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Abstract: Bismuth vanadate (BiVO4, BV) is a widely explored photocatalyst for photo(electro)chemical
applications, but its full photocatalytic potential is hindered by the fast recombination and low mobil-
ity of photogenerated charge carriers. Herein, we propose the photodeposition of different amounts
of Prussian blue (PB) cocatalysts on the surface of monoclinic BV to obtain BV-PB composite photo-
catalysts with increased photoactivity. The as-prepared BV and BV-PB composites were characterized
by an array of analytic techniques such scanning eletron microscopy (SEM), transmission eletron mi-
croscopy (TEM), X-day diffraction (XRD), and spectroscopic techniques including Fourier-transform
infrared spectroscopy (FTIR), diffuse reflectance spectroscopy (DRS), electrochemical impedance
spectroscopy (EIS), photoluminescence (PL), and Raman spectroscopy. The addition of PB not only
increases the absorption of visible light, as indicated by DRS, but also improves the charge carri-
ers’ transfer across the photocatalysts/solution interface and hence reduces electron-hole (e−-h+)
recombination, as confirmed by EIS and PL measurements. Resultantly, the BV-PB composite photo-
catalysts with optimum PB loading exhibited enhanced Cr(VI) photoreduction efficiency as compared
to pristine BV under visible light illumination from low-power blue light-emitting diodes (LEDs),
thanks to the cocatalyst role of PB which mediates the transfer of photoexcited conduction band
(CB) electrons from BV to Cr(VI) species in solution. Moreover, as compared to pristine BV and
BV + H2O2, a drastic increase in the methylene blue (MB) photo-oxidation efficiency was observed
for BV-PB in the presence of a minute quantity of H2O2 due to a synergic effect between the photo-
catalytic and Fenton-like processes. While pure BV photodegraded around 70% of MB dye within
120 min, the BV-PB/H2O2 and BV/H2O2 system could degrade almost 100% of the dye within 20 min
(kobs. = 0.375 min−1) and 40 min (kobs. = 0.055 min−1), respectively. The practical approach employed
in this work may pioneer new prospects for synthesizing new BV-based photocatalytic systems with
low production costs and high photoredox efficiencies.

Keywords: photocatalysis; photo-fenton; BiVO4; Prussian blue; cocatalyst; water purification

1. Introduction

With increasing industrialization and anthropogenic activities across the globe, fresh-
water bodies have been adversely affected by the uncontrolled contamination with many
toxic substances, including both organic (dyes, pharmaceuticals, pesticides, etc.,) and in-
organic contaminants (heavy metal ions). The presence of these toxic dyes and especially
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heavy metal toxins in aqueous environments has become a major global concern that needs
to be addressed sooner [1–3]. For example, Cr(VI), which exists in different forms (Cr2O7

2−,
HCrO4

−, H2CrO4) in aqueous media [4], is highly toxic/carcinogenic, and even poses
a threat of genetic modification in aquatic organisms and human beings [5] and is thus
considered highly obnoxious and lethal by World Health Organization with a maximum
permissible concentration of 0.05 mg/L in aqueous environments [6]. Hence, it is important
to find out cost-effective methods to remove hexavalent chromium from water bodies.
Consequently, various treatment methods have been introduced for Cr(VI) removal in-
cluding adsorption [7,8], flocculation [9], chemical precipitation, reverse-osmosis [10,11],
electro-coagulation [12], biological treatment [13], membrane separation [11,14], electro-
chemical treatment [15,16], ion exchange [17] and photocatalytic reduction processes [18,19].
Similarly, the organic molecules present in aqueous media can be effectively oxidized using
advanced oxidation processes (AOPs) which generate highly reactive oxidant species (such
as superoxide O2

•− and super hydroxyl •OH radicals) for (photo)oxidation of organics [20].
Since Cr(III) is considered to be less toxic and since it can be easily removed as

chromium hydroxide via precipitation using conventional techniques of water treatment,
photocatalytic reduction of Cr(VI) to Cr(III) is considered a viable strategy to combat Cr(VI)
pollution [1,18,19]. This process relies on the transfer of photogenerated electrons from the
conduction band of photocatalysts to the Cr(VI) species solution, thereby reducing them to
the less toxic Cr(III) form [18]. Unfortunately, the most studied wide-bandgap (Eg > 3 eV)
semiconductor photocatalysts (such as ZnO and TiO2) require UV light (which is less than
4% of the solar spectrum) for their photoexcitation and consequent photo(electro)chemical
applications, and this practical limitation has attracted researcher’s interest to develop
visible light active photocatalysts able to use the 45% visible light, so visible light driven
photocatalysts are essential to be studied for photocatalytic applications [21–25].

