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Abstract: In this study, a Co-Mn/CeO2 composite was prepared through a facile sol-gel method and
used as an efficient catalyst for the ozonation of norfloxacin (NOR). The Co-Mn/CeO2 composite was
characterized via XRD, SEM, BET and XPS analysis. The catalytic ozonation of NOR by Co-Mn/CeO2

under different conditions was systematically investigated, including the effect of the initial solution’s
pH, Co-Mn/CeO2 composite dose, O3 dose and NOR concentration on degradation kinetics. Only
about 3.33% of total organic carbon (TOC) and 72.17% of NOR could be removed within 150 min
by single ozonation under the conditions of 60 mg/L of NOR and 200 mL/min of O3 at pH= 7 and
room temperature, whereas in the presence of 0.60 g/L of the Co-Mn/CeO2 composite under the
same conditions, 87.24% NOR removal was obtained through the catalytic ozonation process. The
results showed that catalytic ozonation with the Co-Mn/CeO2 composite could effectively enhance
the degradation and mineralization of NOR compared to a single ozonation system alone. The
catalytic performance of CeO2 was significantly improved by the modification with Mn and Co.
Co-Mn/CeO2 represents a promising way to prepare efficient catalysts for the catalytic ozonation of
organic polluted water. The removal efficiency of NOR in five cycles indicates that Co-Mn/CeO2 is
stable and recyclable for catalytic ozonation in water treatment.

Keywords: antibiotics; catalytic ozonation; emerging contaminant; Co-Mn/CeO2; norfloxacin

1. Introduction

Recently, the wide applications of antibiotics have become a serious threat to the
environment and public health worldwide due to their resistance to degradation and
induction of resistance genes [1,2]. Norfloxacin (NOR), a typical fluoroquinolone (FQ)
antibiotic, has been widely used and found in wastewater treatment plants from different
routes. For instance, the concentrations of NOR detected from domestic and hospital
effluents range from ng/L to µg/L [3,4]. It was found that NOR concentrations could
even reach up to mg L−1 in pharmaceutical effluents [5]. Nevertheless, antibiotics might
have a potential adverse influence on aquatic wildlife and humans even at trace levels [6].
Therefore, it is crucial to remove NOR efficiently from the aquatic environment.

Advanced oxidation processes (AOPs), which include several techniques, can generate
highly oxidative species to mineralize antibiotics [7,8]. Among them, ozonation has been
widely applied for the oxidative degradation of pollutants. Ozone (O3) as a powerful
oxidizing agent could degrade many organic pollutants including fluoroquinolone antibi-
otics. However, because of its selective oxidization of organic matters, the mineralization
efficiencies of some antibiotics were relatively low when a single ozonation system was
used [9,10]. A heterogeneous catalytic ozonation process could effectively improve the
degradation of organic pollutants and has attracted significant attention in recent years. The
heterogeneous catalysts for ozonation, such as metal oxides (MnO2, Al2O3, Fe3O4, Co3O4
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and CuO), metal-containing composites and carbon materials have been developed and
applied in catalytic ozonation systems for the removal of various organic pollutants [11–16].
Among them, MnO2 has been investigated and reported as a promising catalyst for O3 due
to its high efficiency and stability. For example, Nawaz et al. investigated the degradation
of 4-nitrophenol (4-NP) through a heterogeneous catalytic ozonation process by using
MnO2 as the catalyst. Under the same reaction conditions, the degradation efficiency of
MnO2-catalyzed catalytic ozonation was 60.5% higher than that of ozonation alone [13].
The catalysis may be partly attributed to the role of oxygen vacancies (OVs) on MnO2. As
reported by He et al., oxygen vacancies facilitate the adsorption of O3 onto the catalyst
surface because oxygen vacancies increase the ratio of Mn3+/Mn4+, and then alter the
charge distribution [17]. Meanwhile, Co3O4 also exhibited high catalytic activity for the
catalytic ozonation of various refractory organic compounds. For example, Alvarez et al.
investigated the degradation of pyruvic acid through a heterogeneous catalytic ozonation
process by using Co3O4/Al2O3 composites as the catalyst. Under the same reaction condi-
tions, the degradation efficiency of Co3O4-/Al2O3-catalyzed catalytic ozonation was 38%
higher than that of ozonation alone. The rate of pyruvic acid disappearance is improved by
the presence of cobalt, which is likely due to its catalytic effect on oxidation reactions [18].

