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Abstract: The single-pot efficient oxidation of ethane to acetic acid catalysed by Au(I) or Au(III)
compounds, chlorotriphenylphosphinegold(I) (1), chlorotrimethylphosphinegold(I) (2), 1,3-bis(2,6-
diisopropylphenyl)imidazol-2-ylidenegold(I) chloride (3), dichloro(2-pyridinecarboxylato)gold(III)
(4), homogenous and supported on different carbon materials: activated carbon (AC), multi-walled
carbon nanotubes (CNT) and carbon xerogel (CX), oxidised with nitric acid followed by treatment
with NaOH (-ox-Na), is reported. The reactions were performed in water/acetonitrile. The materials

. were selective for the production of acetic acid, with no trace of by-products being detected. The best
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activity than the homogenous counterparts, with acetic acid yields up to 41.4% for 4@CNT-ox-Na,
and remarkable selectivity (with acetic acid being the only product detected). The heterogenised
catalysts with the best results were reused up to five cycles, with no significant loss of activity, and
maintaining high selectivity for acetic acid. 4@CNT-ox-Na showed not only the best catalytic activity
but also the best stability during the recycling runs.
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1. Introduction

Direct ethane oxidation is difficult to achieve due to the low reactivity of the C-H
bond. The kinetic labile products also increase the difficulty of this potentially rewarding
reaction [1]. Economically speaking, this reaction is important, as several bulk chemicals
rely on the ethane oxidation products. Among them, acetic acid is the most sought prod-
uct [2]. It is commercially produced mainly from methanol carbonylation [3], which gives
rise to several environmental problems. Methanol carbonylation is responsible for 65% of
the world capacity, the remaining 35% being distributed between oxidation of n-butane,
acetaldehyde, naphtha and fermentation of hydrocarbons [4].

A new commercial procedure to obtain acetic acid that can replace the carbonylation of
methanol is needed. It is important to avoid the use of corrosive chemicals and consequent
waste disposal. The economy related to general commodities makes the possibility of new
procedures to produce acetic acid a key challenge for catalysis research.

The development of an environmental awareness for catalysis research led to emerging
Attribution (CC BY) license (https://  legislation for the impact of chemicals, such as CO; and methane emission. In addition,
creativecommons.org/licenses /by / the decrease in oil reserves provided the opportunity for exploring alternative feedstocks
40/). to produce several commodities. Despite the gas synthesis route of acetic acid being
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currently an economically appealing process for the production of acetic acid in large-scale
(Cativa™ process) [3], many energy-demanding intermediate steps augment the total
costs of production. Thus, simpler and more economical procedures to produce acetic acid
are needed.

The most reported catalysts for the oxidation of ethane are mixtures of calcinated
oxides with selectivities up to 96%; however, neither the conversion nor the yield are
high. Some reviews can be found on the subject [5-7]. The pioneer work of Thorsteinson
et al. [8] reports on the selective oxidation of ethane to produce acetic acid on oxide-based
catalysts containing Mo, V, and other elements (Nb, Sb, Ti, Ta, Sn, As, W, Fe). These authors
stated that ethylene is produced as a principal product, and acetic acid was formed only
at higher pressures as a result of subsequent oxidation of ethylene. Several researchers
used Mo-V oxides [9,10], sometimes doped with Al [11,12], Nb [13-19], Pd [16,19] or Nb
and Pd [20,21]. Mo-V with redox elements (Pd, Ni, Ti) and acid elements (K, Cs, Te) were
also reported, with acetic acid yield maximised for a MogV,Nb;Tig o5 Te; catalyst [22].
Mo-V-M-O (M = A], Fe, Cr or Ti) complex metal oxide catalysts were also tested [23]. Mo-V
materials, frequently doped with other elements, supported on silica [24] and titania [25-30]
were also described. Molybdo(vanado)phosphoric heteropoly acids with Keggin structure
on oxide supports (5i0,, Al,O3, TiO,) are found in the literature [31]. V-P-O oxides were
tested [13,32,33], sometimes doped with Mo [32] or supported on titania [25,33]. In addition,
titania has been used as a support for VO catalysts [33,34], along with zirconia [34]. It is
not easy to determine which is the actual active and selective phase, as recently stated by
Bordes-Richard [7].

