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Abstract: Mixed Ni-Al oxide catalytic precursors with different elemental ratios (20, 50, and 80 wt.%
Ni0) were synthesized using green supercritical antisolvent co-precipitation (SAS). The obtained oxide
precursors and metal catalysts were characterized in detail by X-ray diffraction (XRD) analysis, atomic
pair distribution function (PDF) analysis, CO adsorption, and high-resolution transmission electron
microscopy (HRTEM). It was found that the composition and structure of the Ni-Al precursors
are related to the Ni content. The mixed Ni1−xAlxO oxide with NiO-based crystal structure was
formed in the Ni-enriched sample, whereas the highly dispersed NiAl2O4 spinel was observed in
the Al-enriched sample. The obtained metal catalysts were tested in the process of anisole H2-free
hydrogenation. 2-PrOH was used as a hydrogen donor. The catalyst with 50 wt.% Ni0 demonstrated
the highest activity in the hydrogenation process.

Keywords: supercritical antisolvent; heterogeneous catalysts; green chemistry; nickel catalyst;
mixed oxides

1. Introduction

Mixed Ni-Al oxide systems are of interest as precursors of metallic Ni-containing
catalysts [1–3]. The strong interaction between nickel cations and aluminum oxide often
leads to the formation of spinel phases, which complicates the process of reduction and
formation of the metallic nickel phase [4,5]. However, this interaction hinders the sintering
processes, which makes it possible to obtain more highly dispersed systems in comparison
with other oxide supports [6,7]. It has also been shown in a number of studies that the
strong interaction of nickel metal particles with aluminum oxide suppresses coke formation
in the dry reforming of methane and thereby increases the stability of the catalyst [8–10].

The most common methods of Ni-Al2O3 catalyst synthesis are impregnation [11],
deposition-precipitation [12], and the sol-gel method [13]. The disadvantages of these
synthesis methods are the use of toxic nitrates and the formation of wastewater, which
require additional processing. One of the rapidly growing green approaches to the catalyst
synthesis is the transition to supercritical fluid (SCF) technology [14,15]. CO2 is fire safe,
cheap, non-toxic, and has low critical parameters (Tc = 30.6 ◦C, Pc = 73.8 bar), which makes
it attractive as a green solvent for the synthesis of various functional materials [16,17].
One of the promising SCF approaches to the synthesis of heterogeneous catalysts is Su-
percritical AntiSolvent (SAS) precipitation, which avoids the use of toxic nitrates and the
production of aqueous waste [18]. The high value of supersaturation, which is obtained
by SAS precipitation, can lead to the formation of phases that are difficult to synthesize
using other approaches [19]. For example, SAS precipitation was used to synthesize mixed
Cu-Zn hydroxocarbonate with georgeite structure, the obtained catalysts exhibited high
activity in the methanol production [20] and in the water gas shift reaction [21]. In addition,
SAS was used to synthesize highly active systems for photooxidation based on ZnO [22]
and TiO2 [23,24].
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The promising results in catalyst preparation via SAS precipitation has been demon-
strating in our recent studies. We have proposed an original approach to the synthe-
sis of metal catalysts, which is based on SAS co-precipitation of stable oxide sols [25]
and the addition of water cosolvent, as a tool to enhance metal mixing and avoid phase
separation [26]. The oxide sols formed a matrix to stabilize Ni catalysts [27] and Au
nanomaterials [28,29]. Series of Ni-Cu catalysts for anisole hydrodeoxygenation were
synthesized by SAS co-precipitation [30,31].

In this work, we synthesized highly dispersed mixed Ni-Al oxide precursors us-
ing the SAS co-precipitation method to obtain metallic Ni catalysts with different metal
loadings. The Ni-Al oxide precursors and metal Ni-Al catalysts were thoroughly charac-
terized; the features of the active phase formation were investigated. This technique was
shown to allow obtaining highly dispersed Ni catalysts with a high content of the active
metal phase. The catalysts were tested in the process of H2-free hydrogenation of anisole,
a model compound of pyrolysis liquid [32]. H2-free hydrogenation is based on the idea that
simple organic molecules such as formic acid [33], cycloalkenes [34] or alcohols [35] can
be used instead of H2. It provides some important advantages due to their comparatively
low flammability, low corrosive activity, and liquid aggregate state. We chose 2-PrOH as
a hydrogen donor because it demonstrates activity in H2-free hydrogenation using Ni-
containing catalysts [36–39]. It is important to notice that lower aliphatic alcohols, which
can also be obtained from biomass [40] as well as phenolic compounds, are often used as
hydrogen donors for H2-free hydrogenation [41,42].

