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Abstract: Bi2WO6 has become a common photocatalyst due to its advantages of simple synthesis
and high activity. However, the defects of pure Bi2WO6 such as low light reception hinder its
application in photocatalysis. In this study, based on the modification of Bi2WO6 with Ti(IV) as
a cavity co-catalyst, new Ni- and Ti-doped nanosheets of Bi2WO6 (Ni/Ti-Bi2WO6) were prepared
by a one-step wet thermal impregnation method and used for the photocatalytic degradation of
tetracycline. The experimental results showed that the photocatalytic activity of Ni/Ti-Bi2WO6

modified by the two-component catalyst was significantly better than those of pure Bi2WO6 and
Ti-Bi2WO6 modified with Ti(IV) only. The photocatalytic effect of Ni/Ti-Bi2WO6 with different Ni/Ti
molar ratios was investigated by the degradation of TC. The results showed that 0.4Ni/Ti-Bi2WO6

possessed the best photocatalytic performance, with a degradation rate of 92.9% at 140 min TC.
The results of cycling experiments showed that the catalyst exhibited high stability after five cycles.
The scavenger experiment demonstrated that the h+ and O2

− were the main reactive species. The
enhanced photocatalytic activity of Bi2WO6 could be attributed to the synergistic effect between
the Ti(IV) as a hole cocatalyst and Ni(II) as an electron cocatalyst, which effectively promoted the
separation of photogenerated carriers.

Keywords: Bi2WO6 nanoflake; Ni/Ti dual cocatalyst; visible light; degradation of antibiotics

1. Introduction

Since the emergence of penicillin in the 1920s, many antibiotics have been used in
pharmaceuticals, agriculture, and aquaculture [1]. Among them, tetracycline, as one of
the most widely used antibiotics, would cause adverse impacts on human health and
environmental safety [2]. Therefore, it is imperative to develop an efficient method for the
treatment of TC. In recent years, various traditional and emerging techniques, including
biological treatment [3], the Fenton method [4], and photochemistry [5], have been devel-
oped to remove TC from water. Among them, photocatalysis has attracted considerable
attention owing to the following advantages: mild reaction conditions, high efficiency
and stability, environmental friendliness, and so on [6–8]. Semiconductor photocatalysts
represented by TiO2 have been widely used in the field of photocatalytic decontamina-
tion of environmental pollution due to the advantages of low cost, high stability, and no
environmental hazards [9,10]. However, due to the limitations of the material itself, TiO2
still has problems of the fast compounding of photogenerated electron–hole pairs, wide
band gap, and narrow absorption range [11,12]. In addition to modifying TiO2 materials
to improve their photocatalytic activity, the search for other semiconductor photocatalytic
materials is also an important way to synthesize high-performance photocatalysts [13–15].
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Among a series of developed visible-light reactive photocatalysts, Bi2WO6 has at-
tracted much attention in degrading TC in wastewater due to its unique band structure,
non-toxicity, and high stability [16,17]. However, pure Bi2WO6 suffers from the rapid
binding of photogenerated carriers, inefficient absorption of visible light at wavelengths
less than 450 nm, and the low number of active surface sites, and these drawbacks greatly
limit the potential applications of Bi2WO6 in environmental remediation [18,19]. There-
fore, many modifications of Bi2WO6 have been explored to enhance its photocatalytic
performance, such as noble metal deposition [20–22], construction of semiconductor het-
erojunctions [23–26], ion doping [27–30], and co-catalyst modification [31–33]. Among the
above improvement methods, co-catalyst modification is a promising method that can
effectively promote the separation of photogenerated electrons and holes [34–36].

