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Abstract: Hydrogenolysis via targeted depolymerization of C–O linkages is a techno-economic
beneficial process for converting lignin into highly valuable chemicals and clean fuels. In this
work, a macroporous silicalite-1 (S-1) array-supported Ru-Ni metallic phosphide composite (Ru-
Ni12P5/S-15) was prepared as a catalyst and hydrogenolysis activity under relative mild conditions
was investigated using a series of compounds containing ether linkages as lignin-related model
compounds. The Lewis acid sites originating from the unreduced Ru species and the macroporous
geometry of S-1 significantly influenced hydrogenolysis activity and product selectivity. Analysis
of the mechanism demonstrated that both the aryl ether and aliphatic ether linkages were directly
hydrogenated over Ru-Ni12P5/S-15. 2D-HSQC-NMR spectroscopy demonstrated that the ether
linkages of lignin were efficiently cleaved by Ru-Ni12P5/S-15. Furthermore, the obtained liquid
hydrogenolysis products are high value-added chemicals used for pharmaceutical production and
can be facilely tuned via the reaction conditions.

Keywords: hydrogenolysis; macroporous array; C–O linkages; lignin; model compounds

1. Introduction

The depletion of oil reserves and environmental issues relevant to the use of traditional
fuels has prompted the manufacture of chemicals and fuels from renewable sources [1]. The
conversion of lignocellulosic biomass into chemical raw materials is particularly significant
to diminish dependence on traditional fuels [2].

Lignin, a conceivable lignocellulosic biomass for the production of aromatic chem-
icals and fuels [3,4], consists of phenylpropane-related structural units linked by bridge
linkages [5]. However, more than 80% of bridge linkages are etheric, implying that the
depolymerization of ether linkages is a critical step for a higher value-added exploitation
of lignin. Notably, 4–O–5 bonds are highly stable due to the higher bond dissociation
energy as compared to α–O–4 and β–O–4 linkages. Thus, the efficient cleavage of 4–O–5
bonds remains a significant challenge to the biorefinery industry. Usually, diphenyl ether is
selected as a lignin-related probe compound to investigate potential catalysts for cleaving
4–O–5 linkages.

Hydrogenolysis via targeted depolymerization of C–O linkages is a techno-economic
beneficial process for the conversion of lignin to highly valuable chemicals and clean fuels
as compared to pyrolysis, oxidation degradation, and gasification [6,7].

Various hierarchically macroporous materials have been investigated as potential cata-
lysts to enhance the diffusion of reactants and products in liquid-phase reactions and also
reduce the distance among molecules to improve catalytic activity and selectivity [8,9]. The
improved reactant-catalyst contact efficiency of three-dimensional ordered macroporous
materials has enhanced the performance of gas phase-related reactions [10,11].
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However, the use of macroporous materials as catalysts for macromolecular reac-
tants, such as lignin and thermal extractions of coals, in liquid-phase reactions has been
relatively limited. Recently, Luo et al. found that a hierarchical macro/mesoporous
Ni/ASA-supported catalyst facilitated the transport and hydrodepolymerization of lignin,
resulting in a yield of ca. 43 wt% for liquid hydrocarbons [12].

Transition metal phosphides are widely applied as catalysts for the hydrotreatment
of bio-oils [13], whereas monometallic phosphides are typically used as catalysts under
harsh reaction conditions, such as high temperatures and H2 partial pressure [14,15]. The
incorporation of noble-metal like Ru, one of the cheapest noble metals, can efficiently
enhance the performance of transition metal phosphides and simultaneously moderate the
reaction conditions [16–18]. However, the dominant disadvantage of metal-based catalysts
is the inevitable deactivation due to carbon deposition and metal particles sintering [19–22].
It is reasonable to believe that catalysts with a macroporous structure should diminish
transport limitations and possess better coke-resistant ability, and thus, could extend the
catalysts lifetime [23].

In the present work, a macroporous silicalite-1 (S-1) array-supported Ru-Ni metallic
phosphide composite (Ru-Ni12P5/S-15) was prepared and employed for the depolymer-
ization of lignin and C–O linkages containing lignin-related compounds. The results
demonstrated that the electron-enriched Ruδ+ species and the macroporous array-confined
effect promoted the hydrogenolysis of C–O linkages and hydrodeoxygenation even un-
der relative mild conditions, indicating that the geometry of the porous structure plays
a pivotal role in macromolecule-related reactions. Macromolecular reactants can be effi-
ciently captured using a fishing net-like macroporous array, and preferentially undergo
hydrodeoxygenation/hydrogenation due to the higher concentration of active hydrogen
species in the interior of the microporous. Moreover, the liquid hydrogenolysis products
from lignin are important pharmaceutical precursors and can be obtained by facilely tuning
the reaction conditions. Our present work indicates a feasible strategy for the production
of high value-added chemicals from the lignin and thermal extractions of coals.