2. Results and Discussion
2.1. Catalyst Characterization
2.1.1. Ni-Al Oxide Precursors

Figure 1 shows powder XRD patterns of Ni-Al oxide precursors. All the XRD patterns
exhibit reflections corresponding to NiO crystalline phase (PDF NO. 00-047-1049) with
NaCl structure type (space group Fm3m). The measured crystal lattice parameters are
lower than the value characteristic of NiO phase a = 0.4176 nm (Table 1). The difference is
most pronounced for Ni50_Alum and Ni20_Alum samples with a high Al content. This
indicates the formation of Ni1−xAlxO substitutional solid solutions on the base of the NiO
structure. Thus, the radius of Ni2+ ions in octahedral coordination is larger than that of
Al3+ ions (0.69 vs. 0.53 Å). Observed change in intensities of 111 and 200 reflections (I111
and I200) favors the suggestion about formation of solid solution. The I111/I200 ratio is
lower than that of pure NiO phase. This is illustrated by comparison of the experimental
XRD patterns with XRD profiles calculated by the Rietveld refinement of NiO structure
model (Figure 1). It is possible that cation vacancies are formed in the Ni1−xAlxO oxide to
maintain charge balance.

The average size of Ni1−xAlxO crystallites in of Ni80_Alum sample is 4 nm; this
sample is the most well-crystallized among all samples.

Table 1. Structural characteristics of detected Ni1−xAlxO phases (s.g. Fm3m) in the Ni-Al oxide
precursors according to XRD analysis.

Sample Lattice Parameter (nm) dXRD (nm)

Ni80_Alum 0.4164(1) 4.0

Ni50_Alum 0.4157(1) 2.5

Ni20_Alum 0.4147(2) ~2.5–3
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reproduces the experimental PDF significantly better (Figure 2b). The refined lattice pa-
rameter of the NiO phase (a = 0.4149 nm) is reduced due to the formation of Ni1-xAlxO 
solid solution, as mentioned above. The refined average size of Ni1−xAlxO crystallites is 3 
nm. The refined lattice parameter of the spinel phase (a = 0.8051 nm) is close to that of 
NiAl2O4 crystalline phase (PDF# 00-010-0339, a = 0.8048 Å). The spinel phase is poorly 
crystalized; the determined average size of the atomic ordering is only 1.5 nm. Thus, PDF 
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with different structures in Ni20_Alum sample. Obviously, Ni-enriched Ni1−xAlxO oxide 
has a NiO-based structure, while the Al-enriched Ni-Al mixed oxide has a spinel-type 
structure. Accurate determination of cation composition in both mixed oxides is compli-
cated. 

Figure 1. Experimental XRD patterns for Ni-Al oxide precursors (black lines) in comparison with XRD
profiles calculated at the Rietveld refinement of NiO structure model (red lines): Ni80 _Alum—(a);
Ni50 _Alum—(b); Ni20 _Alum—(c).