Co-catalysts can be generally classified as cavity co-catalysts and electron
co-catalysts [37,38]. For the photocatalytic degradation of organic pollutants, the rapid
transfer of photogenerated holes to the catalyst surface and participation in the oxidation
reaction are generally required. Cavity co-catalysts can improve photocatalytic perfor-
mance by rapidly trapping interfacial holes and facilitating the oxidation reaction [39].
For example, Yu et al. modified several Ag-based materials (AgCl, AgBr, AgI, and Ag2O)
with Ti(IV) as a hole co-catalyst. The synthesized Ti(IV)/Ag-based photocatalysts were
all found to exhibit enhanced photocatalytic performance for the degradation of phenol,
indicating that Ti(IV) can be used as a general cavity co-catalyst to effectively improve the
photocatalytic performance of various Ag-based materials [40]. In addition to Ti(IV), other
cavity co-catalysts, such as RuO2, PdS, CoOx, and B2O3-xNx, have been widely developed
and applied in photocatalysis [41–44]. On the other hand, electron co-catalysts, such as
noble metal nanoparticles (Pt, Pd, etc.), are generally used to capture photogenerated elec-
trons [45,46]. For example, Yan et al. could greatly enhance the photocatalytic performance
of CdS by loading PdS as a hole catalyst and Pt as an electron co-catalyst on the CdS
photocatalyst [47]. However, precious metals are expensive and rare, so it is essential to
develop efficient and economical electronic co-catalyst materials.

In this work, we successfully synthesized Ti-Bi2WO6 composites loaded with Ti(IV)
hole co-catalysts on Bi2WO6. However, the rapid transfer and trapping of photogenerated
holes by the Ti(IV) hole co-catalyst led to the accumulation of a large number of photo-
generated electrons on the conduction band (CB) of Bi2WO6. This resulted in Ti-Bi2WO6
exhibiting a limited enhancement of photocatalytic activity. To improve the photocatalytic
performance of Ti-Bi2WO6, the surface was further loaded with the Ni(II) electron cata-
lyst. A series of Ni/Ti-Bi2WO6 composites loaded with different Ni/Ti molar ratios were
prepared. At this time, Ti(IV) and Ni(II) were effective co-catalysts for the fast transfer
of photogenerated holes and photogenerated electrons, respectively. The photocatalytic
activity of Ni/Ti-Bi2WO6 is expected to be further improved because the dual co-catalysts
can simultaneously promote the transfer rate of photogenerated electrons and holes to
reach the specific reaction sites of the photocatalyst. Then, the photocatalytic activity and
stability of the synthesized catalysts were investigated by TC degradation under visible-
light irradiation. The properties of the prepared samples were characterized by scanning
electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction
(XRD), X-ray photoelectron spectroscopy (XPS), and UV diffuse reflectance spectroscopy
(DRS). Among them, the 0.4Ni/Ti-Bi2WO6 photocatalyst exhibited a high degradation
efficiency of 92.9% under visible light. In addition, the photocatalytic mechanism of tetracy-
cline degradation was investigated and discussed on the basis of experiments and different
characterization methods. This work may provide new insights for the development of
low-cost and efficient photocatalytic materials.
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2. Results and Discussion
2.1. Characterization of Ni/Ti-Bi2WO6
2.1.1. SEM, TEM, and EDS Analysis

SEM and EDS characterized various Bi2WO6 photocatalysts to investigate the detailed
morphology and microstructure. As shown in Figure 1a, it can be found that the surface
of pure Bi2WO6 was relatively smooth with a layered structure. In Figure 1b, Bi2WO6
modified with Ti(IV) (Ti-Bi2WO6) showed a similar structure to the Bi2WO6 sample and
fine particles of about 8 nm appeared on the surface, indicating the successful synthesis of
Ti-Bi2WO6. In Figure 1c, the Ni-Bi2WO6 image exhibited the appearance of sharp needle-
like nanostructures and some agglomerates with the addition of Ni(II), which is consistent
with the reports in the literature, indicating the successful loading of Ni(II) [48].
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Figure 1. SEM images of (a) Bi2WO6, (b) Ti-Bi2WO6, and (c) Ni-Bi2WO6.