Among the visible light photocatalysts, bismuth vanadate (BV) has gained greater
attention due to its narrow band gap (2.4–2.6 eV) and photo(chemical) stability [26]. BV
has been widely studied for environmental pollutant degradation, water oxidation, water
splitting, and biosensors, among other applications [27–30]. However, BV suffers from fast
electron-hole (e−-h+) recombination and high resistance to charge transfer to the target
species in the solution. To overcome these limitations and bring efficacy in the photoelectro-
chemical applications of BV, several strategies have been employed, including the loading
of metal nanoparticles or metal complexes on BV, hetero-junctions formation [23,26,31–35],
metal-ions doping [36–38], and control of BV morphology [39–42].

Prussian blue (PB) is an ancient dye having chemical formulae of Fe4[Fe(CN)6]3 with
three Fe(II) in hexa-coordination with CN and the Fe(CN)6 octahedral is then combined with
four Fe(III) in three-dimensional extended Fe(III)−N≡C−Fe(II)−C≡N−Fe(III) linkages,
leading to a unit cell with cubic lattice structure [43]. PB is a mixed-valence complex with
different ligand-field-strength as a result of the ligand donor environment, where nitrogen-
coordinated high-spin d5 (S = 5/2) ferric sites and carbon-coordinated low-spin d6 (S = 0)
ferrous sites favor eminent catalytic and electro-magnetic properties [44]. PB-based nano-
materials have been previously explored for (photo)electrochemical applications in con-
junction with semiconductor photocatalysts such as TiO2 and g-C3N4 [18,44–49]. The often-
enhanced photoactivity of such systems highlights the transfer of photo-generated electrons
from the CB of semiconductor nanomaterials towards the deposited PB cocatalyst layer,
thereby reducing PB to Prussian white (PW). The in-situ produced PW species may catalyti-
cally transfer electrons to the target species (metal-ions, organic molecules/pollutants) in the
solution causing their photoreduction [18]. Similarly, Prussian blue analogues (PBA) have
been found to improve the water oxidation efficiency of semiconductor photocatalysts [50–52].

Nevertheless, PB/semiconductor systems other than UV-active TiO2-based systems
and with high activity in the visible light range remain understudied for photocatalytic
applications such as the photoreduction of Cr(VI) and oxidation of organic molecules.
Therefore, we present, for the first time, a facile in-situ photodeposition methodology to
obtain PB-decorated BV (BV-PB) photocatalysts employing low-cost blue-emitting LEDs
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(output 460 ± 10 nm (see Figure S1), total electric power = 1.26 W, light intensity output
at 460 nm = 2.5 mW/cm2) as illumination source [25]. LEDs have emerged as low-cost,
durable, and safer alternatives to conventional lamps for use in photocatalytic applica-
tions [53–55], with inherent advantages such as high efficiency in terms of current-to-light
emission at relatively lower operational temperature, longer life, small size, and tailorable
shapes and, above all, their operation using direct current power supply [56]. The BV-PB
system presented herein extended absorption in the visible region, reduced e−-h+ recombi-
nation, and improved photoactivity towards the mitigation of both organic (photooxidation
of MB dye) and inorganic (photoreduction of Cr(VI)) pollutants. Finally, the mechanisms of
charge transfer were discussed in detail.

2. Results and Discussion
2.1. Modification of BV with PB

The BV photocatalyst powders were surface modified with PB employing the photo-
deposition methodology reported by Tada and co-workers [57]. This method utilizes
[Fe(CN)6]3− and Fe(III) salts as the molecular precursors and is based on the photo-
reduction of [Fe(CN)6]3− to [Fe(CN)6]4− by the photo-excited electrons in the conduction
band (CB) of photocatalyst (BV). The presence of Fe3+ cations facilitates the resulting re-
duced specie to initiate the selective nucleation/growth of PB (Fe4[Fe(CN)6]3) over the
surface BV particles, as depicted in the mechanism shown in Figure 1.
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Figure 1. Infographic of the photoexcitation of BV with blue LEDs and the reactions involved in the
photo-deposition of PB on the surface of BV.

The formation of PB over the surface of BV was confirmed by FTIR, EDX, XRD, and
SEM-EDX analysis, as discussed below.

2.2. Morphological Analysis of BV and BV-PB

The comparison of the representative SEM images of BV and BV-PB3 in Figure 2
clearly shows that the bare BV consists of irregular-shaped hyper-branched BV particles
with smooth surfaces (Figure 2a) and their surface roughness drastically increases after
modification with PB (Figure 2b), confirming the successful photo-deposition of additional
particles (PB) on the surface of BV particles. An analysis of the SEM images of the BV and
BV-PB3 samples at different magnifications (Figure S2) confirms that the sample obtained
after centrifugation does not contain isolated PB particles. One explanation is that the photo-
deposition of PB requires the reduction of Fe3+ to Fe2+ by the conduction band electrons of
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BV, and the photo-deposition most occurs on the surface of BV via heterogeneous nucleation.
Furthermore, the SEM images of the different BV-PB samples at the same magnification
show a gradual change in morphology, characterized by an increase in the amount of small
photo-deposited PB particles as a function of the increasing PB loading (Figure S3).
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Figure 2. Representative FEG-SEM images of BV (a) and BV-PB3 (b) samples.