Zeolites, such as H-ZSM-5 [35], iron and copper containing ZSM-5 [36,37],
Fe/ZSM-5 [37,38], Rh/HZSM-5 [39], platinum and zinc containing LTA zeolite catalysts [40]
were used towards the oxidation of ethane, but selectivities do not go beyond 80%, and
yields and conversions are still low.

Other catalysts include the iridium clusters and atomically dispersed iridium catalysts
on nanodiamond support [41], pyrazole and tris(pyrazolyl)methane rhenium complexes
(with a remarkable 40% acetic acid yield) [42,43], or silica, graphite or nafion supported
mu-nitrido diiron phthalocyanines [44].

Recently, a highly selective oxidation of ethane to acetic acid was achieved by us [45],
using a Fe304/TiO, /[FeCl,{ K3—HC(pZ)3}] composite, where the C-scorpionate iron(1II) cata-
lyst was immobilised at the magnetic core—shell (Fe304/TiO;) support.

Gold catalysts have been widely used in many reactions as shown by several re-
views [46-49]. However, the only references found in the literature for the use of gold in
ethane oxidation are from the work of Wang et al., dealing with non-supported Au-Pd
nanoparticles in water, but the main product obtained was ethyl hydroperoxide [50] and
our own work dealing with homogeneous N-heterocyclic carbene and oxo-carbene Au(I)
compounds [51]. Therefore, to the best of our knowledge, the present work reports the first
use of commercial gold complexes supported on carbon nanomaterials in the oxidation
of ethane to produce acetic acid. These complexes had already been used in the oxidation
of alcohols and alkanes, in a previous work of ours, with good results [52]. Herein, the
one-step oxidation of ethane to acetic acid using a supported catalyst and a mixture of
solvents (water and acetonitrile) is reported as a new procedure for ethane oxidation. The
present method uses an environmentally sustainable approach, with milder conditions and
some commercial catalysts, with good activity and a selectivity of 100% to acetic acid. This
is an important step that will contribute considerably to the efficient use of feedstocks.

2. Results and Discussion
2.1. Carbon Supports Characterisation

The carbon-based materials used were activated carbon (AC), multi-walled carbon
nanotubes (CNT) and carbon xerogel (CX), oxidised with HNOj3 and afterwards treated
with NaOH (-ox-Na). Table 1 and Figure 1 show the characterisation results of the original
supports and after the treatment.
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AC has a high surface area and a great deal of micropores, as expected [52-58]. How-
ever, CX is mainly mesoporous, also as expected [53,57-59]. Carbon nanotubes are cylindri-
cal, and the porosity comes from the free spaces of the bundles, which results in a lower
surface area [53,57-59]. The ox-Na treatment causes the collapse of the pores of AC and
CX, decreasing the surface area and pore volume. On CX, the average mesopore width is
increased. For CNT, an increase in area is found, possibly due to the opening of some CNT
tips with the harsh oxidative treatment.

Figure 1 shows the temperature programmed desorption (TPD) profiles before and
after the treatment. It is not surprising that the -ox-Na treatment largely increased the
CO and CO; quantities desorbed (Table 1). The carboxylic acids (that decompose around
200-350 °C as CO, [53-56,60] largely increase in treated samples (Figure 1b,d,f). Concerning
the CO profiles (Figure 1la,c,e), desorption starts around 350 °C for the AC-ox-Na and
CX-o0x-Na samples, but only at around 500 °C for the CNT-ox-Na material. This is caused
by the decomposition of stable carboxylates and phenolates [59] that desorb as CO at that
range of temperatures [53-56,60].
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Figure 1. TPD results for AC (a,b), CX (c—e) and CNT (e,f). Desorption as CO (a,c,e) and CO; (b,d,f).
The colour bars show the expected temperature ranges for the desorption of the diverse groups
(adapted from [52,61]).
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Table 1. Carbon samples characterisation: surface area (Spgr), average mesopore width (L), total pore
volume (Vp), micropore volume (Vpyicro), determined by adsorption of Nj at —196 °C, and quantities
of CO and CO, desorbed, obtained by TPD. Adapted from [52,61].