To clarify structural features of Ni-Al oxide precursors, the PDF analysis was used,
as it is highly efficient for the atomic-scale study of poorly crystallized and fine materials.
The positions of peaks in the PDF curve reflect interatomic distances; the peak amplitudes
are related to coordination numbers. The obtained PDF for Ni20_Alum sample exhibits
coordination peaks, which are characteristic of NiO oxide structure. However, the NiO
structure model cannot fully describe the experimental PDF, as can be seen from fitting
results presented in Figure 2a. The differences are manifested in the excess of the atomic
density in the experimental PDF at distances r = 1.9, 3.2, 4.4, 6.0 Å. These distances are
close to interatomic distances in the spinel structure. The model of a mixture of NiO
oxide (s.g. Fm3m) and NiAl2O4 spinel (s.g. Fd3m) was exanimated. This “two-phase”
model reproduces the experimental PDF significantly better (Figure 2b). The refined lattice
parameter of the NiO phase (a = 0.4149 nm) is reduced due to the formation of Ni1−xAlxO
solid solution, as mentioned above. The refined average size of Ni1−xAlxO crystallites
is 3 nm. The refined lattice parameter of the spinel phase (a = 0.8051 nm) is close to
that of NiAl2O4 crystalline phase (PDF# 00-010-0339, a = 0.8048 Å). The spinel phase is
poorly crystalized; the determined average size of the atomic ordering is only 1.5 nm.
Thus, PDF analysis of the local atomic structure confirmed the coexistence of two Ni-Al
mixed oxides with different structures in Ni20_Alum sample. Obviously, Ni-enriched
Ni1−xAlxO oxide has a NiO-based structure, while the Al-enriched Ni-Al mixed oxide has
a spinel-type structure. Accurate determination of cation composition in both mixed oxides
is complicated.
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In the case of Ni50_Alum sample, the “two-phase” model also improves fitting results,
but to a lesser extent (Rw = 22.1% versus Rw = 24.8% for “single-phase” NiO model). The
fitting results are presented in Figure 3a. The refined average sizes of NiO and NiAl2O4
nanoparticles are 3 and 1.5 nm, respectively. The refined content of the NiAl2O4 phase
was significantly smaller (15%). Thus, the content of the spinel phase decreases with the
decrease in Al content in the samples. No spinel phase was detected by PDF analysis
in Ni-enriched Ni80_Alum sample. The obtained PDF for Ni80_Alum sample is fully
described by the model of NiO nanoparticles of 4 nm in size.

Figure 4 shows TEM images of oxide Ni20_Alum and Ni50_Alum precursors. These
samples are spherical agglomerates with sizes from 50 to 300 nm, which consist of smaller
particles. In the Ni20_Alum sample, a large amount of amorphous phase is observed in the
composition of agglomerates, but well-crystallized particles are also detected (Figure 4a1).
In the Ni50_Alum sample, the fraction of well-crystallized particles is significantly higher
than in the Ni20_Alum sample. These data correlate well with the PDF analysis data
revealing a significantly higher content of poorly crystalized spinel phase in the Ni20_Alum
sample compared to Ni50_Alum. The observed crystallized particles in the samples were
found to have NiO-based or NiAl2O4 spinel structure. Detected interplanar distances for
the Ni20_Alum sample of 1.55, 2.01 and 2.40 Å may correspond to the planes d511, d400,
and d311 of the NiAl2O4 spinel phase, as well as interplanar distances of 2.01 and 2.40 Å
may correspond to the planes d200 and d111 of NiO phase. The interplanar distances for
the Ni50_Alum sample of 2.06 and 2.41 Å may correspond to the planes d200 and d111 of
NiO phase.
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2.1.2. Reduced Ni-Al Catalysts

According to the H2-TPR data (Figure 5), the reduction in the Ni80_Alum sample
proceeds at a lower temperature (the maximum of the H2-TPR peak is 480 ◦C) than the
reduction in the Ni50_Alum and Ni20_Alum samples (the maxima of the H2-TPR peaks
are 555 ◦C). Decrease in nickel content from 80 to 50 wt.% leads to difficulties in the
nickel reduction process. However, a further decrease in the nickel content in the samples
practically does not affect the character of the H2-TPR profiles; for the Ni50_Alum and
Ni20_Alum samples, they are almost identical.
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Table 2 shows the nickel content data determined by inductively coupled plasma–
atomic emission spectroscopy (ICP-AES). In all samples, there is an excess nickel content
relative to the theoretical content. It is likely that the process of aluminum tri-sec-butoxide
hydrolysis may not proceed completely, or the aluminum tri-sec-butoxide itself may partially
hydrolyze, which leads to a decrease in the concentration of aluminum oxide in the sol.

Table 2. Structural characteristics of crystalline phases in Ni-Al catalysts according to XRD analysis.