Cerium oxides (CeO2) has been widely applied in many research areas such as CO
oxidation, VOC combustion and the water-gas shift reaction due to a low redox potential
and abundant OVs [19–23]. In recent years, CeO2, as an active component or support, has
been widely investigated as an ozonation catalyst to enhance the removal of recalcitrant
compounds [24–26]. For example, Li et al. found that ceria could accelerate MCM-48 to
strengthen the degradation efficiency of clofibric acid (CA) by O3 [27]. Akhtar et al. found
that the presence of Fe2O3/CeO2 could accelerate activated carbon to enhance the removal
efficiency of sulfamethoxazole by O3 [26]. Chen et al. reported that the introduction of a
ceria catalyst can significantly enhance the catalytic ozonation of 4-chlorophenol, which
could be attributed to the concentration and location of OVs [25]. However, few studies
have reported on the combination of CeO2 and Co-Mn for organic pollutant elimination
via catalytic ozonation.

In this work, the Co-Mn/CeO2 composite was fabricated by using the sol-gel method.
The physical properties of the catalyst, the heterogeneous catalytic ozonation activities of
Co-Mn/CeO2 for the degradation of NOR, the performance of various operating conditions
and the stability of the catalyst were evaluated.

2. Results and Discussion
2.1. Physical Properties of Catalysts

The crystal phases and crystallinities of CeO2 and Co-Mn/CeO2 catalysts were studied
by using XRD. As shown in Figure 1a, the CeO2 particles depicted the typical XRD patterns
of pure fluorite cubic structures of CeO2 (JCPDS 34-0349) with characteristic peaks at 2θ
values of 28.6◦, 33.1◦, 47.5◦, 56.4◦, 59.1◦, 69.5◦, 76.8◦ and 79.1◦, which were attributed to the
(111), (200), (220), (311), (222), (400), (331) and (420) crystal planes, respectively [28–30]. The
Co-Mn/CeO2 composite samples did not show any obvious XRD diffraction for manganese
oxides or cobalt oxides in Figure 1. Moreover, the XRD patterns of the Co-Mn/CeO2
samples are quite broad compared to pristine CeO2, which could be attributed to the
formation of effective Mn-Ce, Co-Ce, and Mn- and Co-codoped solid solutions [23,31–33].
As the width and strength of XRD peaks have a close relationship with the crystallinity and
crystal size of the corresponding crystal phase, the low crystallinity and small crystal size
of metal oxide species can afford a large number of active sites for improved catalysis and
provide a material basis for a high catalytic performance [32,34].

As shown in Figure 2a, it can be seen that the CeO2 was in the form of irregular
particles, which were evenly distributed, and there were many pores between the particles.
The SEM image indicated that Co-Mn/CeO2 was in the form of irregular flakes that were
highly dispersed, and the surface was covered with a certain agglomeration and fluffy
accumulation, as well as many pores with different sizes (Figure 2b). The above results
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indicate that Co-Mn/CeO2 has a hierarchal micro–meso–macro porous structure. These
pores were formed due to the gasification of free water and the decomposition of nitrates
which acted as pore-fabricating agents in the sol-gel combustion preparation process [35].
Furthermore, in order to confirm the composition of Co-Mn/CeO2, EDS mapping was
performed, and the elemental mappings are shown in Figure 2c. The results showed a
uniform dispersion of Mn, Co, Ce and O elements in the Co-Mn/CeO2 catalysts which were
consistent with the XRD and SEM results. The loose, porous structure may provide more
active sites for reactant molecules, thereby promoting the performance of the catalysts [34].
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Figure 2. SEM images of CeO2 (a), Co-Mn/CeO2 (b), and EDS mapping of Co-Mn/CeO2 (c1–c4).

