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Abstract: To improve the sulfur tolerance of CeO2-supported Pt catalysts for water gas shift (WGS)
using waste-derived synthesis gas, we investigated the effect of synthesis methods on the physico-
chemical properties of the catalysts. The Pt catalysts using CeO2 as a support were synthesized in
various pathways (i.e., incipient wetness impregnation, sol-gel, hydrothermal, and co-precipitation
methods). The prepared samples were then evaluated in the WGS reaction with 500 ppm H2S.
Among the prepared catalysts, the Pt-based catalyst prepared by incipient wetness impregnation
showed the highest catalytic activity and sulfur tolerance due to the standout factors such as a high
oxygen-storage capacity and active metal dispersion. The active metal dispersion and oxygen-storage
capacity of the catalyst showed a correlation with the catalytic performance and the sulfur tolerance.

Keywords: waste-to-hydrogen; water–gas shift reaction; sulfur tolerance; synthesis method;
oxygen-storage capacity; Pt0 dispersion

1. Introduction

Environmental policies and research worldwide recently aimed to achieve carbon
neutrality (net-zero) by 2050. This is because 55% of the world’s population lives in
urban areas, and this proportion is expected to increase to 68% by 2050, leading to rapid
urbanization. Furthermore, the world’s present population is predicted to increase by
30%, leading to serious overuse of energy and global warming [1]. Therefore, replacing
fossil fuels with more environmentally-friendly fuels has received more attention in recent
years due to relevant environmental issues and an increasing energy demand. In particular,
sustainable renewable energy such as hydrogen is a key factor for achieving net-zero [2].

Hydrogen is considered the most preferred alternative energy because of its numerous
advantages, such as zero pollution, sustainability, and ease of storage [3]. However, more
than 96% of hydrogen is produced using fossil fuels as a source [3,4]. As an alternative
to this, the process of producing hydrogen from various waste resources is being actively
studied [2,5,6]. As one primary type of waste, municipal solid waste has great interest
worldwide [3,7–9]. Municipal solid waste is converted into useful syngas composed of
CO and H2 through the waste gasification process, which is one of the representative
technologies of waste-to-energy [2,10,11]. By applying a water–gas shift (WGS) reaction
(Equation (1)), the waste-derived synthesis gas can be converted into hydrogen [11–13].

CO + H2O↔ H2 + CO2, ∆H = −41.2 kJ/mol (1)

Here, the considerations in applying waste-derived synthesis gas to WGS are different
from that in applying the conventional synthesis gas from natural gas. Waste-derived
synthesis gas is mainly composed of CO (>38%) [10,11] with a trace amount of sulfur
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components [14,15]. Therefore, in the design of high-performance WGS catalysts for
hydrogen production from waste-derived synthesis gas, it is essential to ensure high CO
conversion in excessive CO conditions and sulfur resistance. Since trace amounts of sulfur
components are preferentially adsorbed into the active sites of the catalysts to cause rapid
deactivation, understanding the correlation between the physicochemical properties of the
catalysts and sulfur resistance is emerging as a major research issue [15,16].

Previously, we confirmed that a Pt catalyst using CeO2 as a support exhibited excellent
catalytic activity and sulfur resistance in WGS reactions using synthesis gas from waste-
containing sulfur components [17]. The optimal amount of Pt loading was then found to
enhance the performance of the catalyst [18]. CeO2 is an excellent reducible support as an
oxygen buffer that can greatly enhance the reaction rates involving redox steps in the WGS
reactions [19,20]. It has been widely reported that CeO2 is easily and reversibly reduced
to several CeO2−x stoichiometries when exposed to an oxygen-deficient atmosphere [20].
This unique characteristic of CeO2 results in a high oxygen-storage capacity (OSC). In
addition, the presence of Pt can weaken the Ce–O bond, changing the surface properties,
which makes the surface CeO2 more reducible [21,22]. These reduction properties in the
CeO2-PtOx interfaces are explained by the oxygen reverse spillover phenomenon from
CeO2 [21,23]. Due to this synergistic effect, the Pt/CeO2 catalyst has recently been actively
studied as a catalyst for the WGS reaction [24–27].