Sample SpeT (M?/g) Vp (ecm®/g) L(nm)  Vp (em3/g) CO (umol/g) CO; (umol/g)

AC 974 0.67 - 0.34 643 179
AC-ox-Na 610 0.35 - 0.251 5012 2883
CNT 257 2.89 ~0 142 89
CNT-ox-Na 350 1.45 - ~0 1079 838
CX 604 091 13.7 ~0 492 135
CX-ox-Na 560 0.75 17.6 0.036 3720 3793

2.2. Heterogenisation Efficiency

The readily available Au(l) and Au(Ill) commercial complexes chlorotriphenylphosphine-
gold(I) (1), chlorotrimethylphosphinegold(l) (2), 1,3-bis(2,6-diisopropylphenyl)imidazol-2-
ylidenegold(I) chloride (3) and dichloro(2-pyridinecarboxylato)gold(Ill) (4) (Figure 2) were
used as catalysts towards the conversion of ethane into acetic acid. These materials had
already been used in the oxidation of alcohols and alkanes in a previous work of ours [52].

O ue
@_I, H,C—P-Au-Cl
|
Au

Aill CH3 Cl- AU_‘()

Cl

) ()

Figure 2. Structures of commercial chlorotriphenylphosphinegold(I) (1), chlorotrimethylphosphine-
gold(I) (2), 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidenegold(I) chloride (3) and dichloro(2-
pyridinecarboxylato)gold(II) (4).

The Au compounds were anchored on the different functionalised carbon materials.
The intended value was 2% Au loading, but several amounts were obtained on the different
carbon materials (Table 2). As shown above, the treatment affects the porous structure and
surface properties of the carbon supports. However, all of them were able to anchor the
complexes, but with different efficiencies (Table 2). Functionalisation of the supports leads
to an increase the amount of surface groups that can “anchor” the compounds [59,61-63].
Complex 4 heterogenises similarly on all supports. The other complexes, in general, anchor
better on AC-ox-Na. Nevertheless, the values obtained for complexes 2—4 are similar
in all carbon materials, showing that the phenolates and carboxylate groups present in
these supports (known to be more stable and help anchorage of complexes on the carbon
materials [59,61-63]) have a larger effect on heterogenisation than the nature of the support
itself. Complex 1 has a slightly worse behaviour on CX-ox-Na, but similar results are
found for the other complexes. Complex 3 has the lowest heterogenisation amounts. It
is possible that the steric effect caused by its large diisopropylphenyl moieties prevents a
larger heterogenisation degree.

Table 2. Gold loading (mmol/g) of the complexes 1-4 heterogenised on carbon materials (data
from [52]).

@AC-ox-Na @CX-ox-Na @CNT-ox-Na
1 0.20 0.01 0.17
2 0.05 0.06 0.04
3 0.03 0.02 0.03
4 0.10 0.10 0.10
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2.3. Oxidation of Ethane to Acetic Acid

The commercial Au(I) and Au(Ill) complexes 1-4 (Figure 2) were used as catalysts
for the oxidation of ethane to acetic acid. The reaction was carried out using potassium
peroxodisulfate as oxidant, in several reaction media/conditions (Table 3). The optimised
conditions were found to be the use of aqueous acetonitrile, at 80 °C, during 20 h. All the
Au compounds exhibited significant selectivity (acetic acid being the only product detected)
and good activity (Figure 3). Blank runs in the presence of ethane and potassium perox-
odisulfate (metal-free, determined by ICP) were carried out under the found optimised
conditions, which allowed for confirmation that acetic acid was only detected when a gold
catalyst was present in the reaction mixture.

Table 3. Results for the direct oxidation of ethane to acetic acid catalysed by compounds 1-4 in
homogenous conditions #.