As shown in Figure 3, the N2 adsorption–desorption isotherms of CeO2 and Co-
Mn/CeO2 were type IV, showing that the two materials contained microporous and
mesoporous structures. The data on the surface area, pore diameter and pore volume
are summarized in Table 1. The BET surface area significantly increased from 34.80 m2/g
(CeO2) to 92.43 m2/g (Co-Mn/CeO2). Compared with CeO2, Co-Mn/CeO2 has the smaller
average pore size and the larger pore volume, indicating that Co-Mn/CeO2 has more pores.
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The larger specific surface area and pore number of Co-Mn/CeO2 may be attributed to the
formation of OVs and surface defects, which can provide more active sites to enhance the
catalytic performance [11,36,37].
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Table 1. Surface area, average pore width and total pore volume of catalysts.

Catalyst BET Surface
Area (m2/g)

Adsorption Average
Pore Width (nm)

Total Pore Volume of
Pore (cm3/g)

CeO2 34.804 17.8224 0.1551
Co-Mn/CeO2 92.425 8.10891 0.1874

The element composition and chemical environment of CeO2 and Co-Mn/CeO2 were
further identified by using XPS. As illustrated in Figure 4a, in addition to the characteristic
peaks of Co2p and Mn2p, the Ce3d and O1s peaks were observed clearly in both XPS
survey spectrums of CeO2 and Co-Mn/CeO2, which were consistent with the EDS results.
For Co-Mn/CeO2, there were two major peaks at Co2p3/2 and Co2p1/2, and the fitted peaks
at 780.1 eV and 795.2 eV could be attributed to Co3+, whereas the peaks at 781.5 eV and
796.4 eV could be ascribed to Co2+. Thus, it is concluded that Co existed in the oxidation
states of Co2+ and Co3+ [38]. As shown in Figure 4c, the Mn 2p XPS spectrum demonstrates
two peaks centered at 642.4 eV and 653.5 eV, which can be attributed to Mn 2p3/2 and Mn
2p1/2 states, respectively [39]. The Mn 2p3/2 peak of Co-Mn/CeO2 could be fitted by two
main peaks centered at 642.3 eV and 644.1 eV with a ratio of 0.86, corresponding to the
chemical states of Mn3+ and Mn4+, respectively. The results show that the content of the
Mn4+ species was higher than that of the Mn3+ species.

As shown in the Ce3d spectra of Figure 4b, the relative abundance of Ce 3d in Co-
Mn/CeO2 was smaller, suggesting that some Ce4+ in CeO2 may be replaced by cobalt ions
or manganese ions which could result in the creation of OVs. These principle binding
energies were labeled as u and v, which were attributed to the two pairs of Ce spin-orbital
doublets, 3d3/2 (higher BE) and 3d5/2 (lower BE), respectively. The photoelectron peaks u′

and v′, u′′ and v′′, and u′ ′ ′ and v′ ′ ′ corresponded to the concentration of Ce4+. Meanwhile,
the two weak peaks labeled as u′ and v′ were ascribed as being characteristic of Ce3+ [1].
The relative concentration ratio of Ce3+ to Ce4+ can be calculated from the peak areas of
deconvoluted peaks according to Equation (1)

r =
AU′′′ + AV′′′ + Au′′ + Av′′ + AU + AV

AU′ + AV′
(1)
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The chemical valence state of Ce in CeO2 and Co-Mn/CeO2 mainly included the
oxidation state of Ce4+ that coexisted with a relatively small amount of Ce3+. The relative
percentage of Ce3+/Ce4+ of CeO2 and Co-Mn/CeO2 were then calculated to be 13.95% and
29.12%, respectively. As a defect indicator, the higher concentration of Ce3+ in Co-Mn/CeO2
indicated the creation of relatively more OVs on the surface of the catalyst [28,40,41].

The O1s results can further confirm the generation of abundant OVs. As shown in
Figure 4e, the O1s spectrum of CeO2 and Co-Mn/CeO2 could be divided into three major
components—529.5, 531.5 and 533.1 eV, which were assigned as lattice oxygen (denoted
as Olatt), surface oxygen (Osur) and adsorbed oxygen (Oads), respectively. Generally, the
surface oxygen species could improve the catalytic process [42,43]. The surface oxygen Osur
concentration of CeO2 and Co-Mn/CeO2 was 14.83% and 43.21%, respectively, indicating
the same order as that of Ce3+. These observations showed that combining Mn and Co with
CeO2 not only promoted the formation of more new structure defects, but also improved
the concentration of (Osur) species, indicating that the Co-Mn/CeO2 catalyst can provide
more surface-active oxygen species for catalytic ozonation.
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Figure 4. XPS survey spectra of CeO2 and Co-Mn/CeO2 (a); narrow region scan of Co2p (b), Mn2p
(c), Ce3d (d) and O1s (e) of XPS spectra.