In the catalyst optimization process, the synthesis method is an important consider-
ation that can improve catalytic performance [28–31]. As reported by Zhang et al., the
Au/CeO2 catalyst prepared by the incipient wetness impregnation (IWI) method for the CO
oxidation reaction was compared with the catalyst prepared by the deposition-precipitation
method [28]. The catalyst prepared by the IWI method showed excellent catalytic activity
by forming smaller and more uniform gold particles on the catalyst surface. Kim et al.
reported that the CeO2-supported Co catalyst prepared by the sol-gel (SG) method showed
excellent WGS activity due to the high concentration of oxygen vacancies originating from
the strong metal–support interaction [29]. Li et al. prepared CeO2–MoO3 catalysts by
various synthesis methods for the selective catalytic reduction of NO with NH3 [30]. They
claimed that catalysts prepared by the hydrothermal (HT) method showed a larger surface
area, highly dispersed nanocrystalline CeO2, good redox ability, and stronger adsorption
capacity. Lee et al. prepared catalysts by co-precipitation (CP), IWI, HT, co-impregnation,
and sequential impregnation methods for dry reforming using coke oven gas [31]. The
catalyst prepared by CP showed improved catalytic performance, which was due to the
strong metal–support interaction. Considering the above results, it can be confirmed that
the physicochemical properties of the catalyst change according to the synthesis methods.
Therefore, the synthesis method is an important factor influencing catalyst performance.
In this study, the effect of the synthesis method on the physicochemical properties of the
catalyst was investigated by varying the synthesis method (IWI, SG, HT, and CP) of the
CeO2-supported Pt catalysts. The factors that improve the catalytic activity and sulfur
tolerance in the WGS reaction were investigated, and an optimal synthesis method was
derived. The prepared catalysts by various synthesis methods (IWI, SG, HT, and CP) were
denoted as PtCe-I, PtCe-S, PtCe-H, and PtCe-C, respectively.

2. Results and Discussion

The XRD patterns for CeO2-supported Pt catalysts prepared by various synthesis
methods are shown in Figure 1. The patterns of all prepared samples exhibited peaks
attributable to the face-centered cubic fluorite structure of CeO2 (JCPDS No. 34-0394) [32].
In the case of the PtCe-H and PtCe-C catalysts, Pt (111) diffraction peaks were observed at
a 2θ of 39.8◦ (JCPDS No. 04-0802) [33]. This indicates that the metal crystallites on the CeO2
supports were either largely formed or have high crystallinity. Conversely, when using the
PtCe-I and PtCe-S catalysts, clear diffraction peaks of Pt nanoparticles were not observed
because they are small and well dispersed over the support. The improved dispersion has
a positive effect on enhancing the catalytic activity for the WGS reaction [20,34].
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Figure 1. XRD patterns of reduced CeO2‐supported Pt catalysts prepared by various synthesis meth‐
ods. 
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which indicates the mesoporous capillary condensation. According to the IUPAC classifi‐
cation, PtCe‐I and PtCe‐H exhibited an H1 hysteresis loop [35,36]. H1 hysteresis indicates 
the presence of cylindrical pores having a uniform size or shape. PtCe‐S exhibited an H3 
hysteresis loop type, whereas PtCe‐C exhibited an H2 hysteresis loop type [35,37]. Figure 
S2 shows the pore distribution of PtCe catalysts prepared by various synthesis methods. 
As discussed for the isotherms, the PtCe‐I catalyst exhibited mesopore distribution. The 
PtCe‐H catalyst contained mesopores and even macropores. The PtCe‐S catalyst showed 
a non‐uniform distribution of pores with mesopores close to micropores and up to macro 
pores. The PtCe‐C catalyst showed a distribution of relatively small‐sized mesopores com‐
pared to the PtCe‐I catalyst. 

  

Figure 1. XRD patterns of reduced CeO2-supported Pt catalysts prepared by various synthesis methods.

Table 1 summarizes the physicochemical properties of PtCe catalysts prepared by
various synthesis methods. The specific surface area of the samples shows the following
order: PtCe-C (132 m2/g) > PtCe-I (107 m2/g) > PtCe-H (78 m2/g) > PtCe-S (67 m2/g).
Figure S1 shows the N2 adsorption–desorption isotherms of PtCe catalysts prepared by
various synthesis methods. All the catalysts presented a type IV isotherm with a hysteresis
loop, which indicates the mesoporous capillary condensation. According to the IUPAC
classification, PtCe-I and PtCe-H exhibited an H1 hysteresis loop [35,36]. H1 hysteresis
indicates the presence of cylindrical pores having a uniform size or shape. PtCe-S exhibited
an H3 hysteresis loop type, whereas PtCe-C exhibited an H2 hysteresis loop type [35,37].
Figure S2 shows the pore distribution of PtCe catalysts prepared by various synthesis
methods. As discussed for the isotherms, the PtCe-I catalyst exhibited mesopore distribu-
tion. The PtCe-H catalyst contained mesopores and even macropores. The PtCe-S catalyst
showed a non-uniform distribution of pores with mesopores close to micropores and up to
macro pores. The PtCe-C catalyst showed a distribution of relatively small-sized mesopores
compared to the PtCe-I catalyst.