2. Results and Discussion
2.1. Characterization of the Catalysts

The particle size of the solid S-1 nanocubes was about 300 nm, as shown in Figure 1a.
After three days of recrystallization, the shells of the nanocubes were punctuated with
macropores of about 200 nm in diameter (Figure 1b). As the recrystallization time was
extended to four days, the macroporous nanocubes formed short-range ordered aggregates
(Figure 1c), which was attributed to continuous desilication and recrystallization during
the alkali treatment process [24]. Moreover, as displayed in Figure 1d,e, a highly ordered
macroporous array-like structure formed when the recrystallization time was prolonged
to five days. TEM (Figure 1f) further confirmed that the macropores were hollow and
interconnected. As compared to S-1, the macroporous array structure of S-15 allowed for
macromolecule-related reactions in the liquid phase.
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Figure 1. Scanning electron microscopy images of (a) S-1, (b) S-13, (c) S-14 and (d,e) S-15; and (f) TEM 
image of S-15. 

As shown in Figures 2a and 3a, the Ni phosphide was successfully loaded into the 
interior cavity of the S-15 structure, as demonstrated by characteristic peaks of the Ni12P5 
phase at ~49.0°, 47.0°, and 38.4° (Figure 2b) [25]. However, Ru phosphide might exist in 
an amorphous form [26] due to the lack of signals of any feature peaks, and thus, was 
denoted as RuPx. In addition, the X-ray diffraction patterns of Ru-Ni bimetallic phosphide 
(Ru-Ni12P5) closely resembles that of Ni12P5, indicating that Ru-Ni12P5 is likely a composite 
of RuPx and Ni12P5. Due to the limitations of the incipient wetness impregnation method, 
P, Ni, and Ru were non-homogeneously distributed on the interior surface of the 
macropores of the S-15 structure, as displayed in Figure 3a–f. Moreover, the distinct dis-
tributions of Ni and Ru further revealed that Ru-Ni12P5 is a composite rather than solid 
solution. 

 
Figure 2. (a) TEM-EDS results of Ru-Ni12P5/S-15 and (b) XPD patterns of catalysts. 

Figure 1. Scanning electron microscopy images of (a) S-1, (b) S-13, (c) S-14 and (d,e) S-15; and (f) TEM
image of S-15.

As shown in Figures 2a and 3a, the Ni phosphide was successfully loaded into the
interior cavity of the S-15 structure, as demonstrated by characteristic peaks of the Ni12P5
phase at ~49.0◦, 47.0◦, and 38.4◦ (Figure 2b) [25]. However, Ru phosphide might exist in
an amorphous form [26] due to the lack of signals of any feature peaks, and thus, was
denoted as RuPx. In addition, the X-ray diffraction patterns of Ru-Ni bimetallic phosphide
(Ru-Ni12P5) closely resembles that of Ni12P5, indicating that Ru-Ni12P5 is likely a composite
of RuPx and Ni12P5. Due to the limitations of the incipient wetness impregnation method, P,
Ni, and Ru were non-homogeneously distributed on the interior surface of the macropores
of the S-15 structure, as displayed in Figure 3a–f. Moreover, the distinct distributions of Ni
and Ru further revealed that Ru-Ni12P5 is a composite rather than solid solution.
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Figure 3. (a–f) TEM mapping of Ru-Ni12P5/S-15. 

The surface chemical states of Ru, Ni, and P in Ru-Ni12P5/S-15 are presented in Figure 
4. In the Ni12P5 phase, four apparent Ni (2p3/2) peaks centered at 862.3, 858.5, 856.5 and 
853.1 eV were assigned to satellite, Ni3+, Ni2+, and Niδ+ species [27,28], respectively, as dis-
played in Figure 4a. Similar to amorphous RuPx, two Ru (3p3/2) peaks with binding ener-
gies of 466.1 and 462.6 eV, respectively, were attributed to Ru4+ and Ruδ+ species [29] (Fig-
ure 4b). Previous studies found that these metal species with a very small charge (δ ≈ 0) 
in metallic phosphides, especially the Ruδ+ species, facilitates hydrogen activation [26,30]. 
Notably, no apparent electron transfer between Ru and Ni species was detected in Ru-Ni 
metal phosphide, confirming that Ru-Ni12P5 is a composite. 