Sample

Ni0 Al2O3

Lattice
Parameter

(nm)
dXRD (nm) Ni Content,

wt.%

Lattice
Parameter

(nm)
dXRD (nm)

Ni80_Alum 0.3524(1) 15.5 85.6 - -

Ni50_Alum 0.3523(1) 6.5 57.8 - <2.5

Ni20_Alum 0.3526(1) 3.5 26.8 0.7951(2) ~2.5
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The XRD patterns for reduced Ni-Al samples exhibit peaks attributed to metallic Ni0

phase (Figure 6). The determined lattice parameters (Table 2) coincide with the value
characteristic of Ni0 phase (PDF NO. 04-0850, a = 0.3524 nm). This implies that the formed
under reduction metallic Ni0 phase is not doped with Al. The absence of reflections
from Ni-enriched Ni1−xAlxO oxide indicates its decomposition caused by the Ni loss.
The reflections from the oxide with a spinel structure are observed in XRD patterns for
Ni20_Alum and Ni50_Alum samples. The determined lattice constant a = 0.7951 nm of the
spinel phase in Ni20_Alum sample is close to that for Al2O3 oxide (0.7830–0.7940 nm). This
implies that Ni atoms leave the spinel structure of Al-enriched Ni-Al mixed oxide under
reducing conditions with remaining pure or slightly Ni doped Al2O3 oxide. Therefore, one
can conclude that nickel leaves the structure of both Ni-enriched Ni1−xAlxO oxide and
Al-enriched Ni-Al oxide with spinel structure with formation of metallic Ni0 nanoparticles.
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A considerable difference in average size of Ni0 crystallites in the Ni-Al catalysts was
detected (Table 2). It is known that NiO oxide is more reducible than NiAl2O4 spinel and
Ni0 particles formed from NiO are sintered more than those from NiAl2O4 [43]. For this
reason, the Ni20_Alum catalyst contains highly dispersed Ni0 crystallites produced from
hardly reducible NiAl2O4 spinel phase, while Ni80_Alum catalyst contains significantly
larger Ni0 crystallites formed from prevailing Ni1−xAlxO oxide (Table 2).

2.2. Transfer Hydrogenation of Anisole

Chemical transformations of anisole are of interest because this compound is used
as a model O-containing object of bio-oil components [44]. The low activity of anisole in
hydrogenation processes [38] also makes it a good model compound for the processing
of bio-oil.

Figure 7 shows the scheme of anisole transformations under hydrogen transfer con-
ditions using the obtained catalysts. According to experimental data, the conversion of
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anisole and the formation of products proceed along four parallel paths. The final products
of transformation under these conditions are cyclohexane (CHA), methoxycyclohexane
(MCA), cyclohexanol (CHL), and isopropyl cyclohexyl ether (ICE) (Figure 8). Benzene
(BEN) is formed by the bond cleavage between the O-CH3 group and the aromatic group,
and BEN is an intermediate product formed by the first transformation pathway. From the
experimental and calculated data presented in Figure 8, it can be concluded that the use of
Ni50_Alum and Ni80_Alum catalysts leads to an almost complete conversion of anisole. It
should also be noted that the content of the main MCA product is 75% and 64% at using
the Ni80_Alum and Ni50_Alum catalyst, respectively. The deoxygenation process proceeds
best over the Ni50_Alum catalyst: the content of the main deoxygenation product, CHA,
is the highest among all the catalysts (26%). It is important to notice that mass balance
calculated using the internal standard was in the range of 98–106% for all the experiments.
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Table 3 shows the calculated rate constants of chemical transformations. The Ni50_Alum
catalyst has the highest total anisole conversion constant (k1 + k3 + k4 + k5 = 5.72× 10−4 s−1).
It should be noted that the rate constant characterizing the second path of the anisole-
to-MCA transformation is the largest for the Ni80_Alum catalyst. For all the catalysts,
the rate constant k2 has the highest value among all other constants. This means that the
hydrogenation of BEN into CHA over these catalysts is the fastest process.

