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Abstract: The present study aims to develop new energetic composites containing nanostructured
nitrocellulose (NNC) or nitrated cellulose (NC), hydrazinium nitro triazolone (HNTO), and MgAl-CuO
nanothermite. The prepared energetic formulations (NC/HNTO/MgAl-CuO and NNC/HNTO/MgAl-
CuO) were analyzed using various analytical techniques, such as Fourier-transform infrared (FTIR),
scanning electron microscopy (SEM), thermogravimetry (TGA), and differential scanning calorimetry
(DSC). The outstanding catalytic impact of MgAl-CuO on the thermal behavior of the developed
energetic composites was elucidated by kinetic modeling, applied to the DSC data using isoconver-
sional kinetic methods, for which a considerable drop in the activation energy was acquired for the
prepared formulations, highlighting the catalytic influence of the introduced MgAl-CuO nanother-
mite. Overall, the obtained findings demonstrated that the newly elaborated NC/HNTO/MgAl-CuO
and NNC/HNTO/MgAl-CuO composites could serve as promising candidates for application in the
next generation of composite explosives and high-performance propellants.

Keywords: nitrocellulose; nanostructured nitrocellulose; hydrazinium nitro triazolone; nanocatalyst;
energetic composite; thermo-kinetics

1. Introduction

The term “energetic materials” (EMs) refers to a class of chemical compounds that,
when stimulated using various possible methods (e.g., external mechanical, thermal forces,
laser ignition), rapidly release a significant amount of stored chemical energy. They con-
sist of pyrotechnics, explosives, and propellants, with several uses in ordnance, rockets,
missiles, gas generators, space technology, car airbags, demolition, welding, and min-
ing [1,2]. The most widely used energetic ingredient, since the 19th century, is nitrocellulose
(NC), in both the defense and non-defense sectors, owing to its inherent characteristics,
which include easy tunability, high flammability, explosiveness, and excellent mechanical
features [3–5]. The intrinsic properties of conventional NC can be further enhanced by
structurally altering its cellulosic precursor to design nanostructured nitrocellulose (NNC),
which has the potential to be used in formulations with high levels of energy density [6].
This innovative class of nitrated cellulose derivatives displayed enhanced physicochemical
properties and energetic performance with regard to the traditional NC, making it a highly
desirable substitute candidate for the development of new, high-value cellulosic products
for prospective use in advanced energetic formulations [7,8]. Another frequently used
component in NC-based propellants is nitroglycerine (NG), while its replacement has been
commonly demanded because of its migration problems and decreased stability [9,10]. In
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order to move past these limitations and reduce the reliance on nitroglycerine, various
types of emergent energetic additives, such as nitramine explosives [11,12], green oxidiz-
ers [13], energy-rich ionic liquids [14], energetic co-crystals [15], and nanothermites [16],
have already been introduced in NC-based composites to assess their effectiveness and
find the next generation of energetic formulations. Currently, considerable attention has
been concentrated on nitrogen-rich heterocyclics due to their attractive features, such as
improved thermal stability, reduced sensitivities, and good compatibility with other com-
pounds [17,18]. One of them, hydrazinium nitro-triazolone (HNTO), is an energetic salt
that has been successfully developed by the reaction of 3-nitro-1,2,4-triazol-5-one (NTO)
with hydrazine hydrate [19], and it has extremely appealing qualities that encourage its use
in composite explosives and solid propellants [20,21]. Other additives that have attracted
attention are metastable intermixed composites (MICs), also called nanothermites [22].
These additives are mainly composed of metal and metalloid fuel nanoparticles (e.g., Al, Si,
Mg) and an oxidizer (e.g., CuO, Fe2O3, NiO), which rapidly generate exothermic energy
when the ignition is initiated. This class of energetics has a far higher energy density than
explosives [23–25]. Thermite reactions involving CuO and Al may reach temperatures
of 2840 K, and their volumetric energy density is around three-times higher than that of
trinitrotoluene (TNT) [26]. MICs offer exceptional catalytic effects on the components of
solid propellants, owing to their high specific surface area and active sites [27,28].