TEM analysis was performed to further study the structural features of BV-PB samples.
A comparison of the TEM images of BV (Figure 3a) and BV-PB samples (Figure 3b) clearly
confirms the formation of smaller than 10 nm PB crystals (average size 8 ± 1 nm) on the
surface of BV in the later sample. The high-resolution TEM (HRTEM) image of the BV-PV
sample (Figure 3c) shows that these small-surface deposited crystals exhibit interplanar
distances of 0.22 nm, ~0.3 nm, and 0.38 nm which closely correspond to the (420), (311),
and (220) crystal planes of PB, respectively (PDF n. 73-687).
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Qualitative nano-EDX analysis of the selected area of the BV-PB sample shown in the
TEM image (Figure S4a) exhibits the X-ray emission lines of Bi, V, O, and Fe (Figure S4b),
confirming the elemental identity of BV and the deposition of Fe. The elemental mapping
(Figure S4c) performed by monitoring the X-ray lines from Bi (Lα1), V (Kα1), O (Kα1),
and Fe (Kα1) clearly shows an overlap between the spatial distribution of these elements
indicating that the BV-PB sample shown in Figure S4a consists of PB-loaded BV and that Fe
(or PB) is present only on the surface of the BV particles.

The bulk elemental composition and PB loading (%Fe content) of the samples were
then studied using SEM-EDX microanalysis (Figure 4). The EDX spectrum of pure BV
exhibits the X-ray lines of Bi, V, and O with an atomic percentage of 17.7 ± 2.7, 17.6 ± 2.9,
and 61.7 ± 7.5 %, respectively, giving a chemical composition BiVO3.6 of the prepared
BV sample. The EXD spectrum of the BV-PB sample (Figure 4a) shows additional X-ray
emission lines at ~0.71 and 6.40 keV corresponding to Lα1 and Kα1 lines of Fe, respectively.
The average Fe content (wt.%) and/or the Fe/Bi ratios obtained from triplicate measure-
ments show a quasi-linear trend with the total nominal concentration of Fe precursors
(K3[Fe(CN)6] + Fe(NO3)3 or (x + y mmol)) added during the reaction (Figure 4b), indicating
efficient and controlled loading of PB over BV.
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Figure 4. Representative EDX spectrum of BV-PB sample deposited as a thin layer on a silicon
wafer (a) and the experimental Fe content (%Fe and Fe/Bi ratio) of different BV-BB samples mea-
sured by EDX analysis as a function of the total Fe precursor mmols (x + y) of K3[Fe(CN)6] and
Fe(NO3)3, added to in the reaction mixture during the photo-deposition process (b). The Si signal in
the (a) comes from the Si wafer used as support.

2.3. Structural and Phase Analysis by XRD

The as-prepared BV and BV-PB samples were analyzed by XRD to further investigate
their phase, crystallinity, and crystalline structure (Figure 5). The XRD pattern of the
pristine BV sample matches perfectly with the standard diffraction patterns of monoclinic-
scheelite BV (PDF no. 75–2480 and 14-0688). The XRD pattern of BV-PB is similar to that
of the BV sample but a careful analysis shows the presence of small diffraction features
around 2θ = 17.5◦ (Figures 5 and S5), indicated by (*) and shown magnified in the inset of
Figure 5, which corresponds to the most intense diffraction peak originated from the (200)
planes of the cubic structure of PB (PDF n. 73-687) [18,58,59], confirming the formation of
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PB, in agreement with HRTEM analysis (Figure 3c). The other weak diffraction features of
PB expected around 35.4◦ (400) and 39.8 (420) could not be observed due to an overlap with
the diffraction peak of BV (Figure S5) and/or the low PB content (Fe < 2%) (Figure 4b) [18],
lower than the detection limit of XRD (2 > %) for mixed materials.
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Figure 5. XRD patterns of BV (middle) and BV-PB3 (top) along with standard diffraction pattern of
monoclinic BV (PDF 75–2480) (bottom). The inset shows a magnified view of the characteristic most
intense diffraction feature of PB (indicated by an * in the diffractogram of BV-PB) at around 2θ = 17.5◦

corresponding to (200) planes of the cubic structure of PB.

2.4. Vibrational Spectroscopic (Raman and FTIR) Analysis

The formation of PB in BV-PB samples was further studied and confirmed by Raman
spectroscopy (Figure 6a) and FTIR spectroscopy (Figure 6b) analysis. Raman spectroscopy
is an appropriate methodology for the analysis of the local structure of materials. As shown
in Figure 6a, the Raman analysis of unmodified BV shows Raman vibrational bands at
124 cm−1, 209 cm−1, 324 cm−1, 367 cm−1, 706 cm−1, and 825 cm−1 (most predominant Ra-
man band), all characteristic of the monoclinic phase of BV [23,60]. The vibrational modes
at around 124 cm−1 and 209 cm−1 are related to the external modes, namely, translational
(Ext), and rotational (Exr) twisting modes, respectively. Indeed, the band at 324 cm−1 and
367 cm−1 are produced from the asymmetric (δas) and symmetric (δs) bending vibration
modes of the V–O bond in the VO4