2.2. Catalytic Activities of Catalysts

To evaluate the performance of Co-Mn/CeO2 in catalytic ozonation processes, NOR
degradation and TOC removal in O3, CeO2/O3 and Co-Mn/CeO2/O3 systems were in-
vestigated, and the results are shown in Figure 5. As shown in Figure 5a, the degra-
dation efficiency of NOR via single ozonation was only 72.17% after 150 min. The effi-
ciency increased to 76.15% and 87.24% in CeO2 ozonation and Co-Mn/CeO2 ozonation
processes, respectively.
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Figure 5. NOR degradation (a), quasi-second-order plot of NOR destruction, (b) TOC removal (c) in
different processes, UV–vis spectra of treated water samples at different times (d); metal leaching
amounts (e) (NOR = 60 mg/L; catalyst = 0.60 g/L; O3 = 200 mL/min; initial pH of 7).

In order to further investigate the ozonation reaction kinetics, the experimental data
were fitted with the second-order model (Equation (2)):

1
1− β

= kc0t + 1 (2)

where k is the kinetic rate constant obtained from the fitting results. As shown in Figure 5b,
the apparent first-order rate constant k of the NOR degradation was 0.0186 (mg/L)−1min−1,
0.0215 (mg/L)−1min−1 and 0.0444 (mg/L)−1min−1 in O3, CeO2/O3 and Co-Mn/CeO2/O3
processes, respectively. It is worth noting that the different removal efficiencies of TOC
were achieved with the addition of different catalysts. Moreover, these catalysts could
significantly enhance the mineralization of NOR compared to the non-catalytic ozonation
processes. Ozone, as a kind of oxidant, reacts easily with NOR, but due to its selective
oxidation property, the ozone molecule might not be able to remove some degradation
intermediates formed during NOR degradation, resulting in a low mineralization efficiency.
As illustrated in Figure 5c, although NOR was effectively removed in 150 min by single
ozonation, the removal efficiency of TOC was only about 3.33%. However, in the presence
of CeO2 and Co-Mn/CeO2 under the same conditions, the removal efficiency of TOC
increased to 19.61% and 36.31%, which was 1.9 and 10.9 times higher than that of the
single ozonation and CeO2/O3 system, respectively. Figure 5d shows that the feature peak
of NOR gradually disappeared within 180 min, indicating the complete degradation of
NOR during the reaction. In addition, it can be noted in Figure 5e that catalysts had a low
dissolution concentration of metal ions in the reaction solution after 150 min of reaction,
which is acceptable according to discharge standards.

These results suggest that Co-Mn/CeO2 had catalytic ozonation activity and can
indeed strengthen the degradation of persistent organics. The main reason for this may be
attributed to: (1) The doping of Co and Mn lead to the formation of surface defects and OVs,
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which promote the decomposition of ozone into reactive radicals with stronger oxidation
ability, and then achieve a better ozonation effect. (2) The electron transfer between
Ce3+/Ce4+, Co3+/Co2+ and Mn3+/Mn4+ in Co-Mn/CeO2 made the redox of Ce3+/Ce4+

facile during the catalytic oxidation processes, improving the synergistic catalysis of Co,
Mn and Ce for the degradation of NOR. This is consistent with the literature that shows
Ce3+ species as the active sites in the decomposition of ozone into radicals with a more
powerful oxidation ability [25].