In addition, Table 3 shows the values of the rate constants normalized by the surface
area of the metal Ni0. The close values of the specific constants k2S (or k5S) for all catalysts
probably indicate that the limiting stage of the CHA (or ICE) formation occurs on the sur-
face of metallic nickel and, accordingly, the rate constants of these transformations directly
depend on the value of the specific surface of metallic Ni0. The values of the specific con-
stants k1S and k4S have strong differences for the synthesized catalysts. It seems that the rate
determining processes for these transformations do not occur on metal centers. An interest-
ing pattern is observed for the specific constant k3S. Its value increases with the increasing
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loading of metallic Ni0. For the second path of transformation, an increase in the size of
Ni0 crystallites probably contributes to the process of anisole-to-MCA hydrogenation.
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Table 3. Rate constants and specific rate constants of the product formation in the experiments at
250 ◦C. Specific rate constants normalized to the surface of metallic Ni kiS = ki/ACO.

Rate Constants

Sample k1 × 104, s−1 k2 × 104, s−1 k3 × 104, s−1 k4 × 104, s−1 k5 × 104, s−1

Ni20_Alum 0.09 ± 0.01 2.23 ± 0.58 0.75 ± 0.01 0.13 ± 0.01 0.04 ± 0.01

Ni50_Alum 1.38 ± 0.03 10.15 ± 0.75 3.85 ± 0.05 0.33 ± 0.02 0.16 ± 0.02

Ni80_Alum 0.58 ± 0.02 8.18 ± 1.19 3.87 ± 0.05 0.32 ± 0.02 0.18 ± 0.02

Specific rate constants

Sample k1S × 104, s−1 ×m−2 k2S ×1 04, s−1 ×m−2 k3S × 104, s−1 ×m−2 k4S × 104, s−1 ×m−2 k5S × 104, s−1 ×m−2

Ni20_Alum 0.16 ± 0.02 4.05 ± 1.05 1.36 ± 0.02 0.24 ± 0.02 0.07 ± 0.02

Ni50_Alum 0.62 ± 0.01 4.58 ± 0.34 1.74 ± 0.02 0.15 ± 0.01 0.07 ± 0.01

Ni80_Alum 0.33 ± 0.01 4.71 ± 0.69 2.23 ± 0.03 0.18 ± 0.01 0.10 ± 0.01

Low reactivity of anisole in heterogeneous catalytic transfer hydrodeoxygenation
significantly limits a number of the relevant works. However, transformations of anisole
under transfer hydrogenation conditions were considered in some studies [6,45]. For
example, our recent work demonstrated the effect of catalyst supports on catalytic activity
and selectivity [6]. It has been shown that Ni-SiO2 has the highest TOF, which achieves
0.49 s−1 vs. 0.42 s−1 for Ni-Al2O3. However, alumina supported catalyst demonstrated
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superior selectivity of hydrodeoxygenation resulting in high cyclohexane yield. The choice
of Ni-Al2O3 as catalyst in this study was based on this fact. Other study looked at some
mechanistic aspects of anisole and other biomass-like compounds transfer hydrogenation
over oxide-supported Ru-based catalysts [45]. DFT calculations and experimental results
demonstrated the positive effect of acidic centers on cyclohexanol yield, whilst the rate
of cyclohexane formation remained low. Thus, the results obtained in the current study
significantly expands the understanding the relationship between catalyst structure and
its activity.

Conventional reduction is paid much more attention compared to transfer hydrogena-
tion. For example, it has been demonstrated that Ni-USY shows the highest selectivity to
cyclohexane compared to Ru-USY and Pd-USY at 200 ◦C under 52 atm of H2, however,
catalytic activity of the Ni-based catalyst remains comparatively low [44]. In addition, in
transfer hydrogenation, a support plays an important role in conventional processes. The
comparison of Ni/TiO2 and Ni/TiO2-ZrO2 in anisole hydrogenation at 300 ◦C demon-
strated that the ZrO2 changes the structure of the support that leads to smaller Ni crystallites
and higher concentration of surface acids, promoting the conversion of anisole [46]. This
corroborates with the results of other studies [47,48] and the current work. Further, regard-
ing the catalyst structure, the mean size of nickel crystallites can be controlled by the metal
loading [49,50].

