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Abstract: Sulfite is a widely used additive in food and beverages, and its maximum content is
limited by food regulations. For this reason, determining the sulfite concentration using fast, low-cost
techniques is a current challenge. This work describes the behavior of a sensor based on an electrode
formed by carbon nanotubes an ionic liquid as binder, which by electrochemical reduction, allows
detecting sulfite with a detection limit of 1.6 ± 0.05 mmol L−1 and presents adequate sensitivity. The
advantage of detecting sulfite by reduction and not by oxidation is that the presence of antioxidants
such as ascorbic acid does not affect the measurement. The electrode shown here is low-cost and easy
to manufacture, robust, and stable.

Keywords: sulfite reduction; carbon paste electrode; ionic liquids (IL); multi-walled carbon nanotube
(MWCNT)

1. Introduction

Preservatives and food additives are substances that are added to some foods in small
amounts with the aim of storing them for a long period of time. The use of additives and
preservatives is essential to maintain its quality, healthiness, taste, appearance, and flavor
for a given period [1]. Sulfite is widely used as a preservative in foods and beverages
during their preparation, storage, and distribution processes [2]. The preservative power
of sulfite is mainly due to its reducing capacity. This makes it an effective antioxidant that
also has the ability to inhibit bacterial growth [2,3].

In some cases, the presence of sulfite in food and beverages has been associated
with asthma and allergic symptoms [4–6]. Therefore, regulatory agencies set maximum
allowable limits [2].

There are some available methods for detecting SO2 and its derivates, such as titri-
metric analysis, Aspiration and Ripper reference methods and the Monier–Williams (MW)
method [7–10], chemiluminescence [11], physical and chemical adsorption [12,13], spec-
trophotometry [14,15], ion chromatography [16,17], fluorescence [18,19], biosensors [20,21],
etc. Although these methods possess highly efficient detection capabilities, their intrinsic
difficulties (e.g., complex operation, high equipment costs, long response times, etc.) often
limit their practical applications.
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Electroanalytical techniques for the determination of sulfites arise as a simpler and
more attractive alternative. The main benefits of these techniques include simplicity,
lower cost instrumentation, high sensitivity, and the possibility of working with colored
samples, without pretreatment of the samples [22]. In addition, compared to the traditional
volumetric method (MW), electroanalytical techniques allow the number of reagents to be
reduced, being more respectful with the environment.

For the most part, electroanalytical methods to determine sulfite use its oxidation
as an analytical signal. Using oxidation, the sulfite concentration has been determined
with a nanogold electrode on gallium-doped zinc oxide [23]. Similarly, a carbon paste
electrode modified with carbon nanotubes and benzoylferrocene (BF) [24] has been used.
In both cases an electrocatalytic effect was found in the oxidation of sulfite. In addition,
the electrodetermination of sulfite has been carried out using a carbon composite electrode
modified by submicron gold particles, finding good sensitivity and precision [25]. The
disadvantage of determining sulfite by oxidation is that many antioxidants, usually present
in foods and beverages, can act as interferences in the measurement [3]. In this sense,
the platinum electrode modified with nanostructured films of Salen-copper polymer (sali-
cylideneiminate) that electrocatalyzes sulfite oxidation can be highlighted, as a notorious
decrease in potential, which allows the analysis to be determined in the presence of some
interfering antioxidants [26].

An attractive way to avoid the interference of common antioxidants in foods and
beverages is the selective determination of sulfite through its electrochemical reduction.
The reduction of sulfite in an acid medium has been studied using glassy carbon elec-
trodes [27]. Copper-clad gold microelectrodes [28] and glassy carbon electrodes modified
with ruthenium oxide and hexacyanoferrate [29] have also been used for its reduction. In
all these studies, sulfite could be determined with good selectivity and sensitivity.

Based on the above information, it is possible to design a low-cost electrode with
a renewable surface for the determination of sulfite through its electroreduction. In this
context, carbon paste electrodes are made with multi-walled carbon nanotubes (MWCNTs)
as highly conductive carbonaceous material and as binder, a mixture of mineral oil (MO)
and an ionic liquid (IL) (N-octylpyridinium hexafluorophosphate). It allows the manufac-
ture of high-conductivity electrodes, economical, easy to prepare, electrocatalytic, with a
renewable surface, that act as excellent sensors in the detection and quantification of sulfite
through its electrochemical reduction.