Table 1. Physicochemical properties of CeO2-supported Pt catalysts prepared by various
synthesis methods.

Catalyst S.A.
(m2/g) a

Pore Volume
(cm3/g) a

Pt0 Dispersion
(%) b

Pt0 Particle Size
(nm) b

H2 Consumption
(mmol/g) c

PtCe-I 107 0.415 89.9 1.05 8.29
PtCe-S 67 0.216 53.4 1.77 5.47
PtCe-H 78 0.357 36.2 2.60 3.52
PtCe-C 132 0.308 2.4 39.3 6.23

a Estimated by N2–adsorption/desorption at −196 ◦C; b Estimated from CO–chemisorption; c Estimated from
H2–TPR analysis.

Synthesis methods changed the specific surface area as well as the Pt0 dispersion. As
confirmed by CO chemisorption analysis, the PtCe-I catalyst showed the highest value of
89.9% and the PtCe-C catalyst showed the lowest value of 2.4%. The PtCe-S and PtCe-H
catalysts showed a Pt0 dispersion of 53.4% and 36.2%, respectively. Metal dispersion is
generally defined as the ratio of the number of active sites exposed on the catalyst surface,
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and only the atoms exposed on the surface can participate in the catalyst surface reaction.
In the WGS reaction, the CO2 product generates through the adsorption of CO on the active
Pt particles of the catalyst surface during the reaction process [21]. Therefore, it is expected
that the PtCe-I catalyst with the highest Pt0 dispersion would show high WGS activity.

Concerning H2-TPR (Figure 2), two peaks related to the redox properties of the CeO2-
supported Pt catalysts were observed. During the reduction process, the first intense peak
centered at low temperatures (<200 ◦C) included the reduction of oxidized Pt species, as well
as partial reduction of O species between Pt nanoparticles and CeO2 interfaces [21,38,39].
The second peak located at high temperatures over 300 ◦C is ascribed to the reduction of
CeO2 [28,38]. The reduction behaviors of the catalysts were clearly different depending on
the catalyst synthesis method. The first reduction peak of the PtCe-I catalyst appeared at the
lowest temperature among the tested samples. The reduction temperature of the catalytic
active species (CeO2-PtOx) was as follows: PtCe-S (181 ◦C) > PtCe-C (111 ◦C) > PtCe-H
(93 ◦C) > PtCe-I (75 ◦C).
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Figure 2. H2‐TPR profiles of CeO2‐supported Pt catalysts prepared by various synthesis methods. 

Figure 2. H2-TPR profiles of CeO2-supported Pt catalysts prepared by various synthesis methods.

To compare the reducibility of the catalyst in detail, the H2 consumption of the catalyst
was also calculated and is shown in Table 1. The hydrogen consumption of each catalyst
was calculated with the first peak between 50 and 300 ◦C. The PtCe-I catalyst showed
the highest H2 consumption compared to the others. In addition, as the lattice oxygen of
CeO2 has reversely spilled over at lower temperatures, the second reduction peak area
of the PtCe-I catalyst was markedly decreased [21,38]. The reduction behaviors of CeO2-
PtOx interfaces are related to the reaction between hydrogen and reversely spilled-over
oxygen from CeO2 [21,23,39]. According to the results of the above analysis, the oxygen
reverse spillover amount of CeO2-supported Pt catalysts is different depending on the
synthesis method. The oxygen reverse spillover further modifies the redox properties of
CeO2-supported Pt catalysts [23,40]. The WGS reaction is widely known to operate through
a redox mechanism in the high-temperature range [23,41]. In detail, CO is adsorbed to
active sites and oxidized by mobile oxygen species on the catalysts [21]. Then, the defect
oxygen sites are reoxidized by water adsorbed on the oxide surface and generate hydroxyl
groups [40]. Therefore, the redox property of the catalyst is a main factor that affects
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the activity of the WGS catalyst. Consequently, the PtCe-I catalyst with excellent redox
properties and high H2 consumption is expected to exhibit relatively high catalytic activity
for the WGS.