 
Figure 4. X-ray photoelectron spectrum of Ru-Ni12P5/S-15 in (a) Ni 2p and (b) Ru 3p regions. 

Figure 3. (a–f) TEM mapping of Ru-Ni12P5/S-15.

The surface chemical states of Ru, Ni, and P in Ru-Ni12P5/S-15 are presented in
Figure 4. In the Ni12P5 phase, four apparent Ni (2p3/2) peaks centered at 862.3, 858.5, 856.5
and 853.1 eV were assigned to satellite, Ni3+, Ni2+, and Niδ+ species [27,28], respectively,
as displayed in Figure 4a. Similar to amorphous RuPx, two Ru (3p3/2) peaks with binding
energies of 466.1 and 462.6 eV, respectively, were attributed to Ru4+ and Ruδ+ species [29]
(Figure 4b). Previous studies found that these metal species with a very small charge (δ≈ 0)
in metallic phosphides, especially the Ruδ+ species, facilitates hydrogen activation [26,30].
Notably, no apparent electron transfer between Ru and Ni species was detected in Ru-Ni
metal phosphide, confirming that Ru-Ni12P5 is a composite.
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According to the NH3-TPD results (shown in Figure 5), the acid properties of the
catalysts are listed in Table 1. As displayed in Figure 5, only RuPx/S-15 exhibits an apparent
NH3 desorption peak at ~450 ◦C which might be attributed to Lewis acid sites originating
from the unreduced Ru species [31]. Due to the low content of Ru, the NH3-TPD curve
of Ru-Ni12P5/S-15 is closely similar to that of Ni12P5/S-15. However, the total acidity of
Ru-Ni12P5/S-15 as a composite is much higher than those of monometallic phosphides, i.e.,
Ni12P5/S-15 and RuPx/S-15.
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Table 1. Acid sites analysis by NH3-TPD.

Sample Ni12P5/S-15 RuPx/S-15 Ru-Ni12P5/S-15

NH3 acidity/mmol·g−1 0.19 0.13 0.25

2.2. Hydrogenolysis of Diphenyl Ether
2.2.1. Effect of a Porous Structure on Catalytic Performance

The activity of the catalyst Ni12P5/S-1 for depolymerization of diphenyl ether with
hydrogenolysis conversion was negligible at only 0.5% (Table 2, entry 1). As compared to
Ni12P5/S-1, the catalytic reactivity of RuPx/S-1 for hydrogenolysis of diphenyl ether was
much higher with a conversion rate of 66.5% (Table 2, entry 2). However, when employing
Ru-Ni12P5/S-1 as a catalyst, the hydrogenolysis conversion rate and benzene yield were
94.7% and 40.5%, respectively (Table 2, entry 3). These results indicate that Lewis acid sites,
i.e., unreducted Ru species (as illustrated by NH3-TPD results in Figure 5), play a pivotal
role in the hydrogenolysis of C−O linkages.
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Table 2. Hydrogenolysis of diphenyl ether over different catalysts.

Entry Catalyst Conv. (%)

Yield (%)
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2 RuPx/S-1 66.5 20.4 1.3 17.4 0.6 1.2
3 Ru-Ni12P5/S-1 a 94.7 40.5 3.6 21.8 3.1 2.7
4 Ru-Ni12P5/S-13 97.4 45.3 7.0 12.6 2.6 1.7
5 Ru-Ni12P5/S-14 97.3 50.2 8.0 3.1 3.1 1.9
6 Ru-Ni12P5/S-15

b 99.4 57.2 13.8 1.3 0.3 0.2
a SBET(S-1) = 482 m2·g−1 [24]; b SBET(S-15) = 389 m2·g−1 [24].

