTC-S. As observed in
Figure 2E, the surface of PTC was composed of C, O, and S elements. In the C 1s spec-
trum of PTC (Figure 2F), the XPS peaks were located at 284.5, 286.0, 288.8, and 290.9 eV,
which were assigned to C-C, C-O-C, O-C=O, and C-S bonds, respectively [50,51]. The O 1s
spectrum (Figure 2G) was constituted by the peaks of 532.2, 533.5, and 535.6 eV, indicating
the presence of C=O and C-O bonds. The S element in PTC was probably produced from
the vulcanization process of the tire. The doublet peak of the S 2p spectrum (Figure 2H)
resulted from the spin-obit coupling of the S 2p3/2 (163.9 eV) and S 2p1/2 components
(165.1 eV) [40]. The wide spectrum of PTC-S (Figure 2I) revealed that PTC-S contained the
C, O, and S elements, which was similar to that of PTC. However, the level of the S element
increased relative to that in PTC, which resulted from the successful functionalization
by the dilute sulfuric acid. Meanwhile, the C-C bond (284.5 eV), C-O-C bond (286.1 eV),
O-C=O bond (288.4 eV), and C-S bond (291.0 eV) were observed in the C 1s spectrum
of PTC-S (Figure 2J). Compared to the O 1s spectrum of PTC, the new peak located at
535.7 eV in the O 1s spectrum (Figure 2K) was originated by the S-O bond. Likewise, the
S 2p spectrum of PTC-S (Figure 2L) was found another peak at 169 eV in contrast with
that of PTC, which was ascribed to the sulfate species [52], convincingly demonstrating the
introduction of the sulfuric acid group. The doublet split into the S 2p3/2 (168.2 eV) and
S 2p1/2 (169.4 eV) components [53]. The results of the XPS files were consistent with that
of FTIR.
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3.2. Characterizations of the Pt-Based Catalysts over the Functional PTC Supports

As shown in the XRD patterns (Figure 3A), the diffraction peaks of Pt were not found
in the Pt-based catalysts, which indicated the effective dispersion of Pt particles on the
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functionalized PTC supports. H2-TPR curves (Figure 3B) evidenced the reduced mechanism
of the Pt-based catalysts by H2. The peak at 605 ◦C was observed in the H2-TPR curve of
PTC, which originated from the surface intrinsic functional groups of carbon materials. In
comparison with PTC, the H2-TPR curve of the Pt/PTC catalyst exhibited a wide weak
peak at 246 ◦C, which was generated by the reduction reaction of Pt-O-Pt or Pt-O-C [54],
demonstrating the successful loading of the active component Pt. Likewise, the distinct
or weak peaks of Pt-O-C or Pt-O-Pt were discovered in the H2-TPR curves of Pt/PTC-S,
Pt/PTC-K, and Pt/PTC-NH, which manifested the successful preparation of Pt/PTC-S,
Pt/PTC-K, and Pt/PTC-NH. Additionally, the locations of the reduction peaks were less
than 400 ◦C, which suggested that the active component Pt could be reduced into the
metallic state by H2 at 400 ◦C.
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Figure 4 depicts the TEM and HRTEM images of Pt/PTC and Pt/PTC-S. As shown in
Figure 4A, the average size of the Pt particles in the Pt/PTC catalyst was ca. 4.2 nm. As
exhibited in Figure 4B, the Pt particles in the Pt/PTC-S catalyst appeared well dispersed,
with an average size of 2.1 nm. Noticeably, the PTC-S support had a small number of the
2~4 nm pores (pore size distribution in Figure 1D), which resulted in the Pt particles that
entered into these pores hardly enlarging any further due to the limitation in pore size and
the strong interaction between Pt and the pre-introduced sulfur. The insets in Figure 4A,B
illustrate that the lattice spaces of Pt in the Pt/PTC and Pt/PTC-S catalysts were 0.22 and
0.23 nm, respectively, which were attributed to the Pt (111) crystal face and were a benefit to
the dehydrogenation of MCH [55]. The elemental mapping images confirmed the existence
of C, O, S, and Pt, which further indicated the effective dispersion of Pt particles in the
Pt/PTC-S catalyst.
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The dispersion degrees of the active component Pt particles over the supports sig-
nificantly affect the catalytic activity, which were measured by the CO pulse adsorption
technique. As listed in Table 2, the dispersion degree of Pt particles in Pt/PTC was 25.6%,
which was improved extremely to 53.4% in Pt/PTC-S, resulting from the strong affinity
between platinum atoms and sulfur on the functionalized PTC-S that prevented Pt atom
diffusion and enhanced its dispersion [56–58]. The sizes of Pt particles in Pt/PTC and
Pt/PTC-S were 4.42 nm and 2.12 nm, respectively, which was in agreement with that of
TEM. However, the dispersion degrees of the active component Pt in the Pt/PTC-K and
Pt/PTC-NH catalysts were 12.2% with a size of 9.31 nm, and 4.3% with a size of 26.3 nm,
respectively, which confirmed that the Pt particles suffered from agglomeration on the
functionalized PTC-K and PTC-NH supports.

Table 2. The dispersion degrees of active component Pt particles in the Pt-loaded catalysts.