3. Materials and Methods
3.1. Reagents

Anisole (99%, Sigma-Aldrich, Darmstadt, Germany), dodecane (≥99%, Sigma-
Aldrich, Shandong Lanhai Industry Co., Ltd., Jinan, China), 2-PrOH (≥99.5%, EKOS-1,
Moscow region, Russia), nickel acetate (Ni(OAc)2·4H2O, 99% extra, Acros Organics,
Geel, Belgium), methanol (HPLC Gradient Grade, J.T. Barker, Deventer, The Netherlands),
CO2 (99.8%, Promgazservis, Novosibirsk, Russia), aluminium tri-sec-butoxide (97%, Acros
Organic, Geel, Belgium).

3.2. Catalysts Synthesis

The synthesis of Ni-Al oxide samples was performed by supercritical antisolvent
co-precipitation using a specially designed SAS-50 set-up (Waters, Milford, MA, USA).
A methanol solution containing nickel acetate and alumina sol was injected into a stream
of supercritical carbon dioxide. The solvent power of the carbon dioxide-methanol mixture
reduced, and precipitation occurred. After that, the pure CO2 was passed through the
obtained powder for 20 min to remove residual solvent. A detailed description of the
synthesis technique is given in the work [27].

Experimental parameters: CO2 flow 80 g/min, solution flow 2 mL/min, temperature
40 ◦C, nozzle 0.004” (0.10 mm), pressure 150 bar. We obtained three species designated as
Ni20_Alum, Ni50_Alum, and Ni80_Alum, where the number denotes the wt.% of metallic
nickel in the reduced sample. We synthesized three solutions containing nickel acetate and
alumina sol.

Synthesis of Ni20_Alum solution: under constant stirring, 2.69 mL of acetylacetone
was added to 12.9 mL of isopropanol, and then 3.36 mL of Aluminum-tri-sec-butoxide was
added to this solution; after addition of Aluminum-tri-sec-butoxide, a white precipitate
occurred. Next, 29.2 mL of methanol was added to the resulting suspension. After 15 min
of stirring, the precipitate dissolved, and 1.88 mL of water was added into the resulting
solution. The resulting solution was left with stirring for 24 h. The total volume of sol was
50 mL. 0.7066 g of nickel acetate was dissolved in the resulting sol.

Synthesis of Ni50_Alum solution: under constant stirring, 1.68 mL of acetylacetone
was added to 15.8 mL of isopropanol, and then 2.10 mL of Aluminum-tri-sec-butoxide was
added to this solution; after addition of Aluminum-tri-sec-butoxide, a white precipitate
occurred. 29.2 mL of methanol was added to the resulting suspension. After 15 min of
stirring, the precipitate dissolved, and 1.18 mL of water was added into the resulting
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solution. The resulting solution was left with stirring for 24 h. The total volume of sol was
50 mL. 1.7670 g of nickel acetate was dissolved in the resulting sol.

Synthesis of Ni80_Alum solution: under constant stirring, 0.67 mL of acetylacetone
was added to 15.3 mL of isopropanol, and then 0.84 mL of Aluminum-tri-sec-butoxide was
added to this solution; after addition of Aluminum-tri-sec-butoxide, a white precipitate
occurred. Then, 32.7 mL of methanol was added to the resulting suspension. After 15 min
of stirring, the precipitate dissolved, and 0.47 mL of water was added into the resulting
solution. The resulting solution was left with stirring for 24 h. The total volume of sol was
50 mL. 2.8262 g of nickel acetate was dissolved in the resulting sol.

The samples after SAS co-precipitation were calcined at 300 ◦C for 3 h with ramp rate
3 ◦C/min in a static air to give the oxide phase. The reduction of samples was performed
in H2 atmosphere at 650 ◦C for 45 min with ramp rate 3 ◦C/min, the flow rate of H2 was
30 mL/min.