3− tetrahedra, sequentially. The low-intensity Raman
shoulder at 706 cm−1 and high-intensity band at 825 cm−1 are respectively associated
with asymmetric (νas) and symmetric (νs) stretching vibration modes of the V–O bonds,
which are particularly sensitive to local-structural variations [50]. The Raman bands of
BV-PB samples show the same vibration modes of BV but with a slight shift in band posi-
tions (to lower wavenumbers, cm−1) and a decrease in band intensities and widths after
PB deposition. For instance, the original stretching vibration modes of the V–O bonds
825 cm−1 (BV) shift to 810 cm−1 in BV-BP samples. Similarly, the low-intensity Raman
shoulder at 706 cm−1 disappears and bands at 327 cm−1 and 367 cm−1 merge in BV-PB sam-
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ples. Such spectral changes indicate significant interaction of BV with the photodeposited
PB on its surface.
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Figure 6. Raman spectra (a) and FTIR spectra (b) of BV and BV-PB samples. The shaded areas in
Raman spectra correspond to external modes (yellow) and bending vibrations (gray), respectively.
The shaded area in FTIR spectra corresponds to the signature C≡N stretching vibrations (2081 cm−1)
of PB.

The functional group’s analysis of BV and BV-PB samples was performed using FTIR
data (Figure 6b). The most important main bands in the 545–910 cm−1 region of the
spectra arise from the symmetric stretching (ν1) and antisymmetric (ν3) vibration modes of
metal-oxygen bond in BV (Figures 6b and S6). More clearly, the pure BV sample exhibits a
characteristic strong vibrational band at 736 cm−1, with a shoulder at around 822 cm−1,
ascribed to the asymmetric stretching vibration of metal oxide (V–O) groups in BV (see
Figure S6) [61]. The bands at 3445 cm−1 and 1643 cm−1 are ascribed to the symmetric
stretching and bending vibrations, respectively, of H-O-H molecules (atmospheric moisture)
adsorbed on the surface of the photocatalyst. The small band at 413 cm−1 is ascribed to the
presence of direct Bi–O linkages [62]. Importantly, the FTIR spectra of all BV-PB samples
in Figure 6b exhibit a prominent FTIR band at 2081 cm−1, characteristic of the stretching
vibration of C≡N bonds (vibrational mode) in the cyanometallate network of PB [18]. The
cyanide’s vibrational modes at high wavenumbers (2089–2070 cm−1) are in good agreement
with the reported values for pure PB (2070 cm−1) [63], thus confirming the formation of an
extended network of PB synthesized via Fe(II) –CN–Fe(III) bridging linkages [18].

2.5. Optical Properties

The effect of PB deposition over BV and the optical characteristics of BV and BV-PB
samples were studied using diffuse reflectance UV-visible spectroscopy (DRS) measure-
ments (Figure 7). As shown in the digital images inserted in Figure 7a, the bright yellow
BV sample visually turns greenish upon deposition of PB and BV starts to absorb light
in the visible region at about 500–600 nm. Maximum absorbance is seen at wavelengths
around 470 nm, a value that is comparable with the reported optical band-gap energy
(Eg = 2.5–2.6 eV) of monoclinic BV [23,25,64]. Based on DRS data, the band gap energy (Eg)
of BV was calculated by extrapolating the linear portion of the plot between [F(R)hυ)]2

against hυ to 0 and was found to be 2.6 eV (Figure 7b), in agreement with literature data
for monoclinic BV [23,64].
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Figure 7. Absorbance spectra of BV and BV-PB samples (a) and the corresponding Kubelka-Munk
plot for estimation of the band gap energy (Eg) of BV and BV-PB samples (b). The digital images of
BV and BV-PB have been inserted in Figure 7a for visual comparison.

After the deposition of PB onto the BV surface, the visible light absorption of BV-PB
samples strongly increases in comparison with BV, which is assigned to the metal-to-
metal (Fe2+ to Fe3+) intervalence charge transfer in PB. As discussed later, the improved
visible-light absorbance of BV-PB is expected to enhance the photoactivity of the composite.
Though PB loading increases visible light absorption by the nanocomposite, the absorption
edge of BV and BV-PB samples were approximately the same (Figure 7b), with no consid-
erable change in Eg (~2.6 eV), indicating only surface deposition of PB without structural
modifications of BV.

2.6. Photocatalytic Properties

The photocatalytic properties of BV and BV-PB materials and the role of PB as cocata-
lyst were evaluated through the photodegradation of MB (Figure 8) and photoreduction of
Cr(VI) (Figure 9) in aqueous media under blue LEDs irradiation. The difference in photoac-
tivity of the samples, in terms of interfacial charge transfer at the photocatalysts/solution
interface and electron-hole recombination, was then studied and verified using EIS and
PL measurements (Figure 10), respectively, in addition to the DRS data presented above.
Finally, a comprehensive photoactivity enhancement mechanism was proposed (Figure 11),
as discussed at the end of this section.