Importantly, the macroporous structure of a support also has a significant influence
on hydrogenolysis (Table 2, entries 3–6). A previous study illustrated that catalysts with
larger pores favor the hydrodepolymerization of kraft lignin in bio-oil production [32]. The
use of the highly ordered macroporous array S-15 as a support afforded the maximum
hydrogenolysis conversion rate and benzene yield of 99.4% and 57.2%, respectively (Table 2,
entry 6) and resulted in a minimum yield of oxygen-containing products, including phe-
nol, cyclohexanol, and cyclohexanone. The interconnected macroporous array with pore
diameters of ~200 nm promotes mass transport [33–35] and acts as a “fishing net” that
captures lignin macromolecules in the liquid phase. Subsequently, the captured lignin
macromolecules moved into the interior of the macropores and were hydrogenolyzed into
smaller molecular products. Notably, even though S-1 has a larger total surface area than
S-15, the corresponding supported Ru-Ni12P5 exhibited distinct reactivity for the catalytic
hydrogenolysis of diphenyl ether (Table 2, entries 3 and 6). This phenomenon is supposed
to be related to pore confined-like effect, as illustrated in Figure 6. It can be seen that the
concentration of active hydrogen species in the interior of the macroporous array S-15 was
greater than that on the surface of S-1, which might account for the preeminent hydrodeoxy-
genation selectivity of Ru-Ni12P5/S-15. Moreover, the highly ordered macroporous array
S-15 also facilitated hydrogenation with a maximum cyclohexane yield of 13.8%.
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2.2.2. Effect of H2 Partial Pressure on Catalytic Performance

The initial H2 partial pressure had a significant effect on the hydrogenolysis of per-
formance (Figure 7). The hydrogenolysis conversion of diphenyl ether was merely 16.9%
under an initial H2 partial pressure of 0.2 MPa, but increased to 99.2% at 0.6 MPa, while the
benzene yield achieved a maximum value of 57.2%. However, the phenol and cyclohexanol
yields sharply decreased to 1.3%, while the cyclohexane yield increased to 13.8%. As the
initial partial pressure was continuously increased to 1.0 MPa, the hydrogenolysis conver-
sion rate and cyclohexane yield remained nearly unchanged, whereas the benzene yield
dropped dramatically to 34.5%, likely due to subsequent hydrodecyclization of benzene-
derived hydrogenation products to afford paraffin (C1-C6) [36], which is less soluble in the
aqueous phase. These results demonstrate that increasing the H2 partial pressure did not
accelerate the hydrogenolysis reaction [26].
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2.3. Reaction Mechanism

To obtain further insights into the hydrogenolysis mechanism, 3-phenoxytoluene was
selected as a probe compound. As shown in Figure 8, metal phosphides, as a bifunctional
catalyst, have excellent potential for cleaving C–O linkages [37,38]. Over metal phosphides,
H2 can be heterolytically split into H– and H+ species [39], which become subsequently
trapped by Lewis acid sites (e.g., Ruδ+ and Niδ+) [40,41], while the negatively charged P and
PO species form Brønsted sites (PO–H) [40,42,43] are notably much less active than Lewis
acid sites in hydrogenolysis and hydrodeoxygenation [40,44], indicating that H– species
are essential for C–O cleavage. Essentially, the 4–O–5 linkage is not easily cleaved, even in
thermal strong acid solution [45]. However, due to the complexity of the chemical reaction,
there is presently no clear atomistic description for the hydrogenolysis of C–O linkages on
metal phosphides. Even so, we centered our endeavors on the reaction pathways that were
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consistent with the catalytic experiments, while not denying the existence of other complex
reaction pathways.
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Figure 8. Time profiles of hydrogenolysis of 3-phenoxytoluene over Ru-Ni12P5/S-15. CHX-
derivs: Cyclohexene-derivatives, including cyclohexane, cyclohexanol, and cyclohexanone; MCH-
derivs: methylcyclohexane-derivatives, including methylcyclohexane, 3-methylcyclohexanol and
3-methylcyclohexanone.

Accordingly, possible reaction pathways for the catalytic hydrogenolysis of 3-phenoxy
toluene over Ru-Ni12P5/S-15 are proposed in Scheme 1. As demonstrated by the time
profile of the product evolution presented in Figure 8, during hydrogenolysis, route 2 is
thermodynamically favorable as compared to route 1. In route 2, 3-phenoxytoluene, an
unsymmetrical diaryl ether, is preferentially initially hydrogenolyzed by H− attacking
substituted aromatic carbon atom at the electron-deficient benzene-ring side with Lewis
sites (e.g., unreducted Ru species) assistance [46], resulting in the generation of intermediate
im22 and benzene via intermediate im2. Subsequently, intermediate im22 abstracts H+ from
Brønsted sites or other H-donor, such as H2O, leading to the formation of m-cresol. As a
dominant intermediate product, m-cresol was sequentially dehydroxylated in the formation
of toluene via the thermodynamically favorable intermediate im23, which resulted from
H− attacking hydroxyl-substituted aromatic carbon atom. Concomitantly, a slight amount
of m-cresol was hydrogenated to 3-methylcyclohexanol as a by-product.
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2.4. Catalytic Hydrogenolysis of Other Model Compounds