3.3. CO Pulse Chemisorption and H2-Temperature Programming Reduction Measurements

CO pulse chemisorption measurements were carried out using a Chemosorb analyzer
(Modern Laboratory Equipment, Novosibirsk, Russia). First, 50 mg of each catalyst was
placed inside a U-shape quartz reactor and treated in an H2 flow (100 mL/min) upon
heating up to 650 ◦C, ramp rate 10 ◦C/min. The reactor was kept at the final temperature
for 20 min and then purged by inert gas (Ar) followed by cooling down to room temperature.
After that, pulses of CO were fed to the reactor (100 µL) until the amount of CO in the
outlet stopped changing according to the thermal conductivity detector. Thereafter, the
amount of chemisorbed CO was estimated.

H2-temperature programming reduction (H2-TPR) measurements were also carried
out using a Chemosorb analyzer; 50 mg of each catalyst was placed inside a U-shape quartz
reactor and treated in an flow of 10 vol.% H2 in Argon (100 mL/min) upon heating up to
750 ◦C, ramp rate 10 ◦C/min.

3.4. ICP-AES

Inductively coupled plasma–atomic emission spectroscopy (Optima 4300-DV,
PerkinElmer Inc., Wellesley, Waltham, MA, USA) was used to determine the elemental
composition of the catalysts.

3.5. XRD Characterization

XRD experiments for conventional phase analysis and PDF study were carried
out using MoKα radiation (λ = 0.7093 Å) on a STOE STADI MP diffractometer (STOE,
Darmstadt, Germany) equipped with a one-dimensional silicon strip MYTHEN2 1K detec-
tor (Dectris AG, Baden, Switzerland). The measurements were carried out in transmission
geometry in a rotating holder. Prior to the measurement, the instrument was calibrated
against a NIST SRM 660c standard (LaB6). The measurements were carried out by scanning
in the range of angles 1.5–127◦ with a step of 0.015◦. A background contribution was
measured using an empty polymer foil. A maximum scattering vector value (Qmax) of
15.8 Å−1 was achieved.

XRD phase analysis was performed using the ICDD PDF-2 database. The average
sizes of the crystallites (dXRD) were estimated by Scherrer equation. The reflections 200 and
111, 220, 220 were analyzed for NiO-based oxide phase and metal Ni0 phase, respectively.

Analysis of atomic pair distribution functions, G(r), was performed to study local
atomic structure of samples and detect highly dispersed XRD undetectable species [51].
PDF curves were calculated with use of PDFgetX2 [52]. The obtained PDFs were analyzed
by fitting to them model PDFs calculated for assumed structures. PDFgui program [53]
was used for the calculation of model PDFs and their fitting to the experimental PDFs. To
account for the effect of finite particle sizes, the model PDF was truncated by the shape
factor given for spherical particles. The discrepancy factor (Rwp) was used as criterion of
agreement at the simulation of the PDF profiles.
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3.6. HRTEM Characterization

The morphology and microstructure of the samples were studied via high resolution
transmission electron microscopy (HRTEM). The images were obtained using a Themis
Z electron microscope (Thermo Fisher Scientific, Eindhoven, The Netherlands) equipped
with a Ceta 16 CCD sensor and a corrector of spherical aberrations, which provided
a maximum lattice resolution of 0.07 nm at an accelerating voltage of 200 kV. The samples
for the HRTEM study were deposited on a holey carbon film mounted on an aluminum
grid by the ultrasonic dispersal of the catalyst suspension in ethanol. The calculation of
interplanar distances was carried out using fast Fourier transform (FFT) patterns using
Velox software (Thermo Fisher Scientific, Waltham, MA, USA) and Digital Micrograph
(Gatan, Pleasanton, CA, USA).

3.7. Batch Experiments

Before the experiment, the sample of the oxidized catalyst (0.12 g) was reduced in H2
flow (30 L/h) for 45 min. The process was carried out in the quartz tube at 650 ◦C. Then,
the catalysts were pulled out of the furnace and cooled down to the room temperature.
After that, the samples in the tube were purged with Ar and carefully replaced to the glass
filled with 30 mL of 2-PrOH.