To assess the surface electronic properties of the CeO2-supported Pt catalysts, the reduced
samples were analyzed by XPS (Figure 3). The reduction conditions were the same as the
pretreatment (400 ◦C with 5% H2/N2) applied to the reaction. Figure 3A shows the XPS Pt 4f
spectra of the CeO2-supported Pt catalysts. Through the reduction process, PtOx was reduced
to metallic Pt0. The corresponding Pt0 peaks are displayed at 74.3 (Pt 4f5/2) and 71.0 eV (Pt
4f7/2) [42,43]. The PtCe-I and PtCe-S catalysts clearly showed Pt0 peaks. Conversely, the
PtCe-H and the PtCe-C catalysts showed a weak Pt0 peak. It can be considered that Pt is not
sufficiently exposed on the catalyst surface in the PtCe-H and PtCe-C catalysts [44]. This trend
is consistent with the Pt dispersion results. This same result was also shown in the poisoned
samples (Figure S3).
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Figure 3. XPS spectra of reduced CeO2-supported Pt catalysts prepared by various synthesis methods.
(A) Pt 4f; (B) O 1s; (C) Ce 3d.

From the XPS analysis results, the O 1s and Ce 3d spectra can provide the surface
concentration of oxygen vacancies. In the O 1s spectra (Figure 3B), the peaks deconvoluted
into three main peaks: 529.4, 530, and 531.5 eV [45,46]. Each deconvoluted peak represents:
529.4 eV (lattice oxygen (OL)); 530 eV (defect oxygen (OD)); and 531.5 eV (adsorbed oxygen
species (OA)), respectively [45,46]. In particular, the oxygen vacancy value of the catalyst
can be assumed through the OD peak shown in color at 530 eV [46]. As the number of
defect oxygen species in CeO2 increases, the content of Ce3+ surface defects, leading to the
formation of oxygen vacancies [47]. This oxygen vacancy serves as a site for mobile oxygen
that participates in the redox mechanism of the WGS reaction, thereby accelerating the
reaction [40]. It has been reported that the oxygen vacancy of the PtCe catalyst is related to
the reduction of CeO2 through oxygen reverse spillover [23,40]. Table 2 shows the surface
atomic concentration of the OD calculated from the deconvoluted results. The surface
atomic concentration of OD in the catalysts shows the order of PtCe-I (22.18%) > PtCe-C
(18.31%) > PtCe-S (11.66%) > PtCe-H (10.35%). Thus, it is expected that the PtCe-I catalyst
exhibits high activity.
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Table 2. Oxygen-storage capacity-related values of CeO2-supported Pt catalysts prepared by various
synthesis methods.

Catalyst OD (%) a Ce3+ (%) b OSC (10−4 gmol/gcat) c

PtCe-I 22.18 32.21 4.68
PtCe-S 11.66 29.57 1.85
PtCe-H 10.35 28.19 1.45
PtCe-C 18.31 31.04 4.11

a Estimated from XPS O 1s spectra. b Estimated from XPS Ce 3d spectra. c Estimated from the H2-O2
pulse reaction.

The Ce 3d spectra (Figure 3C) of the samples exhibited multiple peaks related to Ce3+

and Ce+4 at 882–916.4 eV. The peaks were deconvoluted into 10 peaks (v0, v, v′, v′ ′, v′ ′ ′, u0,
u′, u, u′ ′, and u′ ′ ′) from five doublets of the spin-orbit split, respectively [48,49]. Among the
peaks, the two colored doublets (v0, u0, and v′, u′) are related to Ce3+, which correspond
to the states of Ce 3d94f1 O 2p6 and Ce 3d94f2 O 2p5, respectively [48]. The formation of
Ce3+ ions is ascribable to the reduction of the CeO2 support, indicating the generation of
oxygen vacancies [50,51]. Specifically, the movement of mobile oxygen occurs at oxygen
vacancies in the CeO2 lattice of the catalyst [40]. Thus, the tendency of Ce3+ was expected
to follow the trend of OD. The ratio of Ce3+ was calculated by Equation (2) figure based on
the deconvoluted XPS Ce 3d spectra.