Entry Catalyst Temperature (°C) Solvent Yield? (%) TON¢ TOF 4

1 80 TFA 49 54 3
2 80 ACN/H,0 12.7 141 7
3 1 50 TFA 0 0 0
4 50 ACN/H,0 0.1 0 0
5 80 TFA 44 49 3
6 ) 80 ACN/H,O 20.4 226 1
7 50 TFA 32 35 2
8 50 ACN/H,O 53 59 3
9 80 TFA 142 157 8
10 80 ACN/H,0 20.9 231 12
1 3 50 TFA 0 0 0
12 50 ACN/H,O 0.2 0 0
13 80 TFA 8.9 98 5
14 80 ACN/H,0 15.7 174 9
15 4 50 TFA 31 34 2
16 50 ACN/H,0 5.2 58 3

7 Reaction conditions (unless otherwise stated): p C;Hg 3 atm, 1.5 mmol of catalyst (1-4), K,5,0s (4.33 mmol),
20 h. Reactions were performed in 5.5 mL of TFA or 6 mL of water/acetonitrile mixture. ? Yield (%) = mol of
acetic acid /100 mol of ethane. © TON = mol of acetic acid/mol of catalyst (1-4). 4 TOF = (mol of acetic acid/mol
of catalyst (1-4))/time.

25

—_
a1
I

TFA

=
o
1

Yield (%)

B ACN/ water

1 2 3 4
Catalyst

Figure 3. Acetic acid yields obtained by oxidation of ethane catalysed by the commercial gold
complexes 1-4, using K;S,0g, under optimised conditions.

The gold(]) catalysts chlorotrimethylphosphinegold(I) (2) and 1,3-bis(2,6-diisopropylphenyl)
imidazol-2-ylidenegold(I) chloride (3) afforded the highest ethane conversion with an acetic
acid yield of ca. 21% (Figure 3 and Table 3), followed by dichloro(2-pyridinecarboxylato)
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gold(Ill) (4) and chlorotriphenylphosphinegold(I) (1). The electronic withdrawing ligand
PPhj associated to its steric hindrance, appears to contribute for the achievement of a lower
yield of acetic acid relative to catalysts 2—4, although maintaining the oxidative selectivity.
The herein obtained yields (up to 21%) are lower than the recently reported (33-39.8%)
for homogeneous N-heterocyclic carbene and oxo-carbene gold(I) catalysts [51]. However,
we should keep in mind the advantageous availability of the commercial Au compounds
relative to harder-to-prepare and less stable carbene complexes.

The literature common solvent for ethane oxidation, trifluoroacetic acid (TFA) [64,65],
was also tested with the gold complexes 1-4. As presented in Figure 3, the performance
of all catalysts decreases considerably in TFA when compared with the exhibited in
the greener aqueous mixture: a maximum of 14.2% yield of acetic acid is attained for
complex 3, whereas for complexes 1, 2 and 4, an even more marked yield reduction (Table 3)
is observed.

Despite the above promising results in the water /acetonitrile mixture, the major draw-
back presented by the homogeneous catalysts 14 is their lack of recyclability. Therefore,
the gold complexes 1-4 were supported on functionalised carbon materials (Section 2.2)
and applied as heterogeneous catalysts for the oxidation of ethane to produce acetic acid
(Scheme 1). The selected carbon supports were oxidised with nitric acid and subsequently
treated with sodium hydroxide (-ox-Na).

H3C—CHs

Scheme 1. Acetic acid formation by selective oxidation of ethane catalysed by the commercial gold
complexes 1-4 immobilised on carbon materials, using K,S,0Os.

The reactions were performed using potassium peroxodisulfate as an oxidant in
several reaction media/conditions (selected results presented in Table 4) to reach the
optimised heterogeneous catalytic systems. As found in homogeneous conditions (see
above), aqueous acetonitrile, at 80 °C, for 20 h, provided the best results (Table 4). Blank
runs in the presence of ethane, potassium peroxodisulfate and each carbon material were
carried out under the found optimised conditions, which allowed for confirmation that
acetic acid was only detected when a gold catalyst was present in the reaction mixture.