2.6.1. Photooxidation of MB dye

We first studied the photodegradation of MB using BV and BV-PB samples as pho-
tocatalysts in the absence and presence of a minute quantity (0.2 mmol) of H2O2 in the
reaction mixture under visible light illumination (Figure 8). The absorbance of MB dye
decreases upon illumination with blue light from LEDs in the presence of photocatalysts
(Figure S7), indicating photodegradation of the dye. While the pure BV could degrade
around 70% of MB dye within 120 min (Figure 8b). However, the time for complete pho-
todegradation of MB is reduced to 40 min in the presence of 0.2 mmol H2O2 in the reaction
mixture (BV+H2O2, kobs. = 0.055 min−1). Compared to pristine BV, the photocatalytic
activity increases upon deposition of PB, and BV-PB could degrade around 85% of MB
dye within 120 min. Importantly, a very prominent increase in photoactivity of BV-PB is
observed in the presence of H2O2 and almost 100% degradation of MB is achieved within
20 min (kobs. = 0.375 min−1) by the BV-PB/H2O2 system under conditions identical to
those of BV + H2O2. Recyclability tests showed that the BV-PB/H2O2 system retains its
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photoactivity after repeated use and negligible loss in photoactivity was observed after five
cycles of use (Figure 8b).
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Figure 8. Kinetic profiles showing the photodegradation of MB as a function of visible light illumi-
nation time by the pristine BV or BV-PB samples in the presence and absence of a minute amount
(0.2 mmol) H2O2 in the reaction mixture (a) and the MB photodegradation efficiency of the recycled
BV-PB photocatalyst in the presence of H2O2 showing good recyclability for up to five cycles of use
(b). Results of control experiments employing only LED illumination (direct photolysis), only H2O2

and H2O2 + LED illumination (emission centered at 460 ± 10 nm) are also reported in (a).

Figure 9. (a) Temporal changes in the concentration of Cr(VI) as a function of LEDs illumination time
showing a comparison of the photo-catalytic activities of BV and BV-PB samples (b) A comparison
of the Cr(VI) reduction efficiency of BV and different BV-PB samples. The PB layer acts as a cocata-
lyst, mediating the transfer of photoexcited conduction band electrons from BV to Cr(VI) (see also
Figures 10 and 11). The experiments were performed without any pH adjustment (natural pH = 4.6)
of the suspension and without adding any hole scavenger organic molecules. The experiments under
light irradiation were performed using the LED reactor described above.
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Figure 11. Schematics of the photoexcitation, charge transfer, and resulting photocatalytic processes
in the BV/PB system. The photoexcited electrons from CB of BV transfer to PB and dissolved O2

reducing them to PW and O2
•−, respectively. The PW, in turn, transfers electrons to Cr(VI) in a

solution, itself becoming oxidized back to PB. Hydrogen peroxide is converted to •OH radicals which,
together with holes (h+) in the valence band, can oxidize organic materials.
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2.6.2. Photoreduction of Cr(VI)

Next, the photoreduction of toxic Cr(VI) to less toxic Cr(III) in aqueous media was
studied under LED illumination apparatus and without any pH adjustment or addition of
sacrificial organic molecules. Figure S8 shows the decrease in absorbance of the chromium
(Cr)-DPC complex as a function of time under visible light illumination in the presence of
BV-PB3 as representative photocatalysts, indicating photoreduction of Cr(VI) to Cr(III). All
BV-PB samples exhibit better photoactivity than pristine BV (Figure 9) demonstrating that
the PB assists in the photoreduction of Cr(VI), as explained below. The photoreduction
efficiency of the samples follows the order BV-PB3 > BV-PB2 > BV-PB4 > BV-PB1 > BV.

2.7. Why BV-PB Shows Enhanced Photoactivity?

The above-noted superior photo-redox efficiency of the BV-PB samples, as compared
to BV, could arise from:

1. Enhanced absorption of visible light (Figure 7),
2. The ability of Fe centers in PB to produce reactive oxygen species (ROS) in a Fenton-

like derived process,
3. The role of PB as cocatalysts, lowering resistance to charge transfer and improving

charge transfer ability at the photocatalysts/solution interface, thus promoting elec-
tron transfer from the conduction band (CB) of BV to the Cr(VI) and/or O2 species in
solution, and/or

4. Decreased electron-hole recombination due to lower charge transfer resistance.

While the enhanced visible light absorption (factor 1) is evident from Figure 7, an
equally important PB-based Fenton-like process (factor 2) could occur at the Fe centers in
PB in the presence of H2O2. This process generates additional ROS (•OH and HOO•) via
oxidation of Fe2+ to Fe3+ (Equation (1)), and/or reduction of Fe3+ (Equation (2)).

Fe2+ + H2O2 → Fe3+ + OH− + •OH (1)

Fe3+ + H2O2 → Fe2+ + H+ + HOO• (2)

Fe3+ + e−(CB) → Fe2+ (3)

We have already observed that the photogenerated holes and ROS species (•OH and
O2
•−) play a role in the photocatalytic degradation of dyes over BiVO4 photocatalyst [23].