Ce3+ (%) =
{(

Av0 + Av′ + Au0 + Au′ )/ ∑ Ai
}
× 100 (2)

where ∑ Ai is the total area of the original Ce 3d peak before deconvolution. Table 2
displays the Ce3+ concentration values obtained in the calculation. As expected, the results
followed the same trend as the OD, in the order PtCe-I (32.21%) > PtCe-C (31.04%) > PtCe-S
(29.57%) > PtCe-H (28.19%).

The OSC measurements of the catalysts were performed by an H2-O2 pulse reac-
tion (Table 2). The OSC value of the catalysts provides information on the reactive and
available oxygen atoms related to the WGS redox mechanism [20,41]. The OSC intimately
relates to the sulfur tolerance of the catalyst according to previous studies [17,18]. The
catalyst with the higher OSC showed high sulfur tolerance [17,18]. In particular, the CeO2
support contributes to the redox reaction by providing mobile oxygen due to the unique
characteristics (e.g., rich oxygen vacancies and ease of change between Ce3+ and Ce4+) to
promote redox [19,50,52]. A platinum-based catalyst supported on a reducing oxide such
as ceria can exhibit superior redox properties due to its high OSC [21]. This explained the
generation of oxygen vacancies through oxygen reverse spillover according to previous
reports [18,23]. The trend of the oxygen-storage capacity of PtCe catalysts showed the
following order: PtCe-I (4.68 × 10−4 gmol/gcat) > PtCe-C (4.11 × 10−4 gmol/gcat) > PtCe-S
(1.85 × 10−4 gmol/gcat) > PtCe-H (1.45 × 10−4 gmol/gcat). This result indicated that the
oxygen-storage capacity of the catalyst can be changed by controlling the synthesis method.
The PtCe-I catalyst exhibited the best redox properties which originated from the high OSC
of the catalysts. This was demonstrated by showing the same trend in the H2-TPR, XPS,
and H2-O2 pulse reaction. Thus, the PtCe-I catalyst is expected to exhibit high WGS activity
and sulfur resistance among the prepared samples.

To investigate the structural information about the lattice disorder and defects of
the prepared catalysts, Raman spectroscopy was conducted, and the results are shown in
Figure 4. In all cases, a band at approximately 460 cm−1, corresponding to the F2g triple
degenerate vibrational mode of the fluorite structure (face-centered cubic) of the CeO2, was
observed [53,54]. Since this mode is very sensitive to the vibrations of oxygen around the
Ce ions, changes in the state of Ce ions or oxygen lattice have a significant effect on this
mode [55]. The peak of the corresponding mode changes to be broader and asymmetric due
to the local structure distortion of CeO2. This distortion causes defects in the CeO2 structure,
which are related to the oxygen vacancies. Thus, the broadening and asymmetry of the
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main peak at 460 cm−1 are related to the oxygen vacancies in the CeO2 structure [50,54,56].
The PtCe-I catalyst had a noticeably broadened peak, followed by the PtCe-C catalyst,
which had a weak and broad peak. The PtCe-S and PtCe-H catalysts showed relatively
sharp and clear peaks. This trend agreed with the OSC results in the XPS and H2-O2
pulse reaction.
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Figure 5 shows the TEM images and EDS mapping results of all reduced samples.
The extent and distribution of Pt species exposed on the surface varied according to the
synthesis method. This suggests that the Pt dispersion is affected by the synthesis method,
which is consistent with the trends in the CO-chemisorption (Table 1) and XPS results
(Figure 3A). In addition, TEM images and particle size distribution results of reduced and
poisoned CeO2-supported Pt catalysts are exhibited in Figure S4. The TEM images of all
the reduced and poisoned catalysts showed a mixed morphology of particles with irregular
shapes. It is difficult to clearly distinguish Pt particles in both the reduced and poisoned
TEM images. The PtCe-I catalyst showed relatively smaller particle sizes compared to
other catalysts.