2.3. Effect of Operational Conditions
2.3.1. Effect of Initial Solution pH

Figure 6 presents the effect of the initial solution’s pH on NOR removal. The removal
rate of NOR gradually increased with the increase in pH from the initial pH of 5.0 to 9.0,
and the maximum NOR removal efficiency of 89.61% was achieved when the pH was 9.0.
At a higher pH, the abundance of OH− could accelerate the decomposition of ozone into
reactive radicals and enhance the generation of active radicals, such as hydroxyl radicals,
leading to high NOR removal efficiency (Equations (3)–(7)):

O3 + OH− → HO−4 (3)

HO−4 ↔ HO2·+ O−2 · (4)

O2·+ O3 → O2 + O−3 · (5)

O−3 · → O2 + O−· (6)

O−·+ H2O→ ·OH + OH− (7)

However, as the initial pH further increased to 11.00, the NOR removal efficiency
decreased because the enormous generation of •OH could facilitate the reaction between
•OH itself or O2•, rather than between the intermediate products of NOR degradation.
The quasi-second-order kinetics fitting was performed on the removal of NOR molecules
within 150 min. The results are shown in Figure 6b. The reaction rates were 0.0233
(mg/L)−1min−1, 0.299 (mg/L)−1min−1, 0.0439 (mg/L)−1min−1, 0.0554 (mg/L)−1min−1

and 0.0307 (mg/L)−1min−1. The results indicate that a low pH inhibited the reaction and
slowed down the oxidation rate of NOR. When the pH value of the initial solution changed
and was in the range of 3.00–11.00, NOR was almost removed in all cases. The results
indicate that Co-Mn/CeO2 can work in such a wide pH range.

Catalysts 2022, 12, x FOR PEER REVIEW 7 of 13 
 

 

2.3. Effect of Operational Conditions 

2.3.1. Effect of Initial Solution pH 

Figure 6 presents the effect of the initial solution’s pH on NOR removal. The removal 

rate of NOR gradually increased with the increase in pH from the initial pH of 5.0 to 9.0, 

and the maximum NOR removal efficiency of 89.61% was achieved when the pH was 9.0. 

At a higher pH, the abundance of OH− could accelerate the decomposition of ozone into 

reactive radicals and enhance the generation of active radicals, such as hydroxyl radicals, 

leading to high NOR removal efficiency (Equations (3)–(7)): 

O3 + OH− → HO4
− (3) 

HO4
− ↔ HO2 ∙ +O2

− ∙ (4) 

O2 ∙ +O3 → O2 + O3
− ∙ (5) 

O3
− ∙→ O2 + O− ∙ (6) 

O− ∙ +H2O →∙ OH + OH−  (7) 

However, as the initial pH further increased to 11.00, the NOR removal efficiency 

decreased because the enormous generation of •OH could facilitate the reaction between 

•OH itself or O2•, rather than between the intermediate products of NOR degradation. 

The quasi-second-order kinetics fitting was performed on the removal of NOR molecules 

within 150 min. The results are shown in Figure 6b. The reaction rates were 0.0233 

(mg/L)−1min−1, 0.299 (mg/L)−1min−1, 0.0439 (mg/L)−1min−1, 0.0554 (mg/L)−1min−1 and 0.0307 

(mg/L)−1min−1. The results indicate that a low pH inhibited the reaction and slowed down 

the oxidation rate of NOR. When the pH value of the initial solution changed and was in 

the range of 3.00–11.00, NOR was almost removed in all cases. The results indicate that 

Co-Mn/CeO2 can work in such a wide pH range. 

 

Figure 6. Effect of solution pH on NOR removal (a) and the kinetics equations and parameters of 

quasi-second-order reactions at different pH values (b) (if not otherwise specified, NOR = 60 mg/L; 

O3 = 200 mL/min; Co-Mn/CeO2 = 0.60 g/L). 

2.3.2. Effect of O3 Concentration 

The increase in O3 concentration could improve the removal of NOR, as shown in 

Figure 7. When the applied flow of O3 was 100, 200 and 300 mL/min, the NOR removal 

efficiency within 150 min was 27.32%, 87.12% and 88.62%, respectively. The reaction rates 

were 0.0107 (mg/L)−1min−1, 0.0464 (mg/L)−1min−1 and 0.1347 (mg/L)−1min−1. The increase in 

NOR removal efficiency was due to the possibility of a higher concentration of O3 accel-

erating the transformation of O3 into the aqueous solution, forming more derived free 

Figure 6. Effect of solution pH on NOR removal (a) and the kinetics equations and parameters of
quasi-second-order reactions at different pH values (b) (if not otherwise specified, NOR = 60 mg/L;
O3 = 200 mL/min; Co-Mn/CeO2 = 0.60 g/L).
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2.3.2. Effect of O3 Concentration