As for the Ni/Ti-Bi2WO6 sample (Figure 2), in addition to the presence of a large
number of fine particles on the surface of the material compared to pure Bi2WO6, sharp
needle-like nanostructures appeared in the places marked in the figure. To measure the
specific composition of 0.4Ni/Ti-Bi2WO6, EDS analysis was used and is shown in the inset
of Figure 2. The results show that the signals of Ti(IV) and Ni(II) were clearly visible, where
the weight ratio of Ti was 5.07 wt% and that of Ni was 2.42 wt%. The molar ratio of Ni/Ti
was 0.377, which is close to the expected value of 0.4Ni/Ti-Bi2WO6, which means that
Ti(IV) and Ni(II) were successfully loaded onto the Bi2WO6 surface.
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Figure 2. SEM images of Ni/Ti (0.4)-Bi2WO6 and EDX of 0.4Ni/Ti -Bi2WO6.

The detailed morphology of the 0.4Ni/Ti -Bi2WO6 and Bi2WO6 samples was further
investigated by TEM. As shown in Figure 3a,b, it was consistent with the results of SEM
tests. Observing the TEM of the 0.4Ni/Ti-Bi2WO6 sample, markings of Ni(II) and Ti(IV)
nanoparticles modification could be clearly found on the surface of Bi2WO6.
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2.1.2. XRD Analysis

To analyze the crystal structures and phase purities of the Bi2WO6, Ti-Bi2WO6, and
Ni/Ti-Bi2WO6, XRD was utilized and is shown in Figure 4.
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As can be seen, the diffraction peaks of all five samples exhibited similar crystal
structures as well without any impurity peaks, and all the characteristic peaks could
match the pure orthorhombic phase of Bi2WO6 (JCPDS Card: 39–0256). The results were
assigned to the low contents of Ti and Ni and their good dispersion in the Ni/Ti-Bi2WO6
samples. For Ti-Bi2WO6 and Ni/Ti-Bi2WO6 samples, the positions of diffraction peaks
had no noticeable change compared with those of Bi2WO6, indicating that the Ti and Ni
were only deposited on the surfaces and not incorporated into the lattice of Bi2WO6. These
results clearly suggested that the loading of Ti and Ni had no impact on the crystal phase
of Bi2WO6. However, the intensity of the characteristic peak decreased after doping Ni,
indicating the crystallite size of Bi2WO6 could decrease by doping Ni, in good agreement
with the results observed in SEM images. Therefore, it is obvious that the Bi2WO6 samples
loaded by amorphous Ti(IV) and Ni(II) cocatalysts were well synthesized by the method
mentioned above.

2.1.3. XPS Analysis

XPS analysis was employed to demonstrate the surface composition and chemical
state of Ni/Ti-Bi2WO6 composites. Figure 5 shows the survey scan spectra of pure Bi2WO6,
Ti-Bi2WO6, and 0.4Ni/Ti-Bi2WO6. As can be seen, Bi, W, and O elements were detected
in all samples, which can be mainly ascribed to the Bi2WO6 phase. Compared with pure
Bi2WO6, Ti-Bi2WO6 and Ni/Ti-Bi2WO6 exhibited new XPS peaks of Ti and Ni elements.