As shown in Figure 6A, the CO conversion of the CeO2-supported Pt catalysts showed
a clear difference depending on the synthesis method. Each catalyst was tested under two
conditions, and the results are shown for each section. First, the intrinsic catalytic activity
for the WGS reaction using waste-derived synthesis gas without sulfur components was
confirmed. In the next step, the sulfur tolerance of the catalyst was evaluated for 100 h
with an injection of H2S (500 ppm). Sulfur contained in the feed gas is adsorbed on the
catalyst surface and acts as a poison that decreases the catalyst activity [15,16]. As can
be seen from TEM and EDS mapping images in Figure S5, sulfur was adsorbed to the
catalyst. As expected from the characterization results, the PtCe-I catalyst exhibited the
highest catalytic activity. In particular, the catalyst prepared by the impregnation method
not only showed a high CO conversion of 90%, but also maintained a high catalytic activity
without significant deactivation, even after sulfur injection. The PtCe-S catalyst exhibited
the second highest intrinsic catalytic activity and sulfur tolerance. Conversely, the PtCe-H
catalyst showed lower intrinsic catalytic activity than the previous two catalysts and was
more rapidly deactivated in the presence of sulfur. In the case of PtCe-C catalyst, the lowest
CO conversion was observed. Here, the intrinsic catalytic activity in sulfur-free condition
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of the catalysts was most affected by Pt0 dispersion. The PtCe-I catalyst showed the highest
Pt0 dispersion, followed by the PtCe-S and PtCe-H catalysts. However, the PtCe-C catalyst
showed a remarkably low active species dispersion. This indicates that there are relatively
few active species present on the catalyst surface that provide sites for the reaction. Thus, it
can be considered that this result affects the lower catalytic performance. All other catalysts
except the PtCe-C catalyst showed 100% CO2 selectivity during the reaction (Figure 6B).
On the other hand, the PtCe-C catalyst exhibited methanation (CO + 3H2 → CH4 + H2O),
a major side reaction of the WGS reaction [57]. This is because the site for adsorption of
the reactants was not sufficiently provided due to the remarkably low Pt dispersion of the
PtCe-C catalyst. The numerical values related to the WGS reaction results of the catalysts
are summarized in Table S1. To understand the intrinsic catalytic activity of the catalyst
more clearly, turnover frequency (TOF) was calculated from the CO-chemisorption analysis
and the WGS reaction results (Table 3). It is interesting that the PtCe-I catalyst exhibits
similar TOF values to PtCe-S and PtCe-H catalysts, even when excluding the effect of Pt
dispersion. This indicates that other catalytic properties such as OSC influence the intrinsic
activity of CeO2-supported Pt catalysts.
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Figure 6. (A) CO conversion and (B) CO2 and CH4 selectivity as a function of time on stream over
CeO2-supported Pt catalysts prepared by various synthesis methods.

Table 3. Turnover frequency results over CeO2-supported Pt catalysts prepared by various
synthesis methods.

Catalyst Turnover Frequency (s−1)

PtCe-I 0.010
PtCe-S 0.015
PtCe-H 0.015
PtCe-C 0.071
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It has been previously reported that the OSC of the catalyst is a critical factor along
with the dispersion of Pt in the WGS reaction [17,18]. In the WGS reaction, oxygen vacancies
occurring as mobile oxygen in the lattice of CeO2 oxidize the reactant CO to produce the
product CO2. Subsequently, oxygen is stored in the oxygen vacancies from H2O dissociation.
The higher the OSC value of the catalyst, the higher the retention of mobile oxygen that
promotes the redox mechanism of the WGS reaction. Therefore, the high OSC value of the
catalyst is related to excellent WGS reaction activity. Among the prepared samples, the
PtCe-I catalyst exhibited the highest OSC value in the H2-TPR, XPS (ratio of OD and Ce3+),
and H2-O2 pulse reaction. Additionally, it is reported that the mobile oxygen derived from
CeO2 reacts with the attached sulfurs on the active sites of the catalytic surface (S + mobile
O→ SO2) and causes a regeneration of the catalytic performance [18]. Therefore, the OSC
value is considered to be the most important factor in evaluating the sulfur tolerance of the
catalysts. The PtCe-I catalyst showed the lowest activity loss and thus the highest sulfur
tolerance. However, the PtCe-C catalyst showed low catalytic activity despite the relatively
high OSC values. This is because the PtCe-C catalyst has a significantly lower number
of activated Pt on the surface of the catalyst than that of the other catalysts, and thus the
intrinsic activity of the catalyst is low. Nevertheless, OSC is an important factor in sulfur
tolerance given the low decrease values of CO conversion in the PtCe-C catalyst. For this
reason, the PtCe-I catalyst appears to exhibit high catalytic activity and superior sulfur
tolerance due to the excellent redox properties and dispersion of the Pt active species on
the catalytic surface.