2. Results and Discussion
2.1. Obtaining and Characterization of MWCNT/IL/MO Carbon Paste Electrodes

Figure 1 shows the different morphologies of multiwalled carbon nanotubes bonded
with ionic liquid and mineral oil (MWCNT/IL/MO), in a ratio of 70:20:10 (by mass), and
on multiwalled carbon nanotubes only bound with mineral oil (MWCNT/MO), in a ratio
of 70:30 (by mass). Figure 1 shows that the electrode that has IL in its structure (Figure 1B)
has a higher resolution, clearly observing the nanotubes, due to its higher conductivity,
compared to the electrode that only has mineral oil as a binder (Figure 1A).
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Figure 1. FESEM images of the (A) (MWCNT/MO) electrode, and (B) (MWCNT/IL/MO) electrode. 
Magnification: 40,000×. 

On the other hand, EDX studies were carried out to determine the chemical 
composition of each electrode, randomly selecting three areas in each case. The results are 
summarized in Table 1 and confirm the presence of ionic liquid [OPy]+[PF6−] on the 
electrode surface. 

Table 1. Percentage values of weight for MWCNT/MO electrodes and MWCNT/IL/MO electrodes. 

Electrode %C %O %F %P 
MWCNT/MO 96.81 ± 0.21 3.19 ± 0.26 --- --- 

MWCNT/IL/MO 93.55 ± 2.81 4.02 ± 0.12 1.53 ± 0.05 0.90 ± 0.03 

2.2. Electrochemical Characterization of MWCNT/IL/MO Carbon Paste Electrodes 
The electrical properties of MWCNT/IL/MO carbon paste electrodes in the presence 

of sulfite (5 mmol L−1 sulfite in BRB pH 1.81) have been studied using Electrochemical 
Impedance Spectroscopy (EIS). The equivalent circuit that fits the Nyquist diagram, 
recorded in the absence and presence of IL, is depicted in Scheme 1. In this circuit, Rs, CPE, 
and Rct represent the resistance of the solution, a constant phase element corresponding 
to double layer capacitance, and the resistance to charge transfer associated with sulfite 
reduction. For the electrode containing IL (see Figure 2), the diameter of the semicircle is 
reduced from 776.6 Ω to 99.7 Ω, confirming the electrocatalytic capacity of this electrode 
for sulfite reduction. At high frequencies, resistance to charge transfer appears and at low 
frequencies, diffusion processes are appreciated. Generally, the resistance to charge 
transfer (Rct) of the electrode is equivalent to the diameter of the semicircle in the Nyquist 
plot [30]. Finally, the ohmic resistance of the solution (Rs) remains constant in the two 
paste electrodes in the presence of sulfite (see Table 2). 

 
Scheme 1. Equivalent circuit for the carbon paste electrodes. 

Figure 1. FESEM images of the (A) (MWCNT/MO) electrode, and (B) (MWCNT/IL/MO) electrode.
Magnification: 40,000×.

On the other hand, EDX studies were carried out to determine the chemical com-
position of each electrode, randomly selecting three areas in each case. The results are
summarized in Table 1 and confirm the presence of ionic liquid [OPy]+[PF6

−] on the
electrode surface.

Table 1. Percentage values of weight for MWCNT/MO electrodes and MWCNT/IL/MO electrodes.