The batch reactor (AISI 316L, 285 mL) previously purged with Ar was charged by
the suspension of the catalyst and 30 mL of 2-PrOH. Then, the solution including 3.2 g of
anisole (29.6 mmol), 0.25–0.26 g of dodecane (internal standard), and 80 mL of 2-PrOH
was added. After that, the reactor was purged with argon under stirring (mechanical
agitator MagneDrive®). The reactor was closed and heated up to 250 ◦C for 35 min. The
reaction was carried out at a constant temperature with permanent stirring at 800 rpm.
Self-pressure of the reaction mixture achieved 7.1–7.8 MPa at 250 ◦C and 0.7–1.0 MPa at
150 ◦C. During the experiment, the probes of the reaction mixture were collected to the
sampler. To calculate conversion the following equation was used:

Conversion =
|Anisole|in − |Anisole| f in

|Anisole| f in
× 100% (1)

3.8. Product Analysis

The liquid samples were analyzed using GCMS–QP2010 SE chromato-mass spec-
trometer (Shimadzu, Kyoto, Japan) equipped with the autosampler. The GsBP-INOWAX
capillary chromatographic column (crosslinked polyethylene glycol) was used (length 30 m,
internal diameter 0.32 mm, stationary phase thickness 0.25 µm). The temperature mode
of column conditioning was: 55 ◦C for 3 min, programmed heating up to 200 ◦C at a rate
of 15 ◦C per minute and then up to 270 ◦C at the rate of 25 ◦C per minute. The evaporator
temperature was 270 ◦C, split 1:30, helium was used as a carrier gas. A constant flow rate
of the carrier gas was 1.8 mL min−1. The products were identified using the peak retention
time and the mass spectrum of the substance, which were compared with the data from the
NIST and Wiley7 electronic mass spectral libraries, or in some cases with corresponding
data of pure compounds. Conversion of anisole and yield of products were evaluated using
dodecane as an internal standard.

3.9. Calculations of Kinetic Data

The experimental dependence of anisole conversion was described by quasi-first order
kinetics with respect to the anisole and intermediate products. The calculations were
performed using the following simplified model: dCi/dt = kiCi. Here, ki first-order rate
constant, Ci molar fraction of anisole, and other products.

The reaction rate constants were determined by the least-squares method using the
obtained analytical solution. The following function was minimized:

F(
→
k ) = ∑i,j(c

exp
ij − ccalc

i (tj,
→
k ))2 (2)
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where
→
k is a vector of reaction rate constants,

→
k = (k1, k2, k3, k4, k5); j is the serial number

of an experimental point, tj is the time of the j-th point, cexp
ij is the experimental molar

fraction of the i-th component at time tj, ccalc
i (tj,

→
k ) is the calculated molar fraction of the

i-th component at time tj. The values of ccalc
i (tj,

→
k ) concentrations were calculated using

the Runge-Kutta method.

4. Conclusions

In this work, a series of catalytic precursors based on mixed Ni-Al oxides was synthe-
sized using the original «green» supercritical antisolvent (SAS) co-precipitation method. It
was found that mutual doping between nickel and aluminum species in the synthesized
systems leads to the formation of mixed oxides with different structure and composi-
tion: Ni1−xAlxO solid solution with NiO-based structure and NiAl2O4 spinel phase. The
change in Ni loading altered the ratio between Ni1−xAlxO and NiAl2O4 phases. Thus, the
Ni1−xAlxO mixed oxide was formed in Ni-enriched sample, whereas a large amount of
NiAl2O4 spinel phase was detected in the Al-enriched sample.

It was shown that under reduction, nickel leaves the structure of both Ni1−xAlxO
oxide and NiAl2O4 spinel phase with the formation of metallic Ni0 nanoparticles. Larger
Ni0 nanoparticles are formed from Ni1−xAlxO oxide, while more dispersed particles are
formed from the spinel phase.

The reduced catalysts were investigated in the process of H2-free hydrogenation of
anisole, a model compound of bio-oil. The results imply that the catalytic activity and
selectivity can be tuned by the compositions of the Ni-Al oxide precursors. The sample
with 50 wt.% Ni0 demonstrated the highest activity in anisole hydrogenation, as well as the
highest activity in the process of anisole deoxygenation.
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