The stability of the PtCe-I catalyst was further evaluated in sulfur-injection shut-
down/re-start cycles (Figure 7). The cycle test was conducted 4 times in 100 h. The
PtCe-I catalyst maintained high catalytic activity and sulfur resistance even during multiple
poisoning and regeneration operations. Furthermore, it was shown that the catalytic activity
of the catalyst was almost recovered at every cycle.
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In Figure 8, we summarize the characterization results and the catalytic performance
of the CeO2-supported Pt catalysts prepared by various synthesis methods. The results
showed a strong relationship between the physicochemical properties and the catalytic
performance of the catalyst. The intrinsic catalytic activity followed the trend of active
metal dispersion and, in part, also followed the OSC trend. The OSC of the catalysts affects
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sulfur tolerance of the catalyst. The decreased rate of the CO conversion (green color)
shows the same trend as the OSC data (blue color) confirmed from H2-O2 pulse reaction.
As a result, the PtCe-I catalyst shows the highest intrinsic catalytic activity among the
prepared catalysts. The PtCe-I catalyst also showed the lowest activity loss and thus the
highest sulfur tolerance. As a result, it can be concluded that the active metal dispersion
and oxygen-storage capacity of the catalyst are the key factors in the catalytic activity and
the sulfur tolerance of the catalyst.
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3. Materials and Methods
3.1. Catalyst Synthesis

CeO2-supported Pt (98 wt% CeO2 support, 2 wt% Pt) catalysts were prepared by
various synthesis methods (IWI, SG, HT, and CP). For catalyst synthesis, stoichiometrically-
calculated Ce(NO3)3·6H2O (99%, Sigma Aldrich, St. Louis, MO, USA) and [Pt(NH3)4](NO3)2
(50% Pt basis, Sigma Aldrich, St. Louis, MO, USA) were used as precursors. The theoret-
ical Pt loading was fixed at 2 wt%. Table S2 shows the actual Pt content of the catalysts
determined by inductively-coupled plasma-optical emission spectrometry (ICP-OES). The
details are provided in each section.

3.1.1. Incipient Wetness Impregnation Method

In the case of the PtCe-I catalyst, the pure CeO2 support was prepared by the precipi-
tation method before the Pt impregnation process. The precursors of Ce were dissolved
in deionized water and heated to 80 ◦C. The mixed solution was treated with dropwise
addition of 15 wt% KOH (95%, Samchun Chemicals, Siheung, Republic of Korea) solution
until the pH reached 10.5 at 80 ◦C. Next, the mixture was aged with magnetic stirring
for 72 h at 80 ◦C. The aged solution was washed with deionized water and filtered. The
precipitate was dried in an oven overnight at 100 ◦C and calcined under an air atmosphere
at 500 ◦C in a furnace for 6 h. The Pt precursor dissolved in deionized water (0.5 mL)
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was impregnated by dropwise addition into the calcined CeO2 support. The impregnated
mixture was dried and calcined under the same conditions as for pure CeO2.

3.1.2. Sol-Gel Method

The sol-gel method was used to synthesize the PtCe-S catalyst. Stoichiometric quanti-
ties of Pt, Ce precursors, and citric acid were dissolved in 20 mL of deionized water, and
the solution was then stirred at 80 ◦C for 24 h. The gel was formed by citric acid acting as a
chelating agent during the slow evaporation of water. The generated gel was heat-treated
at 100 ◦C for 4 h to obtain a swollen mass. This product was then calcined at 500 ◦C in
furnace for 6 h with air.

3.1.3. Hydrothermal Method

To obtain the PtCe-H catalyst, stoichiometric quantities of Pt and Ce precursors were
dissolved in 60 mL of deionized water and stirred with a magnetic stirrer at room tempera-
ture. After complete dissolution, the pH was adjusted to 10 at 80 ◦C with an injection of
an aqueous 15 wt% NaOH (98%, Daejung Chemicals Co., Pyeongtaek, Republic of Korea)
solution. Then, the precipitated solution was heated in a hydrothermal autoclave at 180 ◦C
for 24 h. After this heat treatment, the solution was rinsed and filtered with deionized
water to remove impurities. The solid product was dried in an oven overnight at 100 ◦C
and calcined at 500 ◦C in a furnace for 6 h under an air atmosphere.

3.1.4. Co-Precipitation Method

The PtCe-C catalyst was prepared by the co-precipitation method. The co-precipitation
method was carried out using the same process as the precipitation method of the support
in the incipient wetness impregnation method section. However, the PtCe-C catalyst was
prepared by dissolving the Pt and Ce precursors in deionized water all at once. The mixed
solution was heated to 80 ◦C, and then titration, aging, washing, and filtration processes
were sequentially performed. The filtered mixture was then dried and calcined under the
conditions described above.