Since additional •OH species are expected to form in BV-PB material, the formation of •OH
in the reaction mixture was confirmed by using terephthalic acid (TPA) as a fluorescent
probe which reacts with •OH radicals to form 2-hydroxy terephthalic acid of relatively
higher fluorescence intensity. The fluorescence intensity of TPA increases a little in the
presence of only H2O2 but drastically in the presence of both BV-PB and H2O2 in the
reaction mixture (Figure S9), confirming our hypothesis of the Fenton-like process in the
BV-PB/H2O2 system. Thus, the excellent photoactivity of the BV-PB/H2O2 system can
be assigned to a synergic effect between the BV-based photocatalytic (h+ and •OH/O2

•−

generation) and PB-based Fenton-like processes (Figure 11, RHS), in addition to the other
factors, such as lower electron-hole recombination and lower charge transfer resistance at
photocatalysts/solution interface (vide infra). Furthermore, the improved interfacial charge
transfer between BV and photo-deposited PB, as discussed below, may further increase the
overall photo-Fenton process as it leads to the regeneration of Fe(II) sites (Equation (3)),
which are known to be much more catalytic, active for hydroxyl radical formation in the
presence of H2O2 [65].

The other two hypotheses (or factors 3 and 4) highlighting the role of PB as a cocatalyst)
were evaluated using EIS measurements (Figure 10a) and PL measurements (Figure 10b),
respectively. Factor 3 was evaluated by measuring the charge transferability of BV and BV-
PB samples from the Nyquist plot using EIS measurements (Figure 10a). As compared to
pure BV, the BV-PB samples show lower resistance to charge transfer and the charge transfer
ability seems to improve the photoreduction of the target specie (Cr(VI) and/or O2) in the
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solution [18]. Such improved charge transfer kinetics are expected to allow better charge
separation and hence lower recombination (factor 4). The PL measurement of BV and BV-PB
showed that the latter has lower PL intensity (that arises from electron-hole recombination)
as compared to BV (Figure 10b), indicating reduced electron-hole recombination in BV-PB.
The decrease in photoactivity at higher PB loading (BV-PB4 in Figure 9) may be related
to the lower accessibility of photogenerated CB electron for Cr(VI) reduction in aqueous
media due to a less effective transfer across relatively thicker BV/PB interface.

Considering the discussion above, it can be asserted that the blue LEDs illumination
(λ output = 460 ± 10 nm which overlaps the absorption of BV (Eg = 2.6 eV)) can photoexcite
electrons from the valance band (VB) of BV to its CB (Figure 11). The photoexcited electrons
in the CB are subsequently transferred to molecular O2 forming O2

•− and to PB, partially
reducing it (Fe3+ + e− (CB) → Fe2+) to Prussian white (PW). The resulting PW, in turn,
transfers the extra electrons to Cr(VI) (and/or O2) species in solution, reducing Cr(VI) to
Cr(III) (and/or O2 to O2

•−) and itself reverts back to PB for the next redox cycle (Figure 11,
LHS). The mechanism proposed for charge transfers is represented in Figure 11. PB thus
acts as a cocatalyst, mediating the transfer of electrons from BV to Cr(VI) (Figure 10a) and
decreasing the electron-hole recombination (Figure 10b).

The practical approach employed in this work may guide new studies and pioneer
new prospects for synthesizing new BV-based photocatalytic systems with low production
costs and high photoredox efficiencies.

3. Materials and Methods
3.1. Reagents

Potassium hexacyanoferrate(III) (K3[Fe(CN)6], 99%,), iron(III) nitrate (Fe(NO3)3·9H2O),
and 1,5-diphenylcarbazide (DPC) were supplied by Sigma-Aldrich (São Paulo, Brazil). Am-
monium metavanadate (NH4VO3, 99%, Merck, Darmstadt, Germany), Bi(NO3)3·5H2O
(>98%, Neon, São Paulo, Brazil), HNO3 (Qhemis, São Paulo, Brazil), NH4OH (28%,
Synth, São Paulo, Brazil), acetone (Synth), H2O2 (50%, Synth), and potassium dichromate
(K2Cr2O7, Mallinckrodt, France) were used as received.

3.2. Preparation of BV and BV-PB Photocatalysts

Monoclinic BV nanoparticles were synthesized via the precipitation-hydrothermal
route reported in our previous work [25]. Briefly, an aqueous solution of NH4VO3
(1 mmol) was drop-wise added to an equimolar aqueous solution of Bi(NO3)3·5H2O under
continuous stirring to give an orange-yellow solution, followed by pH adjustment (pH~ 6),
and then microwave-assisted hydrothermal treatment (180 ◦C, 125 W, 275 psi, 10 min). The
resulting bright yellow BV suspension (was centrifuged (6000 rpm), washed with deionized
water twice, and dried at 80 ◦C for 24 h.