All hybrid catalysts obtained by immobilisation of the gold complexes on the car-
bon materials exhibited an amazing selectivity (only acetic acid was detected) and a
clearly improved catalytic performance relative to the homogeneous analogues (compare
Tables 3 and 4). Indeed, under optimised conditions, the hybrid catalysts allowed for at-
tainment of up to 41.4% yield of acetic acid (entry 32 of Table 3, for catalyst 4@CNT-ox-Na),
whereas a maximum of 20.9% yield was reached under homogeneous conditions (entry 10
of Table 3, for catalyst 3). Moreover, an increase of 10 times on the catalyst amount (from
1.5 to 15 umol Au) did not impart a significant changing of the acetic acid formed (compare
e.g., entries 12 and 14, Table 4). It is possible that a larger amount of catalyst can lead to
mixing problems and possible agglomeration of material (which decreases the number
active catalyst sites). Thus, the lower loading (1.5 pmol Au) was chosen as the optimum
amount. It is worth highlighting the low catalyst amount used in this oxidation reaction.

As expected from the results in homogeneous conditions, the performance of all
catalysts decreased considerably in TFA (Figure 4) when compared with the ones exhibited
in the greener aqueous mixture (a maximum of 14.2% yield of acetic acid is attained for
1@CNT-0x-Na, entry 7, Table 3).
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Table 4. Direct oxidation of ethane to acetic acid catalysed by compounds 1-4 heterogenised on
selected carbon materials .

Entry Catalyst Catfiﬁ;ﬁ‘;‘;““t Tem}ieé;‘t“re Solvent Yield®? (%) ~ TON®  TOF4
1 1@CNT-ox-Na 1.5 80 TFA 7.2 80 4
2 1@CNT-ox-Na 1.5 80 ACN/water 33.4 370 19
3 1@CNT-0x-Na 15 80 TFA 6.9 8 0
4 1@CNT-ox-Na 15 80 ACN/water 36.5 40 2
5 1@CNT-ox-Na 1.5 50 TFA 0.2 2 0
6 1@CNT-0x-Na 1.5 50 ACN/water 0 0 0
7 1@CX-ox-Na 1.5 80 TFA 14.2 157 8
8 1@CX-ox-Na 1.5 80 ACN/water 21.2 235 12
9 1@AC-ox-Na 1.5 80 TFA 8.9 98 5
10 1@AC-ox-Na 15 80 ACN/water 16.2 179 9
11 2@CNT-ox-Na 1.5 80 TFA 8.3 92 5
12 2@CNT-ox-Na 1.5 80 ACN/water 32.7 322 16
13 2@CNT-ox-Na 15 80 TFA 10.1 11 1
14 2@CNT-ox-Na 15 80 ACN/water 31.6 35 2
15 2@CNT-ox-Na 1.5 50 TFA 0.6 7 0
16 2@CNT-ox-Na 15 50 ACN/water 1.1 12 1
17 2@CX-ox-Na 1.5 80 TFA 1.5 17 1
18 2@CX-ox-Na 15 80 ACN/water 23.2 257 13
19 2@AC-ox-Na 1.5 80 TFA 0.8 9 0
20 2@AC-ox-Na 1.5 80 ACN/water 25.3 280 14
21 3@CNT-ox-Na 15 80 TFA 13.2 146 7
22 3@CNT-ox-Na 1.5 80 ACN/water 26.3 291 15
23 3@CX-ox-Na 1.5 80 TFA 12.7 362 18
24 3@CX-ox-Na 15 80 ACN/water 21.6 239 12
25 3@CX-ox-Na 15 80 TFA 14.3 16 1
26 3@CX-ox-Na 15 80 ACN/water 29.4 33 2
27 3@CX-ox-Na 1.5 50 TFA 0 0 0
28 3@CX-ox-Na 1.5 50 ACN/water 0 0 0
29 3@AC-ox-Na 1.5 80 TFA 11.4 126 6
30 3@AC-ox-Na 1.5 80 ACN/water 20.7 229 11
31 4@CNT-ox-Na 1.5 80 TFA 12.8 142 7
32 4@CNT-ox-Na 1.5 80 ACN/water 41.4 458 23
33 4@CNT-ox-Na 15 80 TFA 11.3 13 1
34 4@CNT-ox-Na 15 80 ACN/water 39.7 44 2
35 4@CNT-ox-Na 1.5 50 TFA 0.9 10 1
36 4@CNT-ox-Na 15 50 ACN/water 1.3 14 1
37 4@CX-ox-Na 1.5 80 TFA 13.8 153 8
38 4@CX-ox-Na 1.5 80 ACN/water 33.4 370 19
39 4@AC-ox-Na 1.5 80 TFA 7.2 80 4
40 4@AC-ox-Na 15 80 ACN/water 13.4 148 8