Encouraged by the efficient depolymerization of diphenyl ether and 3-phenoxytoluene,
hydrogenolysis of other C–O linkages containing lignin-related compounds over Ru-
Ni12P5/S-15 was evaluated. As presented in Table 3, similar to 3-phenoxytoluene, 4,4’-
oxybis(methylbenzene) was depolymerized via the direct hydrogenolysis of aromatic ether
linkages, resulting in the formation of toluene and p-cresol without detectable hydrogena-
tion products (Table 3, entry 1). Phenol, a vital intermediate resulting from hydrogenolysis
of aryl ether linkages, was efficiently dehydroxylated and hydrogenolyzed despite the
bond dissociation energy of the C–O bond as high as 463.6 ± 4.2 kJ/mol [47] (Table 3, entry
2). As shown in entries three–five in Table 3, all of the probe compounds were directly
hydrogenolyzed via selective cleavage of α–C–O linkages, which all resulted in toluene
as the most dominant product. In addition to toluene, phenylmethanol and phenol were
suspected products from the direct hydrogenolysis of dibenzyl ether and benzyl phenyl
ether, respectively. However, successive dehydroxylation from phenol led to the formation
of benzene with a yield of 20.3%, while that from benzyl alcohol afforded more toluene,
reaching a maximum yield of 88.0%.
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Table 3. Hydrogenolysis of different model compounds over Ru-Ni12P5/S-15.

Entry Substrate Conv. (%)

Yield (%)
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The hydrogenolysis products of lignin, as determined by HPLC-TQMS, are listed
in Table 4. Notably, the yields of almost all products had increased over an initial six
hours, revealing that cleavage of the ether linkages of lignin was incomplete for the initial
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three hours over Ru-Ni12P5/S-15, in accordance with the results exhibited in Figure 9.
When further prolonging the hydrogenolysis time to 12 h, the yields of all methoxyl-
containing products remarkably decreased to zero, whereas those of 4-methylcatechol and 3-
methylcatechol markedly increased to 103.6 and 25.3 µg, respectively. These results suggest
that polyphenolics might be produced by hydrogenolysis of the methoxyl-containing
moieties of lignin. Moreover, these findings demonstrate that different higher value-
added compounds, such as vanillin and 4-methylcatechol, can be obtained by facilely
tuning the reaction conditions. Vanillin is an important pharmaceutical intermediate with
antiepileptic and antibacterial activities that is used for the synthesis of drugs for treatment
of hypertension and heart disease [51]. Acting as a hapten and an antimicrobial as well
as an antioxidant, 4-methylcatechol has a strong antiplatelet effect that is useful for the
treatment of diabetic neuropathy and tumors [52,53].

Table 4. The predominant products from the hydrogenolysis of lignin.

Products Structure
Yield (µg)

3 h 6 h 12 h

Vanillin
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3. Materials and Methods
3.1. Chemicals and Reagents

Tetrapropylammonium hydroxide (TPAOH; 25 wt% in water), RuCl3·xH2O (Ru,
36.0–40.0%), and dealkaline lignin were obtained from Macklin Biochemical Co., Ltd..
Sodium citrate dihydrate (99.0%), tetraethyl orthosilicate (>99%), bibenzyl ether (95.0%),
phenol (99.0%), anisole (99.0%), diphenyl ether (≥99.9%), benzyl methyl ether (99.0%), ethyl
acetate (99.5%), 3-phenoxytoluene (98.0%), and dodecane (>99.0%) were got from Aladdin
Biochemical Technology Co., Ltd. Ni(NO3)2·6H2O was obtained from Oukai Chemical Co.,
Ltd., benzyl phenyl ether (98.0%) from Energy Chemicals Co. Ltd., and di-p-tolyl ether
(99.0%) from Alfa Chemical Co., Ltd.
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3.2. Synthesis of S-1 and Macroporous S-1

S-1 and macroporous S-1 were prepared using a previously reported procedure with
slight modifications [24]. In brief, tetraethyl orthosilicate was vigorously mixed with
TPAOH (with a molar composition of 1 SiO2:0.2 TPAOH:37 H2O) until the formation of a
clear solution. Afterward, the solution was heated in a 100 mL polytetrafluoroethylene-
lined autoclave at 453 K for 3 days. After cooling to ~300 K, the solid precipitate was
centrifuged and washed, then dried at 383 K, followed by calcination at 823 K to remove
the templates. Finally, a white powdered product (S-1) was obtained.

