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The milestone of the 10th anniversary of Catalysts is a great time to reflect on past
accomplishments, present progress and challenges, as well as to identify future challenges
and opportunities. Biocatalysis has moved from a niche area of catalysis to the forefront as
a key enabling technology for successfully addressing challenges in the fields of organic
synthesis and analysis. This is also illustrated by the continuous growth of the “Biocatalysis”
section of Catalysts, with a total number of 130 Special Issues, from which 32 are active
online and 98 have been completed, and a total number of 761 articles published to date. As
a way of celebrating the 10th anniversary of Catalysts, and in view of the key importance of
biocatalysis, the “Biocatalysis” section has therefore launched a Special Issue entitled “10th
Anniversary of Catalysts: Biocatalysis in Analysis and Synthesis—Past, Present and Future”.

The enzymatic monoacetylation of diols catalyzed by Candida antarctica lipase B is a
valuable desymmetrization methodology and has been applied by Madalińska et al. [1] to
prochiral phosphines and phosphine P-sulfides as a route towards P-chiral catalysts. An
enantiomeric excess of 98% and 10% yield could be achieved in the case of bis(2-hydroxy-
methylphenyl)phenylphosphine when using C. antarctica lipase B as a catalyst and t-butyl
methyl ether/pyridine as a solvent, while 77% enantiomeric excess and 60% yield was the
best result achieved in the case of bis(2-hydroxymethylphenyl)phenylphosphine-P-sulfide
when using lipase from Pseudomonas fluorescens as a catalyst and t-butyl methyl ether as a
solvent [1].

The low-cost liquid lipase Eversa Transform, a variant lipase from Thermomyces lanugi-
nosus, was applied by Vieira et al. [2] in the hydrolysis of acylglycerols from soybean oil
deodorizer distillate to free fatty acids in high yields, and for the simultaneous esterifica-
tion/transesterification of soybean oil deodorizer distillate to fatty acid ethylesters in high
yields using ethanol as an acyl acceptor.

A simple mathematical tool has been developed by Rodrigues de Sousa et al. [3] for
optimizing the syntheses of short, medium or long-chain esters from acids and alcohols
using immobilized lipase and solvent-free systems.

The substrate scope, crystal structure, kinetic properties and thermostability of the
recombinantly expressed L-amino acid oxidase from Pseudoalteromonas luteoviolacea have
been determined by Savino et al. [4]. The high expression level, ease of purification, high
thermostability and activity on many different L-amino acids make this enzyme not only
attractive for the synthesis of enantiopure amino acids or related compounds but also for
detection, due to its high catalytic efficiency on a subset of amino acids [4]. The determined
crystal structure provides a solid basis for engineering tailor-made variants of L-amino acid
oxidase for activity on specific amino acids [4].

The hydrogen-dependent carbon dioxide reductase from Thermoanaerobacter kivui was
immobilized in a redox polymer on a cathode, and its activity was investigated by Ruth
et al. [5] regarding H2 formation from electricity. A 340-fold increase in the current density
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has been demonstrated in a rotating disk electrode system using cobaltocene-functionalized
polyallylamine as a redox polymer paired with the hydrogen-dependent carbondioxide
reductase from T. kivui, which resulted in significantly higher maximum current densities
than for previously reported systems [5].

Cell-free protein synthesis has been used by Rolf et al. [6] as a valuable tool for simplify-
ing and accelerating the identification of novel non-heme Fe2+/α-ketoglutarate-dependent
dioxygenases, which can be applied for the selective hydroxylation of L-lysine in the 3- and
4-position in whole-cell biotransformations. Six novel and yet uncharacterized non-heme
Fe2+/α-ketoglutarate-dependent dioxygenases from Kineococcus rhizosphaerae, Mycobac-
terium interjectum, Photorhabdus luminescens, Burkholderia sp. MSMB617WGS, Burkholderia
pseudomallei and Burkholderia plantarii with suitable activities have been found and extend
the range of enzymes for catalyzing the hydroxylation of L-lysine, whereby further in-
vestigations will be of interest for providing the absolute configuration of the resulting
3-hydroxy-L-lysine and 4-hydroxy-L-lysine [6].

The whole genome sequencing of three Streptomyces sp. strains, different identification
approaches for transaminases and laccases and the functional expression of the correspond-
ing genes have been combined by Ferrandi et al. [7]. They enabled the characterization
of a novel transaminase and a novel laccase, which were shown to be exceptionally ther-
mostable. The novel transaminase Sbv333-TA was demonstrated to have a broad substrate
scope, including β-ketoesters such as methyl acetoacetate and ethyl benzoylacetate, while
improved activity in the presence of the organic solvent acetonitrile was found for the novel
laccase Sbv286-LAC [7].

The substrate scope of silicatein-α, a hydrolytic enzyme from siliceous marine sponges
of interest for biocatalytic silylation, has been investigated by Sparkes et al. [8] in a series of
condensation reactions of triethylsilanol with various aromatic and aliphatic alcohols. The
preference of silicatein-α for the silylation of the S-enantiomers of aliphatic alcohols and the
high degree of conversion in the nonpolar solvents n-octane and toluene are good starting
points for further evolution as valuable biocatalysts for the synthesis of organosiloxanes [8].

Laccases from Trametes versicolor, Myceliophthora thermophila, Bacillus subtilis and
laccase-like multicopper oxidase from T. thermophila have been investigated by Milovanovic
et al. in the oxidation of 1,4-dihydropyridine-based hexahydroquinolines to the correspond-
ing pyridine-containing tetrahydroquinolines and in the oxidation of 1,4-dihydropyridine-
based decahydroacridines to the corresponding pyridine-based octahydroacridines [9].

Phosphotransferases, phosphohydrolases, phosphorylases and phosphomutases are
powerful biocatalysts for highly selective and efficient phosphorylation reactions, and
their applications have been highlighted by Wohlgemuth [10], including useful phospho-
ryl donors and systems for their regeneration, reaction engineering, product recovery
and purification. Examples of valuable analytical and synthetic applications of phospho-
rylation biocatalysts are provided, which illustrate the resource efficiency of highly selective
phosphorylation reactions proceeding with complete conversion [10].

Biocatalysts, including both protein-based and nucleic acid-based enzymes, can also
be utilized for constructing catalyst-based biomolecular logic gates that can read various
molecular inputs and provide chemical, optical, and electrical outputs. Progress in con-
structing logic gates that take advantage of biological catalysts is discussed by Winston and
Boehr [11].

The biological synthesis of biodegradable short-chain-length, medium-chain-length
and short-medium-chain-length polyhydroxyalkanoates and their applications and recy-
cling have been discussed by Dalton et al. [12].

We would like to thank all of the authors for their contributions and the editorial staff
at Catalysts, particularly Pamela Li, M.Sc., Section Managing Editor, and Ellia Zhang, Assis-
tance Editor, for their efforts. We hope that you enjoy this Special Issue to commemorate
the 10-Year Anniversary of Catalysts.
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