Electrode %C %O %F %P

MWCNT/MO 96.81 ± 0.21 3.19 ± 0.26 — —

MWCNT/IL/MO 93.55 ± 2.81 4.02 ± 0.12 1.53 ± 0.05 0.90 ± 0.03

2.2. Electrochemical Characterization of MWCNT/IL/MO Carbon Paste Electrodes

The electrical properties of MWCNT/IL/MO carbon paste electrodes in the presence
of sulfite (5 mmol L−1 sulfite in BRB pH 1.81) have been studied using Electrochemi-
cal Impedance Spectroscopy (EIS). The equivalent circuit that fits the Nyquist diagram,
recorded in the absence and presence of IL, is depicted in Scheme 1. In this circuit, Rs, CPE,
and Rct represent the resistance of the solution, a constant phase element corresponding
to double layer capacitance, and the resistance to charge transfer associated with sulfite
reduction. For the electrode containing IL (see Figure 2), the diameter of the semicircle is
reduced from 776.6 Ω to 99.7 Ω, confirming the electrocatalytic capacity of this electrode
for sulfite reduction. At high frequencies, resistance to charge transfer appears and at
low frequencies, diffusion processes are appreciated. Generally, the resistance to charge
transfer (Rct) of the electrode is equivalent to the diameter of the semicircle in the Nyquist
plot [30]. Finally, the ohmic resistance of the solution (Rs) remains constant in the two paste
electrodes in the presence of sulfite (see Table 2).
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Figure 2. Nyquist diagram for the MWCNTIL/MO and MWCNT/MO systems in 5 mmol L−1

solution of sulfite in BRB (pH 1.81). Frequencies: 100,000 Hz–1 Hz. Impedance performed at a
potential of -0.5 V.

Table 2. Values of Rs, Rct, and CPE obtained from the equivalent circuit of Scheme 1 for the
paste electrodes.

Paste Electrode Rs (Ω) Rct (Ω) CPE (F cm−2)

MWCNT/MO 2926 776,610 0.89

MWCNT/IL/MO 2850 99,275 0.70

2.3. Electrochemical Behavior of Sulfite on MWCNT/IL/MO

Figure 3A shows a square wave voltammogram of the MWCNT/IL/MO electrode at
different pHs in the presence of sulfite. Figure 3B shows the maximum cathodic currents
(Ip) against pH variation. Both graphs indicate that the best pH for a catalytic reaction is
near pH 2.
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Figure 3. (A) Cyclic voltammetry profiles of MWCNT /IL/MO electrodes in presence of 5 mmol L−1

sulfite in 0.04 mol L−1 BRB, pH 1.81–11.4, in Ar. (B) Maximum cathodic current (Ip) vs. pH obtained
from Figure 3A. The error bars represent the standard deviation of three independent measurements.

Considering that the best current response is observed in acid conditions, the sulfite
reduction study is carried out at pH 1.81. This behavior is consistent with the chemical
equilibrium of the sulfite species. At high pH values, the products of this equilibrium are
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favored towards the formation of sulfurous acid, whereas in acid conditions, there is a
higher concentration of dissolved SO2, which is the species that actually undergoes elec-
trochemical reduction at the electrode surface. Therefore, the highest maximum cathodic
currents are found in more acidic conditions. Based on these results, all electroanalytical
studies were performed in a BRB pH 1.81 solution.

On the other hand, the electrochemical response of the electrode was studied in
a potential range that goes from +0.2 V to −0.9 V vs. Ag/AgCl, and at a scan rate of
100 mV s−1 in the absence and presence of sulfite. Figure 4 presents the voltammetric
profile for the MWCNT/MO and MWCNT/IL/MO electrodes in the absence and presence
of 5 mmol L−1 of sulfite. The response of the analyte corresponds to the characteristic profile
of the sulfite reduction. According to the previous literature, this reduction corresponds to
the transformation of dissolved SO2 into the radical anion SO2

− [28,29]. MWCNT/IL/MO
shows an Ep value for reduction of −0.56 V. When the electrode does not have IL, the
voltammetric profile shows no signal and coincides with the blank, indicating that it is the
IL that catalyzes the sulfite reduction (see Figure 4).
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sulfite, in BRB (pH 1.81). Scan rate: 100 mV s-1 (1 cycle).

It is interesting to note that the edges of carbon nanotubes, generally very active for
many reactions [31,32], are not active enough in this case to catalyze this reaction under the
aforementioned conditions.

To calculate the number of electrons involved in this reaction, it is necessary to de-
termine the electroactive area of the electrodes. For this, the effect of the scan rate (v)
on the electrochemical behavior of a probe solution of ferri-ferrocyanide ions in an aque-
ous medium mas measured (Figure 5). With these results, the electroactive area of the
MWCNT/IL/MO electrode is calculated.
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Figure 5. Cyclic voltammetry of the probe solution of ferri-ferrocyanide ions at different scan rates in
NaNO3 0.1 mol L−1. Inset: variation of reduction peak current with square root of scan rate.