Catalysts Adsorption Capacity
of CO (µL/g Catalysts)

Surface Area of Metal
(m2/g Sample)

Dispersion of Active
Component Pt (%) Mean Size of Pt (nm)

Pt/PTC 58.9 63.3 25.6 4.42
Pt/PTC-S 122.7 131.9 53.4 2.12
Pt/PTC-K 28.0 30.1 12.2 9.31

Pt/PTC-NH 9.89 10.6 4.3 26.3

3.3. Optimization of Dehydrogenation Reaction Conditions

It was investigated that the influences of reaction temperature and weight hourly space
velocity (WHSV) on the conversion of MCH and the hydrogen evolution rate. As shown in
Figure 5A, the conversions of MCH to produce hydrogen utilizing Pt/PTC-S as a catalyst
were 7.11%, 33.7%, and 83.5% when setting the reaction temperature at 260 ◦C, 280 ◦C,
and 300 ◦C, respectively, owing to the endothermic reaction of the MCH dehydrogenation
reaction. However, the conversion of MCH at 320 ◦C was 83.7%, which was identical to
that at 300 ◦C, indicating that the optimum reaction temperature was 300 ◦C. Meanwhile,
as WHSV increased, the conversion of MCH significantly decreased, but the change in the
hydrogen evolution rate was not evident (Figure 5B). In order to save cost, 4.74 h−1 (i.e.,
0.30 mL/min of MCH) of WHSV was employed in the dehydrogenation reaction of MCH.
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3.4. Dehydrogenation of MCH by the Pt-Based Catalysts over the Functional PTC Supports

Figure 6 exhibits the conversions of MCH and the hydrogen evolution rates tak-
ing Pt/PTC, Pt/PTC-S, Pt/PTC-K, and Pt/PTC-NH as catalysts at 300 ◦C. As shown in
Figure 6A, the conversion of MCH using Pt/PTC as the catalyst was 40.1% at 2 h, but
slightly decreased from 41.5 to 38.2%, with the reaction time increasing from 3 to 12 h.
Moreover, the conversion of MCH adopting Pt/PTC-S as the catalyst was firstly around
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76.4% at 2 h and kept stable at 84.3% as the reaction time increased from 3 to 12 h, which
was distinctly higher and more stable than that of Pt/PTC, originating from the strong and
thermally stable Pt-S bonding [59]. However, the conversions of MCH utilizing Pt/PTC-K
and Pt/PTC-NH as catalysts were nearly 0, which probably resulted from the low disper-
sion degrees and the large sizes of the active component Pt in two catalysts, indicating that
potassium hydroxide and aminopropyl triethoxysilane were not suitable as the modifica-
tion agents of PTC for the catalytic dehydrogenation of MCH. The hydrogen evolution
rate of Pt/PTC was 453.4 mmol/gPt/min, which increased up to 991.5 mmol/gPt/min in
Pt/PTC-S, further indicating the good catalytic activity of Pt/PTC-S (Figure 6B). Figure 6C
demonstrates the recycling study of the Pt/PTC-S catalyst. The conversions of MCH in
the four reuses of Pt/PTC-S were revealed to fluctuate a little in the range of 82.1~84.0%,
which indicated the high stability of the Pt/PTC-S catalyst. Pt leaching in the reaction
was 0.14 ppm after the first run. Additionally, when the Pt catalyst was filtrated from the
reaction system, the catalytic reaction was rarely measured by the filtrate, which proved
that Pt on carbon supports was the heterogeneous active site. Table 3 lists the comparisons
of the hydrogen production of Pt-based catalysts over other supports reported by the
previous literature, which manifested the high performance of the resultant Pt/PTC-S for
hydrogen production.
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Table 3. Comparison of dehydrogenation of MCH and hydrogen production with other Pt catalysts
reported in the literature at 300 ◦C.

Catalysts Temperature
(◦C)

Rate of
Liquid MCH

(mL/min)

Catalyst
Weight

Pt loading
Content (wt %)

Conversion
of MCH (%)

H2
Evolution

Rate
(mmol/gPt/min)

Refs.

Pt/SBA-15 300 ◦C 0.03 0.05 3 65 (initial) 308.6 [60]
Pt/Ce-Mg-Al O 300 ◦C - - 0.35 49.8 686.9 [61]

Pt/coconut
activated carbon 300 ◦C 0.03 0.03 1 42 598.2 [62]

Pt/pyrolytic
waste activated

carbon
300 ◦C 0.03 0.554 0.4 95 305.3 [29]

Pt/GAC-S 300 ◦C 0.03 0.3 0.2 63 741.1 [31]
PtSn-5/Mg-Al-

O-350 300 ◦C 0.1 0.5 2 90.5 214.8 [63]

Pt/PTC-S 300 ◦C 0.03 0.3 0.2 84.3 991.5 This
work
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4. Conclusions

Herein, we presented a high-performance support for hydrogen production based
on the functionalized pyrolytic activated carbon derived from waste tires. N2-adsorption,
FTIR, CO pulse, and XPS suggested that the modification by sulfuric acid, potassium
hydroxide, and aminopropyl triethoxysilane influenced the surface area, the pore structure,
and the oxygen-containing functional groups of the supports, thereby affecting the Pt
particles in Pt-based catalysts in terms of particle size, dispersion, and dehydrogenation
activity. Results indicated that the sulfuric acid group exhibited the ability to promote the
dispersion of the active component Pt over the support and enhance the stability of the
Pt/PTC-S catalyst. Furthermore, satisfactory enhancements were observed in the MCH
conversion (84.3%) and hydrogen production (991.5 mmol/gPt/min) of the catalyst over
the sulfonic-function PTC with respect to other functional PTC at 300 ◦C.
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