To further reveal Bi, W, Ti, and Ni elements and their chemical states, the high-
resolution XPS spectra of the above samples were investigated. As shown in Figure 6, the
high-resolution spectrum of Bi 4f revealed two typical peaks located at 159 eV (Bi4f7/2) and
164.1 (Bi4f5/2) eV, which match well with those from Bi2WO6 [49]. In Figure 5, the W4f
spectrum can be subdivided into two peaks at 35.1 eV and 37.2 eV that were ascribed to the
W4f7/2 and W4f5/2, respectively, indicating that W atoms presented a valence of +6 in the
samples [50]. Ti-Bi2WO6 and 0.4Ni/Ti-Bi2WO6 samples showed the obvious Ti2p peaks at
about 458.0 eV (Ti2p3/2) and 465 eV (Ti2p1/2) in Figure 5, implying that the Ti atoms were
in the +4 oxidization state in the samples [51]. From Figure 5, the binding energies of Ni
2p were located at 858.2 eV and 873.8 eV, demonstrating that the Ni elements were in +2
states in the samples [52]. In addition, the binding energy of W and Bi in 0.4Ni/Ti-Bi2WO6
was also slightly shifted to the right by 0.2~0.4 eV compared with that of pure Bi2WO6,
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which may be due to the doping of the co-catalyst producing an electron shielding effect,
resulting in a shift in the binding energy to higher energies [53].
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2.1.4. UV-vis Analysis

The optical properties of all samples were characterized by UV-vis diffuse reflectance
spectroscopy in the wavelength range of 200–500 nm. As can be seen in Figure 7a, the
absorption edge of pure Bi2WO6 was extended up to 430 nm, which presented a wide
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photo-absorption from UV to visible light, implying its potential photocatalytic activities
under visible light. After loading the Ti(IV) cocatalyst onto the Bi2WO6, the Ti-Bi2WO6
showed a similar absorption curve compared with the pure Bi2WO6, owing to the low
content of Ti(IV) on the Bi2WO6 surface. Compared with the pure Bi2WO6, the absorption
curves of Ni/Ti-Bi2WO6 samples were similar, but there was a small redshift.
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The approximate bandgap of the catalyst was illustrated from the plot of (αhv)1/2

versus energy (hv), as shown in Figure 7b. The bandgaps of Bi2WO6, 0.7Ni/Ti-Bi2WO6, Ti-
Bi2WO6, 0.1Ni/Ti-Bi2WO6, and 0.4Ni/Ti-Bi2WO6 were estimated approximately to be 2.75,
2.80, 2.83, 2.85, and 2.89 eV by extrapolation of the linear part of the dependence. Hence,
it is obvious that the doping of Ti(IV) and Ni(II) cocatalysts affected the light absorption
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capability of Bi2WO6. This result may be attributed to the synergistic effect between Ti(IV)
as a hole catalyst and Ni(II) as an electron catalyst.

2.1.5. UV-Vis Analysis

The UV-Vis absorption spectra of TC degradation on 0.4Ni/Ti-Bi2WO6 were monitored
for the corresponding time. As shown in Figure 8, the characteristic absorption peaks of
TC were observed at 275 and 360 nm. With increasing irradiation time, the two typical
absorption peaks of TC gradually became smaller, indicating that the structure of TC was
disrupted to small molecules.
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2.2. Evaluation of Photocatalytic Activity
2.2.1. Photocatalytic Degradation of TC

The photocatalytic performance of the samples was tested mainly by degrading TC
under visible-light irradiation. Figure 9 shows the degradation of TC under the conditions
of five photocatalysts and no added catalyst. First, a mixture of photocatalyst and tetracy-
cline solution was stirred in the dark for 30 min to exclude the effect of adsorption. After
reaching the equilibrium between adsorption and desorption, photoluminescence was
started. The adsorption effect of the prepared catalysts showed that Bi2WO6 < Ti-Bi2WO6
< 0.1Ni/Ti-Bi2WO6 < 0.4Ni/Ti-Bi2WO6 < 0.7Ni/Ti-Bi2WO6. This can be attributed to the
increase in the specific surface area of the Bi2WO6 composite due to the addition of the
co-catalyst, which, in turn, led to the increase in the adsorption capacity of the catalysts.