The BV-PB samples were prepared by a photo-assisted deposition method employing an
array of home-made LEDs (output = 460 ± 10 nm (Figure S1), total electric power = 1.26 W,
light intensity output at 460 nm = 2.5 mW/cm2) as described elsewhere [25], using
K3[Fe(CN)6] and (Fe(NO3)3·9H2O as the PB precursors. For this purpose, 150 mg of
BV powder was dispersed in 100 mL water by sonication for 30 min, followed by the
addition of different amounts (x mmol) of potassium K3[Fe(CN)6] and stirring the mixture
for 1h in dark (suspension A). Then, different amounts of Fe(NO3)3·9H2O solution (30 mL
solution in 0.03M HNO3 containing y mmol of the precursor) were drop-wise added to
suspension A under LED illumination and, after 1h illumination at 460 nm, the resulting
suspension of BV-PB composite was separated via centrifugation, washed twice with deion-
ized water and then dried in an oven at 80 ◦C. The molar concentrations of K3[Fe(CN)6]
(x mmol) and Fe(NO3)3·9H2O (y mmol) were kept equal (1:1) for each set of samples and
varied in a certain range (x = y = 0.01, 0.019, 0.026, 0.05 mmol) to prepare different samples
(BV-PB1, BV-PB2, BV-PB3, BV-PB4, respectively) with different PB loadings.
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3.3. Characterization Techniques

Scanning electron microscopy (SEM) images were obtained using a FEG-SEM mi-
croscope (JSM-7200, JEOL, USA). The samples, deposited on silicon wafer pieces, were
sputter-coated with 6 nm gold layer using BAL-TEC MED 020 (BAL-TEC, Balzers Liechten-
stein) coating System (conditions: chamber pressure = 2.00 × 10−2 mbar; current = 60 mA;
deposition rate 0.60 nm/s). Energy Dispersive X-ray Spectroscopy (EDX) microanalysis
was performed using an XFlash® 6/60 detector (Bruker, Germany), employing ESPRIT
2.3 software, using a 15 kV electron beam, and using Cu standard for analytical calibra-
tion. For EDX analysis, the samples were pressed into a thick pellet and attached to the
surface of conducting carbon tape. Three different regions (50 µm × 50 µm) of the same
sample were analyzed to obtain an average elemental composition [23]. TEM analysis of
the sample deposited from a dilute aqueous suspension onto carbon-coated copper grids
was performed on a JEOL TEM (JEM-2100, USA) equipped with a LaB6 electron source and
operated at 200 kV electron accelerating voltage. X-ray diffraction (XRD) patterns of BV and
BV-PB samples were measured using a D8 Advance X-ray diffractometer (Bruker, Germany)
operating at 40 mA and 40 kV and employing Ni-filtered Cu Kα X-ray radiation (1.540 Å).
The diffuse reflectance spectra (DRS) of the powder samples against a background of MgO
powder (white standard) were obtained using a Cary 5000 UV-Vis-NIR spectrophotometer
(Varian, Australia). Raman spectra (100–1200 cm−1

, acquisition time of 40 s, 2 cycles)
were measured with a LabRAM HR 800 Raman spectrophotometer (Horiba Jobin Yvon)
equipped with a He–Ne laser (632.81 nm). The photoluminescence (PL) emission spectra
(λ(excitation)= 375 nm) of the samples were acquired with a Horiba Jobin Yvon spectrofluorom-
eter (Fluorolog-3 model FL3-122, USA) equipped with a Hamamatsu R-928 photomultiplier
tube and a Xe lamp. Electrochemical impedance spectroscopy (EIS) measurements of the
sample films on FTO glass were performed in a CorrTest potentiostat/galvanostat (model
CS310, Wuhan China) using a three-electrode cell [23]. Fourier transform infrared spec-
troscopy (FTIR) spectra (400–4000 cm−1) of the samples diluted with KBr and pressed into
a pellet were collected with a NICOLET IS5 FTIR spectrophotometer (Thermo Scientific,
Waltham, MA, USA) with a resolution of 2 cm−1 and averaged over 64 scans.

3.4. Evaluation of Photocatalytic Activity

The photocatalytic activity of BV and BV-PB samples was evaluated by photoreduction
of Cr(IV) ions and photooxidation of MB dye as a model photocatalytic reaction.

3.4.1. Photocatalytic Reduction of Cr(VI)

The photoreduction of Cr(VI) was performed in order to evaluate the photoreduction
efficiency of the BV and BV-PB and hence the role of PB in the composite photocatalysts.
For this purpose, typically, 35 mg of the photocatalysts powder was dispersed in 35 mL
of H2O by sonication followed by the addition of 35 mL K2Cr2O7 containing 20 mg·L−1

of Cr(VI). The resultant mixture (natural pH 4.6) was kept in the dark for 30 min and
then illuminated with blue LEDs described above for different time intervals. The sample
aliquots taken at various irradiation intervals were centrifuged to remove the suspended
particle and 200 µL of the supernatant was then reacted with DPC (5 g·L−1 in acetone) as a
selective colorimetric reagent [66] in the presence of H2SO4 in the reaction media (1 mL
H2O + 200 µL DPC + 100 µL H2SO4) to form Cr(VI)–DPC complex that shows maximum
absorbance at 545 nm. During the reaction, Cr(VI) is reduced to Cr(III) and DPC is oxidized
to 1,5-diphenylcabazone (DCPA). The decrease in the concentration of Cr(VI) was measured
by observing the decrease in the absorbance (λmax = 545 nm) of the Cr–DPC complex [18].