The increase in O3 concentration could improve the removal of NOR, as shown in
Figure 7. When the applied flow of O3 was 100, 200 and 300 mL/min, the NOR removal
efficiency within 150 min was 27.32%, 87.12% and 88.62%, respectively. The reaction rates
were 0.0107 (mg/L)−1min−1, 0.0464 (mg/L)−1min−1 and 0.1347 (mg/L)−1min−1. The
increase in NOR removal efficiency was due to the possibility of a higher concentration of
O3 accelerating the transformation of O3 into the aqueous solution, forming more derived
free radicals. However, when O3 concentration increased from 200 mL/min to 300 mL/min,
the reaction rate increased from 0.0464 (mg/L)−1min−1 to 0.1347 (mg/L)−1min−1. Since
excess O3 could also react with •OH to produce O2 and H2O, excess O3 would compete
with pollutants to react with free radicals, resulting in the decrease in oxidants for NOR
removal (Equation (8)).

O3 + 2·OH→ 2O2 + H2O (8)

Therefore, a high O3 concentration may not always be conducive to the improving
NOR removal.
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2.3.3. Effect of Catalyst Dosage

Figure 8 shows the effect of Co-Mn/CeO2 dosage on NOR removal. The removal of
NOR gradually increased from 77.59% to 87.77% as the catalyst dosage increased from
0.4 to 0.8 g/L within 150 min. The reaction rate increased from 0.0222 (mg/L)−1min−1 to
0.0466 (mg/L)−1min−1. This might be due to the higher catalyst dose possibly providing
more surface areas and available active sites, which could catalyze the disintegration of the
ozone to produce more free active radicals in the oxidation process. However, the increase
in NOR removal efficiency was only 6%, when Co-Mn/CeO2 increased from 0.4 g/L to
0.6 g/L. In the presence of an excess catalyst, the concentration of NOR and O3 per unit
area might decrease, which was not conducive to the reaction between NOR and O3 [28,44].
Hence, the optimized catalyst dosage was chosen as 0.6 g/L in this experiment.
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2.3.4. Effect of Initial NOR Concentration

Figure 9 presents the effect of the NOR initial concentration on NOR removal. When
the initial concentration of NOR was 40 mg/L, 60 mg/L and 80 mg/L, the NOR re-
moval efficiency was 86.51%, 87.65% and 79.39%, respectively. The reaction rates were
0.0562 (mg/L)−1min−1, 0.0456 (mg/L)−1min−1 and 0.0248 (mg/L)−1min−1. The results
indicate that the degradation rate of norfloxacin was inhibited by the increase in NOR con-
centration. A higher concentration of pollutants may require more oxidants to be oxidized,
and due to incomplete oxidation, intermediates will be produced and accumulate in the
catalytic ozonation process, resulting in a low degradation efficiency [45].
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2.4. Catalyst Stability and Reusability

In order to evaluate the stability of Co-Mn/CeO2 in the catalytic ozonation system,
the catalyst was collected after each degradation reaction cycle and reused under the same
operating conditions. As presented in Figure 10, the activity of Co-Mn/CeO2 toward the
degradation of NOR does not obviously change after five recycle times. This demonstrates
that Co-Mn/CeO2 had a stable performance in the catalytic ozonation process for the
degradation of NOR.
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Figure 10. Stability of prepared Co-Mn/CeO2 for the catalytic ozonation of NOR (if not oth-
erwise specified, NOR = 60 mg/L; O3 = 200 mL/min; Co-Mn/CeO2 = 0.60 g/L; pH = 7;
reaction time = 150 min).

3. Experimental Procedure
3.1. Materials and Chemicals

Norfloxacin (NOR) was purchased from Meilun Biotechnology Co., Ltd. (Dalian,
China). Cobaltous nitrate (Co(NO3)2·6H2O), cerium nitrate (Ce(NO3)3·6H2O) and NaOH
(Sodium hydroxide) were purchased from Aladdin Chemistry Co., Ltd (Shanghai, China).
Manganese nitrate (50% w/w) and citric acid were bought from Guangzhou Chemical
Reagent Co., Ltd. HCl (hydrochloric acid, 36%) was supplied by Lingfeng Chemical
Reagent (Shanghai, China). Ultra-pure water, which was used as the experimental water,
was obtained from the Millipore Milli-Q Ultrapure Gradient A10 purification system from
Millipore Co., Ltd. (Burlington, MA, USA). All the chemicals and reagents used in the ex-
periment were of analytical purity and could be used directly without further purification.