The degradation efficiency of the pure Bi2WO6 sample was the worst at 77.8% after
140 min of light exposure, which can be attributed to the rapid recombination of electron
and hole pairs generated by light. The degradation rate of Ti-Bi2WO6 reached 87.2% after
the addition of Ti(IV) co-catalyst, which indicated that Ti(IV) as a hole co-catalyst had a good
promotion effect on the photocatalytic activity. In addition, the photocatalytic degradation
efficiency of the composites was significantly improved when Bi2WO6 was modified by
Ni(II) and Ti(IV) dual co-catalysts, indicating that Ti and Ni co-catalysts had a synergistic
effect on Bi2WO6. Among a series of catalysts modified by dual co-catalysts with different
Ni/Ti molar ratios, 0.4Ni/Ti-Bi2WO6 exhibited the highest degradation efficiency of about
92.9%. The degradation efficiency of the samples decreased when the Ni/Ti molar ratio was
less than 0.4 or more than 0.4. The reason may be that when the molar ratio of Ni/Ti was
less than 0.4, the number of photogenerated electrons accepted by the Ni(II) co-catalyst as
an electron trap and the number of photogenerated holes captured by the Ti(IV) co-catalyst
as a hole trap were reduced, and the separation efficiency of photogenerated electron–hole
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pairs was not high, so the photocatalytic performance was lower. When the molar ratio of
Ni/Ti exceeded 0.4, too many Ti(IV) and Ni(II) co-catalysts covered the active surface sites
of Bi2WO6, thus leading to the lower photocatalytic activity of Bi2WO6.
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Ti(IV) has been shown to act as a hole co-catalyst to improve the photocatalytic
performance of TiO2 by effectively trapping photogenerated holes [54]. In the present work,
Ti(IV) was relied on as a hole co-catalyst to modify Bi2WO6 to improve its photocatalytic
ability. The conduction band (CB) and valence band (VB) of Bi2WO6 were about +0.3 V
and +3.0 V (vs. SHE), respectively [55]. In general, to promote the efficient transfer
of electrons from CB to oxygen, the CB potential of the semiconductor should be more
damaging than that of the single-electron oxygen reduction reaction (−0.046 V vs. SHE) [56].
However, the CB potential of Bi2WO6 was significantly more positive (+0.3 V, vs. SHE)
than that of the single-electron oxygen reduction, so it was poorly reduced, thus leading
to the poor photocatalytic performance of Bi2WO6. Ni(OH)2 and NiO have been widely
demonstrated to be effective electron co-catalysts to improve photocatalytic performance
by rapidly capturing photogenerated electrons and promoting interfacial H2 precipitation
reactions [57,58]. When the surface of Bi2WO6 is modified by the Ni(II) catalyst, the
photogenerated electrons of Bi2WO6 can be rapidly transferred to the Ni(II) co-catalyst
because the potential of Ni(II) is more positive than the CB level of Bi2WO6 [59]. When
both Ni(II) and Ti(IV) co-catalysts were loaded on the surface of Bi2WO6, it is clear that
the photocatalytic performance of the synthesized Ni/Ti-Bi2WO6 photocatalyst could be
further improved, which can be well explained by the synergistic effect of Ni(II) and
Ti(IV) co-catalysts. The loading of Ni(II) led to the effective transfer of photogenerated
electrons in the oxygen reduction reaction, and the loading of the Ti(IV) co-catalyst led to
the effective transfer of photogenerated holes in the oxidation reaction of organic matter.
This principle is very similar to that reported for co-catalyst-modified photocatalysts such as
Ag/AgCl-rGO and Cu(II)/AgCl [60,61]. Table 1 summarizes some of the recently reported
degradation capabilities of several bismuth-based photocatalytic materials for different
organic compounds.
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Table 1. The degradation efficiency of different photocatalytic materials.

Types of Catalyst Type of Degradate Degradation Rate Year Ref.