3.4.2. Photocatalytic Degradation of Methylene Blue (MB)

The photocatalytic activity of BV-PB and pure BV was also evaluated by the pho-
todegradation of MB dye in the absence and presence of a minute amount of H2O2 in the
reaction mixture. Typically, 25 mg of the photocatalyst was dispersed in 20 mL water by
sonicated for 15 min, followed by the addition of 20 mL MB dye (15 mg·L−1) and allowing
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the dye-photocatalyst mixture to stir in dark for 30 min. The mixture was then irradiated
with the blue LEDs photoreactor described above and sample aliquots were taken out,
centrifuged, and electronic absorption spectra of the supernatant measured to follow the
degradation of MB as a function of time. In the degradation studies performed in the
presence of H2O2, 200 µL of 1 mol·L−1 H2O2 solution was added to the reaction mixture
just before illumination. A control experiment in the absence of photocatalysts in the reac-
tion mixture was also performed under identical conditions to better evaluate the role of
photocatalysts (BV, BV-PB), H2O2, and direct photolysis in the total MB removal efficiency
of the photocatalytic systems studied. To compare the photoactivity of the samples towards
MB degradation, the observed rate-constant (kobs) values were calculated from the kinetic
profiles ( C

C0
vs. time) using a first order exponential-function, ( C

C0 = e−k obs .t).
The recyclability of the photocatalysts was tested by the same procedure just men-

tioned above, except that the used photocatalysts were recovered from the reaction mixture
by centrifugation at 4500 rpm for 10 min, re-dispersed in 20 mL water by sonication, mixed
with 20 mL MB (15 mg·L−1) and then employed in the next photocatalytic degradation
cycles in the presence of H2O2 under LED illumination for 25 min.

To study the formation of •OH radicals by the BV-PB photocatalysts in the presence
of H2O2, terephthalic acid (TPA, 4 × 10−4 mol·L−1 solution in 2 × 10−3 mol·L−1 NaOH)
was used a fluorescence probe molecule [67]. The fluorescence spectra (340–600 nm,
λmax(emission) = 425 nm) of TPA were recorded under 315 nm excitation [67] in the absence
and presence of BV-PB and H2O2.

4. Conclusions

Addressing the inherent problems of BiVO4 (BV) photocatalysts, including fast electron-
hole recombination and slow charge transfer kinetics, we successfully prepared PB-loaded
BV particles with enhanced photo-redox ability as investigated by photoreduction of Cr(VI)
and photooxidation of MB. The PB was photo-deposited on the surface of hydrothermally
synthesized monoclinic BV using low-cost commercial LEDs as the illumination source
and the formation of BV-PB was confirmed by microscopic and spectroscopic analyses.
The photo-deposited PB not only increases the absorption of visible light by the BV-PB
composite photocatalyst, as indicated by DRS but also acts as cocatalysts, improving the
charge carriers’ transfer across the photocatalysts/solution interface and hence reducing
their recombination, as confirmed by EIS and PL measurements, respectively. Consequently,
the BV-PB composite photocatalysts with optimum PB loading exhibited enhanced Cr(VI)
photoreduction efficiency as compared to pristine BV under visible light illumination
from low-power LEDs, thanks to the cocatalyst role of PB which mediates the transfer
of photoexcited conduction band electrons from BV to Cr(VI) species in solution. As
compared to pristine BV (70% of MB degradation in 120 min), higher photoactivity was
observed in the presence of a minute amount (0.2 mmol) of H2O2 in the reaction media
for both BV (~97% photodegradation in 40 min, kobs = 0.055 min−1) and BV-PB (100%
dye degradation within 20 min, kobs = 0.375 min−1) materials. Such high photo-oxidation
efficiency of the BV-PB/H2O2 system is due to a synergic effect between the BV-based
photocatalytic and PB-based Fenton-like processes, in addition to other factors including
the role of PB as cocatalysts discussed above. The practical approach reported in this study
may be extended to other photocatalytic systems with high photoredox efficiencies for
photo(electro)chemical applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal12121612/s1, Figure S1: The emission spectrum of LEDs;
Figures S2 and S3: SEM images of BV and BV-PB; Figure S4: TEM images and elemental mapping of
BV-PB, Figure S5: XRD patterns of BV and BV-PB; Figure S6: FTIR Spectrum of pure BV; Figure S7:
Electronic absorption spectra of MB dye as a function of LED illumination, Figure S8: Absorption
spectra of Cr(VI)-DPC complex; Figure S9: Fluorescence spectra of pure terephthalic acid in the
presence and absence of BV-PB2 and H2O2.
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