The results show that the peak current (Ip) increases linearly with the square root of
the scan rate of the potential (v1/2). The electroactive area is calculated from the slope of
the linear regression curve (R2 = 0.99874) (inset of Figure 5) using Equation (1):

Ip√
v
=
(

2.65× 105
)
×
√

n3 ×A×
√

D × C (1)

where A is the electroactive area, n corresponds to the number of electrons transferred
(n = 1), D is the diffusion coefficient of ferrocyanide 6.5 × 10−6 cm2 s−1, and C corre-
sponds to the concentration ferrocyanide probe 5.0 × 10−6 mol m−3), obtaining a value of
electroactive area A = 0.016 cm2.

Taking the electroactive area, the number of transferred electrons can be calculated
through the equations and if the reaction is irreversible. The irreversibility of the reaction
(mass transfer-controlled) is clearly observed in Figure 6.

Ip = 2.99× 10 5 n
√
(1− α)nα A

√
D C
√

v (2)

0.0477 V
Ep − Ep/2

= (1− α)nα (3)

Ep − Ep/2 = −0.543− (−0.461) = |0.082|

A corresponds to the electroactive area of the electrode (0.016 cm2), and (1 − α)nα = 0.5817
is obtained from Equation (3), whereα is the transfer coefficient and nα is the number of electrons
transferred in the rate-determining step. The Ep value corresponds to 100 mV s−1. D is the
diffusion coefficient of the analyte [33] and C is the sulfite concentration (5× 10−6 mol cm−3).
The number of electrons transferred in the reduction of sulfite (n) is obtained from the slope
of the graph in Figure 6. Using Equation (2), n = 0.5 is obtained, which indicates that the
electrochemical reduction of sulfite is a transfer process half an electron for sulfite. It has been
described in the literature that the equilibrium anion radical SO2

− dithionite is established very
quickly, with dimerization rate constants close to those controlled by diffusion [33] at a pH close
to 2, which explains the number of electrons found in this work.
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2.4. Voltammetric Determination of Sulfite

A calibration curve of peak reduction current versus analyte concentration was pre-
pared. The technique used was square wave voltammetry and the optimized parameters
were the following: frequency = 50 Hz, amplitude = 0.025 V, increment = 0.004 V. The
calibration curve (six replicates) was prepared with concentrations of 5 ± 0.2 mmol L−1,
10 ± 0.3 mmol L−1, 20 ± 0.6 mmol L−1, 30 ± 0.8 mmol L−1, and 50 ± 1.5 mmol L−1 of a
certified standard of sodium sulfite at pH 1.81, at BRB (see Figure 7).
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2.5. Analytical Parameters

Figure 7 shows the voltammetric response of the electrode at different of sulfite. The
linear regression of Ipc versus sulfite concentration R2 = 0.99355.

The calibration curve of sulfite in MWCNT/IL/MO is linear in the range of 5.0 mmol L−1

to 50 mmol L−1, with a limit of detection of 1.6± 0.05 mmol L−1 (102.5 mg SO2 L−1) (S/N = 3).
It is noted that the limit of detection of the MWCNT/IL/MO system 1.6 ± 0.05 mmol L−1 is
higher compared to other published studies [22,34]. This value indicates that with this system,
it could be detected below the maximum concentrations established for sulfite present in some
alcoholic beverages (200–300 mg L−1) [9]. In addition, the simplicity of the sulfite detection
method is highlighted.

The linear regression equation is: I (µA) = 1.02656 + 0.41192 C (mmol L−1). The
sensitivity is 0.41192 µA mmol−1 L.
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From these data we obtain that MWCNT/IL/MO electrode exhibits a one order of
magnitude range of linear concentration, a lower limit of detection, and a higher sensitivity
compared to most of electrochemical sulfite sensors reported [22,28,29,34].

Another important electroanalytical study is repeatability. The electrochemical re-
sponse of four (MWCNT/IL/MO) paste electrodes was assessed, with different triplicate,
performed the same day at pH 1.81 in BRB, using a concentration of sodium sulfite equiv-
alent to 5 ± 0.2 mmol L−1. The relative standard deviation (RSD) of the peak current
response for the four different electrodes was of 3.55% (n = 3), demonstrating that the
MWCNT/IL/MO sensor presents good repeatability (Figure 8).
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3. Experimental
3.1. Materials, Reagents, and Equipment