Ti-Bi2WO6 Ceftriaxone sodium 75% 2021 [62]
0.25% Ni-Bi2WO6 Rhodamine B 93% 2022 [63]
30% Bi2WO6/ZnWO4 Plasmocorinth B dye 48% 2022 [64]
Ag/WO3/Bi2WO6 chlorobenzene 79% 2019 [49]
Zn3In2S6/Bi2WO3 metronidazole 98.13% 2022 [65]
Zn3In2S6/Bi2WO3 Hexavalent chromium 99.67% 2022 [65]
0.4Ni/Ti-Bi2WO6 Tetracycline 92.9% - -
Bi2WO6/C-dots/TiO2 levofloxacin 99% 2020 [66]
Bi2WO6–TiO2-N acetone 100% 2022 [67]

2.2.2. Reusability and Stability

Reusability and stability are essential properties for photocatalysts in practical applica-
tions. To test the stability of the as-prepared samples, in this section, the 0.4Ni/Ti-Bi2WO6
photocatalysts were collected after degrading TC for the recycling experiment. Figure 10
shows the results of the cycling test. It can be clearly noted that the photocatalytic efficiency
decreased by only about 6% after five successive cycles for the degradation of TC, due to
the inevitable deficiency of the photocatalyst in the recycling process. The results showed
that the 0.4Ni/Ti-Bi2WO6 photocatalyst had high stability in the photocatalytic reaction.
The prepared Ni/Ti-Bi2WO6 photocatalyst had good photocatalytic activity and stability,
making it an excellent photocatalyst in the treatment of actual pollutants.
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2.2.3. Roles of Reactive Species

It is vital to explore the predominant reactive species in the photocatalytic degra-
dation of TC to comprehend the photocatalytic mechanism. In this study, the effects of
three sacrificial agents on photocatalytic reactions under the same conditions were stud-
ied. The three sacrificial agents included tert-Butanol (TBA) for hydroxyl radicals (OH),
triethanolamine (TEOA) for holes (h+), and p-Benzoquinone (p-BQ) for superoxide radicals
(O2−). The photocatalytic efficiency would become lower when the corresponding active
species was quenched in the photocatalytic degradation of TC. As shown in Figure 11,
the photocatalytic performance of 0.4Ni/Ti-Bi2WO6 was not obviously inhibited when 1
mmol of TBA was added into the solution, indicating that the ·OH was not involved in the
degradation of TC. However, whether the 1 mmol of TEOA or 1 mmol of BQ were added
into TC solution, the photocatalytic performance of 0.4Ni/Ti-Bi2WO6 could be obviously
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affected, which indicated that h+ and O2− radicals were the predominant active species in
the reaction system.
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2.3. Possible Photocatalytic Mechanism

To better describe the degradation process of TC, the main intermediates were identi-
fied by high-performance liquid chromatography and mass spectrometry in negative ion
scan mode, as shown in Figure 12. The main intermediates of tetracycline degradation
could be derived with mass-to-charge ratios m/z of 416, 373, and 306, etc. The intermediates
of tetracycline degradation in general are mainly formed during the photocatalytic reaction
by the removal of functional groups on the ring and ring opening reaction. Therefore, the
pathways of tetracycline degradation were inferred, as shown in Figure 13. The m/z = 445
for tetracycline; product 1 (m/z = 416) was probably formed due to the removal of the
methyl group from dimethylamine by tetracycline; product 1 was further formed by the
removal of the deamidation group to form product 2 (m/z = 373). As the photocatalytic
reaction proceeded, the ring opening reaction further occurred and product 2 (m/z = 373)
was stripped of hydroxyl, carbonyl, and amino groups to form product 3 (m/z = 306).
Eventually, these small molecules were further oxidized to form CO2 and H2O.
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According to the above results of the radical trapping experiments, the possible
photocatalytic mechanism is presented in Figure 14. Under visible-light irradiation, the
electrons and holes of Bi2WO6 were generated easily and separated, and the electrons
were excited from the valence band (VB) to the conduction band (CB), leaving holes on
the VB. However, these photogenerated electrons and holes might recombine and only
a small part of electrons and holes could participate in the photocatalytic degradation of
TC. Significantly, the Ni(II) cocatalyst that existed in Ni/Ti-Bi2WO6 samples could work as
an electron trap to accept the photogenerated electrons. Then, photogenerated electrons
reacted with oxygen in solution to form O2− that has a strong oxidation ability to promote
the degradation efficiency of TC. The photogenerated holes on the VB of Bi2WO6 could
be rapidly transferred to the surface of the Ti(IV) cocatalyst, and directly oxidized the
TC under visible-light irradiation. The corresponding reaction process can be expressed
as follows:

0.4Ni/Ti-Bi2WO6 + hv→ h+ + e− (1)
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e− + O2 →·O2
− (2)

h+ + H2O→·OH + H+ − (3)

TC+ (·O2
−, h+)→ Degradation products (4)
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3. Materials and Methods
3.1. Preparation of Photocatalyst
3.1.1. Preparation of Ni-doping Bi2WO6

Ni-doping Bi2WO6 was prepared by the hydrothermal method. The specific prepara-
tion process was as follows: Na2WO4·2H2O (0.4948 g) was dissolved in 60 mL of deion-
ized water and sonicated for 5 min. Bi(NO3)3·H2O (1.45521 g) and certain amounts of
NiCl2·6H2O were successively added into the solution during stirring and sonicated again
for 10 min to obtain a homogeneous solution. The resulting solution was transferred into a
100 mL Teflon-lined stainless-steel autoclave (Autoclave, Zibo Haiyu Chamical Equipment
Co., Ltd., Zibo, China) for hydrothermal treatment at 180 ◦C for 12 h. After the reaction
system cooled to room temperature naturally, the products were collected by filtering
with a 0.22 µm filter membrane, washed with deionized water and absolute ethanol three
times, and dried at 60 ◦C overnight. According to the molar ratio of Ni to W, the products
were referred to as 0.07Ni-Bi2WO6, 0.28Ni-Bi2WO6, and 0.49Ni-Bi2WO6, respectively. At
the same time, single Bi2WO6 was also synthesized by the same process without adding
NiCl2·6H2O.

3.1.2. Preparation of Ti-doping Bi2WO6

According to the previous studies, it was found that the samples showed the highest
photocatalytic activity when the molar ratio of Ti to Bi2WO6 was 0.7. Therefore, the molar
ratio of Ti to Bi2WO6 was determined to be 0.7 in this work. The Ti-doping Bi2WO6 was
prepared by an impregnation method. In a typical preparation, 1.25 g of Bi2WO6 and
0.32984 g of Ti(SO4)2 were dispersed into 200 mL of deionized water, and then stirred at
75 ◦C for 1 h. The products were collected by filtering with a 0.22 µm filter membrane and
washed with deionized water to neutral. Lastly, the sample was dried at 60 ◦C overnight.

3.1.3. Preparation of Ni/Ti-doping Bi2WO6

The Ni/Ti-doping Bi2WO6 was synthesized by following Sections 3.1.1 and 3.1.2. First,
the Ni-doping Bi2WO6 was prepared by the hydrothermal method according to part 2.2.1,
and then amorphous Ti was further doped onto the Ni/Bi2WO6 surface to form Ni/Ti-
doping Bi2WO6 by the impregnation method according to Section 3.1.2. According to the
molar ratio of Ni to Ti, the products were referred to as 0.1Ni/Ti-Bi2WO6, 0.4Ni/Ti-Bi2WO6,
and 0.7Ni/Ti-Bi2WO6.
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3.2. Characterization