In this study, composite films based on NC (or NNC)/HNTO/MgAl-CuO were de-
signed and fully analyzed using various analytical tools, including Fourier-transform
infrared (FTIR), scanning electron microscopy (SEM), thermogravimetry (TG) and differ-
ential scanning calorimetry (DSC). The kinetic triplet, namely, activation energy (Ea), pre-
exponential factor (Log(A)), and reaction model (g(α)) of the developed NC (or NNC)/HNTO/
MgAl-CuO composites, was calculated using isoconversional kinetic approaches. The ac-
quired findings were also contrasted with those of other nano-energetic formulations that
have been previously published.

2. Results
2.1. Chemical Structure and Morphology

The chemical functionalities of the elaborated NC (or NNC)/HNTO/MgAl-CuO
composites were identified by Fourier-transform infrared spectroscopy (FTIR) and the
recorded spectra are illustrated in Figure 1, also containing the spectra of raw NC (or NNC)
and HNTO for comparison. Based on the obtained spectra, it is clear that the formed
energetic formulations include the main functional peaks of NC at 1650, 1270, 1080, and
830 cm−1, which are assigned to the asymmetric NO2 stretching, CH2 bending, stretching
vibration of C-O group, and O-NO2 stretching vibration, respectively [8,29]. It can be
also revealed from the expanded composites’ spectra that the typical functional groups
of HNTO are located at 3350 cm−1 and 3283 cm−1 for N-H of hydrazine, 2735 cm−1 for
N-H of triazole ring, 1696 cm−1 for C=O stretching, and 1319 cm−1 and 1509 cm−1 for
symmetric stretching and asymmetric stretching C-NO2, respectively [19,20]. These results
make it evident that the structures of raw NC (or NNC) and HNTO are not altered after the
preparation process.

On the other hand, scanning electron microscopy (SEM) was executed to elucidate
the morphological features of the developed energetic mixtures and the obtained micro-
graphs are shown in Figure 2, including the SEM images of NC, NNC, and HNTO for
comparison. It is clearly observed from Figure 2 that HNTO is shaped like a rectangle
rod [30], NC has lengthy and separate fibrous strands with a rough surface [31], while
NNC shows short fibers with a rough microstructure and rod-shaped fibrillar aggregates,
also known as microcrystals, with an approximate diameter of 10 µm [8,29]. It can also be
revealed from the reported SEM images that the prepared energetic NC/HNTO/MgAl-
CuO and NNC/HNTO/MgAl-CuO composites exhibit a different morphology. The
NC/HNTO/MgAl-CuO formulation presents a homogeneous structure with a uniform
interspersion of MgAl-CuO nanothermite throughout the NC/HNTO matrix, which indi-
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cates increased intermolecular interactions between the ingredients [32,33]. Meanwhile, the
NNC/HNTO/MgAl-CuO formulation shows a rod-like crystallite network with excellent
distribution of MgAl-CuO particles, indicating that the substitution of pristine NC with its
nanostructured derivative is a more uniform dispersion of HNTO and MgAl-CuO particles.
This efficient dispersion is mostly resulting from the enhanced interfacial contact between
the different substances, which is expected to accelerate the thermolysis of the developed
energetic formulations, as will be demonstrated later in the following sections.
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2.2. TGA Assessment

The thermal stability and decomposition behavior of the prepared energetic formula-
tions were examined using the TGA, and their DTG thermograms are plotted in Figure 3, in