3.2. Preparation of Catalysts

The Co-Mn/CeO2 catalyst was prepared by modifying the method described by [25].
Briefly, Co-Mn/CeO2 was prepared by using the sol-gel method with citric acid as the
chelating agent. Nitrate salts of cobalt, manganese and cerium, in addition to citric acid,
were dissolved in deionized water with the molar ratio of Co(II): Mn(II): Ce(III): Citric
acid = 1:1:1:3. Then, ammonia was added dropwise to adjust the pH to 4.5–5.0. The result-
ing solution was magnetically stirred at 80 ◦C until a viscous pale pink gel was formed.
The gel was dried in an oven at 80 ◦C and then calcined in a muffle oven at 350 ◦C for 2 h.
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The obtained black solid was stored in a dryer for further use. By comparison, CeO2 was
also prepared by adding the corresponding nitrate.

3.3. Ozonation Experiments

The ozonation experiment was carried out in a 150 mL glass column batch reactor. A
certain amount of catalyst was added to the reactor containing 80 mL of NOR aqueous
solution (the NOR test concentration was determined as 60 mg/L according to the relevant
literature and experimental conditions [6,46,47], with an initial pH = 7), and then the mixed
solution was maintained as a suspension by magnetic stirring. Next, the ozone gas was
continuously bubbled to the bottom of the flask through the aeration device. Samples
were collected from the ozone reactor within the prescribed time interval and then filtered
using membrane filters (0.45 µm) for further analysis. Ozone gas was generated by using a
Tonglin 3S-T3 ozone generator as the air source. Within the specified time interval, a certain
volume of aliquots was taken from the reactor, and the residual ozone in the tail gas was
removed with a sodium thiosulfate solution. Except for the test to investigate the influence
of the initial pH value, other tests were conducted without adjusting the initial pH value.
All the experiments were repeated at room temperature.

3.4. Characterization of Catalysts

X-ray diffraction (XRD) measurements were performed by using a D8 Discover Bruker
diffractometer with Cu Kα radiation (Karlsruhe, Germany). The BET-specific surface areas
were determined by using the AUTOSORB-IQ-MP system (Quantachrome, Boynton Beach,
FL. USA). X-ray photoelectron spectroscopy (XPS, Waltham, MA, USA) spectra were deter-
mined via the Thermo Scientific K-Alpha system. The morphology was characterized by
using an FEI Quattro S emission scanning electron microscopy (SEM, Waltham, MA, USA).
Energy-dispersive spectroscopic (EDS) data were obtained by using the Bruker Quantax
XFlash SDD 6 (Karlsruhe, Germany). An inductively coupled plasma optical emission
spectrometry (ICP-OES, optima 8000DV, Waltham, MA, USA) was used to measure the
leaching concentration of metal in the solution. The absorbance of NOR was measured
with a UV-2700 spectrophotometer (Shimadzu, Kyoto, Japan) at 272 nm.

4. Conclusions

Co-Mn/CeO2 was first prepared and used as a heterogeneous ozone catalyst. Co-
Mn/CeO2 had a disordered mesostructure and its performance was good in the cat-
alytic ozonation for NOR removal, especially in mineralization. With the addition of
Co-Mn/CeO2, the removal efficiency of TOC significantly increased from 3.33% to 36.31%,
compared to single ozonation. The dosage of ozone, the dosage of NOR, the dosage of the
catalyst and the solution pH have different effects on the degradation of NOR. In catalytic
ozonation, the degradation efficiency of NOR was higher at a basic pH than that at neutral
or acid pH values. The removal of NOR was highest at a pH value of 9, Co-Mn/CeO2
dosage of 0.8 g/L and O3 concentration of 300 mL/min. Co-Mn/CeO2 also showed good
stability and can be reused five times without significant catalytic activity loss. This re-
search shows an efficient way to modify CeO2 to remove organic pollution from wastewater
through a catalytic ozonation process.
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