The crystal structure and purity of the prepared photocatalyst were characterized by
X-ray diffraction (XRD) patterns, which were collected by a Bruker D8 Advanced (Bruker,
Billerica, MA, USA) instrument using Cu-Kα radiation (λ = 0.15405 nm, 40 KV × 60 mA)
from 10◦ to 80◦ (2θ) with a scanning rate of 15◦/min. The morphologies of the samples
were performed on a JSM-6700 field-emission scanning electron microscope (FESEM, JEOL
Ltd., Tokyo, Japan) equipped with an X-max 50 energy-dispersive X-ray spectroscope (EDS,
Oxford Instruments, Abington, UK) using the acceleration voltage of 2 kV. The optical
properties of the photocatalyst were investigated by UV-vis diffuse reflectance spectra
(DRS), which were monitored by a UV-Vis spectrophotometer (SHIMADZU, UV-2550,
Kyoto, Japan), in which BaSO4 served as the reflectance standard. X-ray photoelectron
spectroscopy (XPS) measurements were conducted on a Thermo Scientific ESCALAB 250Xi
(Thermo Fischer Scientific, Waltham, MA, USA) with a monochromated Al Kα X-ray source.

3.3. Photocatalytic Test
Photocatalytic Degradation

The photocatalytic activity was performed by the degradation of TC under visible-
light irradiation using a 300 W Xenon lamp (Xenon lamp, China Education Au-light,
Beijing, China) equipped with a 420 nm cut-off filter. The photocatalytic experiments were
described as follows: First, 0.05 g of photocatalysts was mixed with 100 mL of 20 mg/L
tetracycline solution. Then, the mixed solution was stirred in the dark for 30 min to exclude
the effect of the adsorption. The light experiment was started after reaching the equilibrium
of adsorption and desorption. During the irradiation process, 4 mL of the suspension
was collected and filtered using a 0.22 µm filter membrane to remove the photocatalyst
at a certain interval. Subsequently, the absorbance of the solution was measured by a
UV-vis spectrometer (UV-vis spectrometer, Hitachi, Tokyo, Japan), where the characteristic
absorption wavelengths of TC in solutions was 356 nm. By the standard curve of TC,
the degradation rate of prepared samples was calculated. To demonstrate the stability of
as-prepared samples, repeated experiments were carried out under the same conditions.
The photocatalysts were separated by centrifugation, and washed with distilled water and
ethanol three times before being redispersed into the TC solutions.

3.4. Active Species Capturing Experiments

Sacrificial agents, such as tert-Butanol (TBA), triethanolamine (TEOA), and
p-Benzoquinone (p-BQ), to quench hydroxyl radicals (·OH), holes (h+), and superoxide
radicals (·O2−), respectively, were used to determine the active species in the photocatalytic
reaction. Typically, 10 mM scavenger was added into 100 mL of 20 mg/L of TC solution
with 0.4Ni/Ti-Bi2WO6 as a photocatalyst at room temperature. The other experiment
condition was the same as the photocatalytic degradation referred to above, for instance,
the 30 min dark reaction process before irradiation. The main active species were decided
by the degradation rate of TC.

4. Conclusions

In summary, we successfully designed Ni/Ti-Bi2WO6 composites for the degradation
of TC under visible-light irradiation by a simple one-step hydrothermal and impregnation
method. The photocatalytic efficiency of Ni/Ti-Bi2WO6 under visible light was improved
compared with that of the pure Bi2WO6 photocatalyst. The highest degradation efficiency
was achieved when the molar ratio of Ni/Ti in Ni/Ti-Bi2WO6 was 0.4. After 140 min of
visible-light irradiation, the degradation efficiency of TC could reach 92.9%. This excellent
photocatalytic ability of the Ni/Ti-Bi2WO6 composite can be attributed to the synergistic
effect between Ti(IV) as a hole catalyst and Ni(II) as an electron catalyst, which prevents the
recombination of photogenerated electron–hole pairs and increases the amount of active
species for photodegradation of TC. The low-cost, non-toxic, and abundant Ti(IV) and
Ni(II) co-catalysts can be ideal co-catalysts for potential applications of new photocatalytic
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materials compared to conventional noble metal co-catalysts such as Pt, Au, and RuO2.
In addition, the synthesis of the dual co-catalyst-modified photocatalysts used in this
study can be extended for the synthesis of new dual co-catalyst-modified high-efficiency
photocatalytic materials.
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