? Reaction conditions (unless stated otherwise): p CoHg 3 atm, K;5,0g (4.33 mmol), 20 h. Reactions were
performed in 5.5 mL of TFA or 6 mL of water/acetonitrile mixture. b Yield (%) = mol of acetic acid /100 mol of
ethane. ¢ TON = mol of acetic acid /mol of Au.  TOF = (mol of acetic acid /mol of catalyst (1-4))/time.

The type of support also played a role on the catalytic activity of complexes 1-4
towards the formation of acetic acid, as depicted in Figure 4. CNT-ox-Na was the best
support. The phenolate and carboxylate groups (formed by the -ox-Na treatment) might
act as coordinating sites [59] for the complexes. The good performance of CNT might be
caused by a textural effect (as CNT are nonporous, the reactants easily access the active),
or an electronic effect (due to the graphitic structure of CNT), which can increase the
interactions with the reactants or the intermediate radicals, as proposed by us on previous
papers [52,62]. The Au(lll) catalyst 4@CNT-ox-Na led to the highest acetic acid yield
(41.4%), among the commercial gold complexes 1-4 heterogenised at functionalised carbon
nanotubes (Figure 5).
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Figure 4. Acetic acid yields for the direct oxidation of ethane catalysed by the commercial gold
complexes 1-4 heterogenised at carbon materials, by K;S,0g, under optimised conditions (1.5 umol
of Au, 80 °C).
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Figure 5. Acetic acid yields achieved by direct oxidation of ethane catalysed by the commercial gold
complexes 1-4 heterogenised at functionalised carbon nanotubes, using K;S,Og, under optimised
conditions (1.5 umol of Au, 80 °C).

The stability of the catalysts supported on functionalised carbon nanotubes that
exhibited the highest catalytic performances (acetic acid yields above 30%, Figure 5) was
investigated towards recycling experiments. Thus, each hybrid catalyst was recovered from
the oxidation medium, and consecutive catalytic oxidation cycles with fresh reagents were
run (see Experimental section). These catalysts were effortlessly recovered and reused up
to five cycles with no significant loss of activity, while maintaining their selectivity towards
the formation of acetic acid (Figure 6). Again, catalyst 4@CNT-ox-Na presented the best
behaviour; its stability was less affected by the consecutive oxidative runs.

The possible gold leaching from the support as well as the formation of gold nanopar-
ticles was accessed at the end of each catalytic cycle for catalyst 4@CNT-ox-Na. The
analysis for the gold loading by inductively coupled plasma atomic emission spectroscopy
(ICP-AES) of the remaining liquid phase, after the catalytic test up to the fifth run, did
not show the presence of any gold. Therefore, we can assume that there was no catalyst
leaching from the support. In addition, the formation of Au(0) nanoparticles from a possible
decomposition of the gold complexes to form free gold ions was investigated by performing
UV-vis spectra of the remaining liquid phase, after each catalytic cycle. No UV—plasmon
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band was observed in the usual region of 500-550 nm, indicating the absence of Au(0)
nanoparticles formation.

4@CNT-OxiNa
45

40

1@€CNT-0 xiN a 2@CN T-0 xiN a

35

30

25

Yield ¢ )

20

1 2 345 1 2 345 1 2 345

Cycles

Figure 6. Recycling assays (at optimised conditions) using the commercial gold complexes 1, 2 and 4
heterogenised at functionalised carbon nanotubes.

3. Materials and Methods
3.1. General Reagents

All solvents and reagents were purchased from commercial companies and used
as received.