Catalysts 2022, 12, 1573 4 of 15

which both NC and NNC undergo a single mass-loss event (~95%) at 190–220 ◦C. However,
HNTO exhibits two successive decomposition stages at maximum peak temperatures of
201 ◦C and 220 ◦C with 45.4% and 48.9% weight losses, respectively. Regarding their
chemical admixtures with MgAl-CuO nanothermite, NC/HNTO/MgAl-CuO displays a
three-step decomposition that appeared at 163 ◦C, 208 ◦C, and 228 ◦C with corresponding
mass losses of around 15%, 55%, and 30%, respectively. However, the NNC/HNTO/MgAl-
CuO composite displays only two weightloss events of about 16% and 84%, recorded
at 161 ◦C and 221 ◦C, respectively. According to these findings, we can conclude that
the thermolysis behaviors of the obtained energetic formulations can be divided into the
following parts: (1) the first decomposition linked to the thermolysis process of nitrated
cellulosic chains through the homolytic splitting of O-NO2 groups accompanied by the
release of reactive radicals [34]; (2) the second part assigned to the decomposition stages of
HNTO [35], wherein two events appeared in the case of the energetic composite based on
NC and only one decomposition peak was found for the NNC-based energetic composite.
This behavior can be explained by the catalytic impact of the MgAl-CuO combined with the
good interfacial contact between NNC and HNTO, as confirmed by SEM analysis, which
can offer additional oxidizing species that contribute to the entire oxidation of the existing
fuel species [36,37]. Another outstanding feature is the shift in the exothermic processes of
HNTO towards a higher temperature, specifying that the heat transfer from the reaction
zone to the unburned parts of HNTO is sustained by nitrate esters, which promote the
propagation of the exothermic process [38,39]. In addition, it can be revealed from Figure 3
that the energetic formulation based on NNC has lower thermal decomposition temper-
atures than that based on traditional nitrocellulose. This is due to the increased nitrogen
content and reduced particle size of NNC, promoting the thermal reactivity of the resulting
composite. This claim was supported by the findings reported by Dobrynin et al., who
studied the feasibility of using supercritical antisolvent (SAS) processing to create nanoscale
nitrocellulose (NC) [40]. They mentioned that nano-NC presents reduced friction sensitivity
and lower decomposition temperatures than raw NC, while the early decomposition of
NC/HNTO/MgAl-CuO and NNC/HNTO/MgAl-CuO composites compared to their NC
and NNC matrices demonstrates the effective thermocatalytic effect of the used MgAl-CuO
nanothermite [41].
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2.3. DSC Characterization

DSC studies have also been conducted at different heating rates (i.e., 10, 15, 20, and
25 ◦C/min) to better understand the influence of MgAl-CuO nanothermite on the reactivity
and energy output of the prepared energetic composites. Figure 4 shows the acquired
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DSC curves of both energetic formulations at four heating rates, while Table 1 lists the
heat released (∆H), the measured onset and maximum decomposition temperatures (Tonset
and Tpeak).
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Table 1. DSC parameters of the NC/HNTO/MgAl-CuO and NNC/HNTO/MgAl-CuO composites.

Sample Heating Rate
(◦C·mn−1) Decomposition Stage Tonset (◦C) Tpeak (◦C) ∆H (J·g−1) ∆HT (J·g−1)

NC/HNTO/MgAl-CuO

10 ◦C/min

1st decomposition stage 135.7 161.1 198.3

875.62nd decomposition stage 189.4 206.6 589.7

3rd decomposition stage 239.1 250.6 87.6

15 ◦C/min

1st decomposition stage 138.6 165.3 187.4

793.62nd decomposition stage 190.2 212.2 511.9

3rd decomposition stage 237.27 253.9 71.9

20 ◦C/min

1st decomposition stage 141.7 168.4 178.7

825.82nd decomposition stage 192.4 216.2 608.3

3rd decomposition stage 240.5 256.4 41.8

25 ◦C/min

1st decomposition stage 145.9 171.1 152.5

753.42nd decomposition stage 194.4 219.4 581.4

3rd decomposition stage 246.5 258.3 19.51

NNC/HNTO/MgAl-CuO

10 ◦C/min
1st decomposition stage 134.7 154.1 212.5

1477.0
2nd decomposition stage 187.2 204.7 1264.5

15 ◦C/min
1st decomposition stage 135.7 159.9 230.9

1520.0
2nd decomposition stage 185.9 210.1 1289.1

20 ◦C/min
1st decomposition stage 144.3 164.3 244.8

1418.2
2nd decomposition stage 187.6 214.8 1173.4

25 ◦C/min
1st decomposition stage 143.8 167.8 263.8

1423.4
2nd decomposition stage 193.8 217.9 1159.6

∆H: Enthalpy of decomposition; Tonset: Onset temperature of decomposition; Tpeak: Peak temperature of decomposition.