Multi-walled carbon nanotubes (MWCNTs), diethyl ether (DEE), and potassium chlo-
ride (KCl) were purchased from Merck (Santiago, Chile) and used as received. Acetic
acid (CH3COOH), boric acid (H3BO3), orthophosphoric acid (H3PO4), mineral oil (MO),
sodium sulfite (98% pure), certified sulfite standard, potassium ferricyanide (K3[Fe(CN)6])
(98.5% pure), and potassium ferrocyanide trihydrate (K4[Fe(CN)6]) were purchased from
Sigma Aldrich (Santiago, Chile), and used as received. Ultrapure water (>17 MΩ-cm)
was obtaining from a Direct-Q®® water purification system (Model ZRQSVP3WW) and
argon gas (99.99% pure) was purchased from AGA (Santiago, Chile). N-octylpyridinium
hexafluorophosphate [OPy]+[PF6]− ionic liquid was previously synthetized and character-
ized [35,36] obtaining a yield of 91%.

Electrochemical studies were performed in a conventional three-electrode electro-
chemical cell which contains: an Ag/AgCl (3 mol L−1 KCl) reference electrode (RE), a
platinum wire counter electrode (CE), and a hollow Teflon working electrode (WE) of 2 mm
diameter, which is filled with the carbon pastes specified in Table 1. The cell contains a
0.1 mol L−1 Britton–Robinson (BRB) buffer aqueous solution, and the pH is adjusted by
additions of 5 mol L−1 NaOH and 5 mol L−1 HCl. The solution is maintained in an inert
atmosphere of Ar.
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Morphological characterization was performed using a JEOL 6300 scanning electron
microscope (SEM) coupled to 6699 ATW X-ray microanalysis elemental system (Oxford
Instruments Ltd., Abingdon, UK). Data were analyzed using the associated software
(version 4.0). Spectra were recorded using a 15 keV accelerating voltage. Cyclic voltamme-
try (CV), square wave voltammetry (SWV) and electrochemical impedance spectroscopy
(EIS) were performed using a model 750D workstation (CH Instruments, Austin, TX, USA).
All measurements were performed at room temperature, 21 ± 1 ◦C.

3.2. Paste Electrode Preparation

The 70:30 (w/w) ratio of carbon materials and binder was used after experimentally
checking that at different binder ratios (both higher and lower), the electrodes lose their
mechanical and structural consistency. For the manufacture of carbon paste electrode, the
bare carbon paste electrode was made by mixing MWCNT and oil mineral in a 70:30 percent
weight-to-weight ratio [37]. On the other hand, to manufacture the carbon paste electrode
with MWCNT binder with oil mineral and ionic liquid, a 70:20:10 (w/w) ratio of MWCNT,
oil mineral, and ionic liquid was used, respectively.

The 70: 30 (w/w) ratio of carbon and binder materials was used after experimen-
tally verifying that at different binder ratios (both higher and lower), the electrodes lose
their mechanical and structural consistency. For the fabrication of the carbon paste elec-
trode, the bare carbon paste electrode was fabricated by mixing MWCNT and mineral
oil in a 70:30 percent weight-to-weight ratio [35]. On the other hand, for the fabrication
of the MWCNT binder carbon paste electrode with mineral oil and ionic liquid, a ratio
of 70:20:10 (w/w) of MWCNT, mineral oil, and ionic liquid, respectively, was used. The
mixtures are homogenized in a mortar by adding diethyl ether. After homogenization,
the diethyl ether is evaporated until a carbon paste is obtained. The generated paste is
used to fill hollow Teflon electrodes. After compacting by hand, the electrodes are left at
90 ◦C in an oven. After 2 h, the electrodes are cooled to room temperature and polished
with weighing paper to a smooth surface. The obtained electrodes were electrochemi-
cally stabilized by cycling the potential in the range of 200 to −900 mV in BRB pH 1.81.
The obtained electrodes were characterized by their voltammetric response using the
potassium ferrocyanide/potassium ferricyanide redox couple, showing that they are very
reproducible systems.

4. Conclusions

This work shows that the electrode prepared with carbon nanotubes bonded with a
mixture of LI (N-octylpyridinium hexafluorophosphate) and mineral oil allows obtaining
an electrode that is easy to prepare, low-cost, and eco-friendly. The electrode is active for
the reduction of sulfite, being able to become a sensor to determine its concentration in an
acid medium.
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