Then, S-1 (0.4 g) was added to 4 mL of alkaline solution (TPAOH + NaCl) and heated
in a polytetrafluoroethylene-lined steel autoclave at 453 K while stirring for 3–5 days. The
solid was obtained by filtration, thoroughly washed, and then dried at 383 K. Finally,
the resulting product was calcined at 823 K for 6 h to obtain macroporous S-1x, where x
denotes recrystallization time. For example, “S-15” indicates that the macroporous S-1 was
synthesized by recrystallization of solid S-1 at 453 K for 5 days.

3.3. Preparation of Catalysts

In brief, S-1 zeolite or macroporous S-1 was impregnated with a solution of NaH2PO2,
RuCl3·xH2O, NiCl2·6H2O, and sodium citrate, then pyrolysized at 773 K under a vacuum
after drying at 383 K. Finally, the catalysts were passivated in N2 at room temperature. For
each catalyst, the molar ratios of nP/nM (M = Ru and/or Ni) and nNi/nRu were 6/1 and
the total load was 10 wt%.

3.4. Characterization of Catalysts and Supports

X-ray diffraction patterns were obtained with a SmartLab SE instrument. X-ray photo-
electron spectra were obtained using an ESCALAB instrument. Energy-dispersive X-ray
spectroscopy and transmission electron microscopy (TEM) images were obtained using a
Tecnai™ G2 F20 transmission electron microscope.

3.5. Hydrogenolysis of Model Compounds

In a typical hydrogenolysis reaction, fresh catalyst (0.003 g), a model compound
(0.2 mmol), and water (5 mL) were put into a reactor, which was then charged with 0.4 MPa
N2 and 0.6 MPa H2 after exclusion of air. Reactions were conducted at 250 ◦C for a
predetermined time while vigorously stirring. The reaction was terminated by cooling
the reactor to ambient temperature using ice water. Ethyl acetate was used to retrieve
the organic products from the reaction mixture. Quantitative analysis of the organic
products was performed on a GC-FID employing n-dodecane as an internal standard. The
hydrogenolysis conversion rate and product yield were calculated using the following
equations.

Conversion of reactant% =
moles of reactant reacted
moles of reactant supplied

× 100 (1)

Yield of product (x)% =
moles of C atoms in product (x)

moles of C atoms in reactant
× 100 (2)

3.6. Hydrogenolysis of Lignin

Rather severe reaction conditions were employed due to the less depolymerization
reactivity of lignin than model compounds. Typically, the catalyst (0.1 g), dealkaline lignin
(0.1 g), and water (5 mL) were put into a reactor, which was sequentially charged with
10 bar H2 after exclusion of air with H2. Thereafter, the reaction was conducted at 280 ◦C
for 3–12 h with vigorous stirring. After termination of the reaction, the hydrogenolysis
products were retrieved with ethyl acetate. The liquid products in the aqueous and organic
phases were analyzed quantitatively by HPLC-TQMS with the external standard method.
The corresponding residues were characterized by two-dimensional nuclear magnetic
resonance heteronuclear single quantum coherence (2D-NMR-HSQC) spectroscopy.
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4. Conclusions

In this study, a macroporous S-1 array-supported Ru-Ni metallic phosphide composite
was fabricated and introduced for the hydrogenolysis of lignin and C–O linkages containing
lignin-related compounds. The unreduced Ru species-originated Lewis acid sites and the
geometrical structure of the macroporous support significantly influenced the hydrogenol-
ysis conversion rate and product selectivity. Notably, both the aryl ether and aliphatic
ether linkages favor direct hydrogenation in the initiation reaction over Ru-Ni12P5/S-15.
Furthermore, 2D-HSQC-NMR spectroscopy demonstrated that Ru-Ni12P5/S-15 efficiently
depolymerized the C–O linkages of lignin. Different higher value-added products suitable
for pharmaceutical production can be obtained by facilely tuning the reaction conditions.
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