3.2. Catalytic Reaction

The PtCe catalysts prepared by various synthesis methods were tested at 400 ◦C for
evaluation of catalytic performance and sulfur tolerance. A total of 30 mg of catalyst was
loaded in a microtubular quartz reactor (I.D. 4 mm). The WGS reaction was performed
in a fixed-bed reactor at ambient pressure. Prior to the catalytic test, each catalyst was
reduced in situ at 400 ◦C to form the active phase (PtOx → Pt0). The reactant gas pro-
duced through waste gasification consisted of CO (39.70 vol%), CO2 (21.50 vol%), CH4
(2.35 vol%), H2 (27.05 vol%), and N2 (9.40 vol%). For the WGS reaction, steam was injected
at an H2O/C ratio of 2.0, and the gas hourly space velocity (GHSV) was set to 46,000 h−1.
To confirm the catalytic performance in the WGS reaction using waste-derived synthesis
gas, the intrinsic catalytic activity of the CeO2-supported Pt catalysts was evaluated un-
der the above conditions without the injection of sulfur. Then, to account for the sulfur
components contained in the waste-derived syngas, a gas containing sulfur was injected.
A 1.0% H2S/Ar gas was injected at a sulfur component ratio of 500 ppm in the total inlet
gas. After the WGS reaction, sulfur components and moisture contained in the reaction
gas, which cause corrosion and failure of the gas detector, were removed. The composi-
tions of gas products was analyzed by a micro gas analyzer. The detailed procedures and
information for the reaction condition such as reaction apparatus, pre-reduction treatment,
and sulfur-trapping process after the reaction are reported in our previous work [17]. The
CO conversion rate, CO2 and CH4 selectivity, and TOF were calculated using the following
formulas (Equations (3)–(6)):

CO conversion (%) = ([CO]in − [CO]out)/[CO]in × 100 (3)
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CO2 selectivity (%) = ([CO2]out − [CO2]in)/(([CH4]out − [CH4]in) + ([CO2]out − [CO2]in)) × 100 (4)

CH4 selectivity (%) = ([CH4]out − [CH4]in)/(([CH4]out − [CH4]in) + ([CO2]out − [CO2]in)) × 100 (5)

TOF (s−1) = (([CO]in − [CO]out) × ABM × F))/(D ×W × XM) (6)

where ABM is the atomic weight of metal (M), F is the total flow rate (mol/s), D is the metal
dispersion, W is the mass of catalyst (g), and XM is the metal content (gmetal/gcat).

3.3. Characterization

The metal concentration of prepared catalysts was analyzed by ICP-OES (IRIS-Thermo
Jarrell Ash Co., Waltham, MA, USA). The physicochemical properties of the catalysts were
investigated by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) analysis, CO pulse
chemisorption, H2-temperature programmed reduction (H2-TPR), X-ray photoelectron
spectroscopy (XPS), H2-O2 pulse reaction, Raman spectroscopy, transmission electron
microscopy (TEM), and energy dispersive X-ray spectroscopy (EDS). The detailed experi-
mental procedure for all of the above analyses except Raman spectroscopy are mentioned
in our previous study [17]. In this study, Raman spectra were recorded using a Horiba
Jobin Yvon-LabRam Aramis spectrometer (Longjumeau, France) with a 532 nm excitation
line of an Nd-YAG laser.

4. Conclusions

The CeO2-supported Pt catalysts prepared by various methods were tested for the
WGS reaction in a waste-upgrading process. Results showed that the PtCe-I catalyst
exhibited the highest Pt dispersion and oxygen-storage capacity. The PtCe-I catalyst also
showed superior catalytic activity with high sulfur tolerance compared with the other
prepared catalysts. The dispersed Pt on the surface provides a site where CO is adsorbed
for a reaction in the redox mechanism of the WGS reaction. The mobile oxygen of the
catalyst reacts with CO to promote the WGS reaction and reacts with sulfur to assist the
regeneration of the catalytic performance. Through these results, we conclude that the
Pt dispersion of the catalyst and the oxygen-storage capacity are important factors for
the catalytic performance and sulfur tolerance of the WGS reaction. In conclusion, we
found that the optimal catalytic synthesis method is the incipient wetness impregnation
method in the CeO2-supported Pt catalysts for the WGS reaction using waste-derived
synthesis gas.
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