3.2. Gold Complexes

Different Au(l) and Au(Ill) complexes were used (Figure 1). The Au(l) com-
plexes, chlorotriphenylphosphinegold(I) (1), chlorotrimethylphosphinegold(I) (2) and
1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidenegold(I) chloride (3) were obtained from
Strem Chemicals. The dichloro(2-pyridinecarboxylato)gold(IIl) (4), used for the first time
as catalyst by Hashmi et al. [66], was purchased from Aldrich.

3.3. Carbon Supports

Activated carbon Norit® RO 0.8 (AC) was purchased from Sigma-Aldrich, multi-
walled carbon nanotubes NC3100 (CNT) were obtained from NanocleM. Carbon xe-
rogel (CX) prepared by the condensation of resorcinol and formaldehyde, as already
described [56,67]. The supports were functionalised with 5 M nitric acid solution and
subsequently treated with NaOH, as reported elsewhere [61-63,68-72].

3.4. Supports Characterisation

The carbon materials were characterised by N, adsorption (—196 °C) on a Quan-
tachrome Nova 4200e device and by temperature programmed desorption (TPD) with an
Altamira AMI-300 apparatus. Further details can be found elsewhere [52].

3.5. Heterogenisation Procedure

The complexes were supported onto each carbon materials to obtain ~2% Au per mass
of carbon using methanol. The Au loading was determined by inductively coupled plasma
atomic emission spectroscopy (ICP-AES) at the IST Analysis Lab.

3.6. Catalytic Tests

The catalytic oxidation of ethane to acetic acid was performed in a stainless-steel
reactor. First, 4.33 mmol of oxidant (K;5,0g) and 1.50 umol of catalyst (1-4) were added
to 6 mL of HyO/CH3CN (or 5.5 mL of trifluoroacetic acid). After closing the reactor, it
was flushed thrice with ethane and pressurised at 3 atm (0.78 mmol), heated at 80 °C
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(higher temperatures lead to a decrease in the solubility of ethane and decomposition of
the oxidant) [73] for 20 h. Then, the reactor was cooled to room temperature, degassed,
and opened. Then, 5 mL of diethyl ether (to cause precipitation of the homogeneous gold
catalysts and extract the organic products) and 90 puL de n-butyric acid (internal standard)
were added to 1 mL of mixture and stirred for 30 min. After filtration, the liquid was
analysed by gas chromatography (GC) using a FISONS Instruments GC 8000 with an FID
detector and a DB-WAX capillary column (internal diameter 0.32 mm, length 30 m) software
using He as a carrier, with an injection temperature of 240 °C. The values were obtained by
average from several runs with similar results.

Concerning the recycling experiments, each hybrid catalyst was recovered from the
oxidation medium of the first catalytic cycle by separating it from the liquid phase medium
by gravity filtration. The solid was washed 5 times with water/acetonitrile mixture and
then 3 times with diethyl ether. Then, it was dried in an oven at 50 °C overnight. The 2nd
catalytic cycle was initiated by placing the dried recovered catalyst and all fresh reagents
into the reactor and repeating the conditions of the first catalytic cycle. The following
consecutive catalytic oxidation cycles, up to the 5th one, were run in the same way.

The occurrence of leaching during the catalytic reaction or the catalyst recovery process
was investigated by UV measurements of the remaining liquid phase, performed in a
lambda 35, Perkin Elmer (Waltham, MA, USA).

4. Conclusions

The single-pot oxidation of ethane to acetic acid was studied using Au(I) or Au(III)
compounds, in their homogenous forms and supported on AC-ox-Na, CX-ox-Na and
CNT-0x-Na, as catalysts. The heterogenised catalysts showed outstanding selectivity (with
acetic acid being the only product detected) and much better activity than the homogenous
counterparts, with acetic acid yields up to 41.4% for 4@CNT-ox-Na. The presence of TFA
was detrimental for the catalytic activity, showing that aqueous (green) conditions are
more adequate. The best support was CNT-ox-Na. The phenolate and carboxylate groups
(formed by the -ox-Na treatment) seemed to be beneficial. Selected heterogenised catalysts
were easily recovered and reused up to five cycles, with no significant loss of activity,
maintaining a high selectivity for acetic acid 4@CNT-ox-Na showed not only the best
catalytic performance, but also the best stability in the recycling tests.
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