According to Figure 4, the NC/HNTO/MgAl-CuO composite undergoes three exother-
mic decomposition events; however, only two exothermic processes are observed for the
NNC/HNTO/MgAl-CuO composite, similar to what is found by the TGA characteri-
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zations. The first decomposition peak for both energetic composites is related to the
thermolysis of nitrate ester binders, where the main produced species, identified using
TG-FTIR, were found to be NxOy/CO2 [42], whereas the other exothermic events are
attributed to the high and low decomposition stages of HNTO salt [19]. Additionally,
it is obvious from Table 1 and Figure 4 that the maximum decomposition temperature
of the first and second peaks of the NNC/HNTO/MgAl-CuO (e.g., Tpeak1 = 154 ◦C and
Tpeak2 = 204 ◦C at 10 ◦C/min) formulation is lower than that of NC/HNTO/MgAl-CuO
(e.g., Tpeak1 = 161 ◦C and Tpeak2 = 206 ◦C at 10 ◦C/min), which is even lower than that of
the NC/HNTO (e.g., Tpeak1 = 201 ◦C and Tpeak2 = 225 ◦C at 10 ◦C/min) and NNC/HNTO
(e.g., Tpeak1 = 195 ◦C and Tpeak2 = 209 ◦C at 10 ◦C/min) baselines [43], supporting the
TGA/DTG results. Another interesting result is that the ∆HT of NNC/HNTO/MgAl-CuO
(e.g., 1520 J·g−1 at 15 ◦C/min) is higher than that of NC/HNTO/MgAl-CuO (e.g., 793.6 J·g−1

at 15 ◦C/mn), confirming once more the effectiveness of switching from NC to its nanostruc-
tured derivative as well as the role of MgAl-CuO nanothermite as a high-energy-density
material that would increase heat production [44]. This claim was also confirmed by
Tarchoun et al. [45] and Chen et al. [46], who confirmed that the substitution of nitrocel-
lulose (NC) with its micro- or nanosized derivatives is a highly effective way to develop
energetic nanocomposites with improved thermal reactivity and combustion performance.
Additionally, Ningning Zhao and coworkers [41] demonstrated that the incorporation of
Al/CuO nanothermites within energetic formulations shows unique catalytic activities
in accelerating the thermolysis of nitrocellulose (NC) and combustion characteristics of
the AP/HTPB propellant. It is worth noting that, according to the obtained findings, the
thermolysis process of (NC and NNC) might principally control the thermal behavior of
the obtained energetic formulations. Furthermore, it is crucial to note that the newly de-
veloped NC/HNTO/MgAl-CuO and NNC/HNTO/MgAl-CuO composites have a lower
temperature of decomposition than certain reported nitrocellulose-based energetic for-
mulations, such as (NC/Glycidyl Azid Polymer, Tpeak = 193.28 ◦C at β = 10 ◦C/min);
(NC/GAP/submicron-Hexa-Nitro-Stilbene, Tpeak = 178 ◦C at β = 10 ◦C/min) [47]; and
(Al/Fe2O3/NC, T1,exo = 201.4 ◦C at β = 10 ◦C/min; Al/Fe2O3/RDX/NC, T1,exo = 206.2 ◦C
at β = 10 ◦C/min) [48].

2.4. Determination of the Decomposition Kinetic Parameters

To investigate the thermo-kinetic mechanism of the exothermic decomposition stages
of the developed energetic composites and accurately master their thermal reactivity, their
key kinetic parameters (Ea, Log(A), and g(α)) were calculated on the basis of DSC data.

The isoconversional integral methods employed in this work to predict the kinetic
triplet are VYA/CE, it-KAS, and TAS. Figures 5 and 6 show the variation in the Arrhenius
parameters versus conversion for each thermolysis process that occurred in the elaborated
energetic formulations. The average values of the Arrhenius parameters, with their related
uncertainties and the mathematical reaction mechanism, are listed in Table 2.

Table 2. Thermo-kinetic parameters of the developed energetic formulations.

Sample Kinetic Method Ea (kJ/mol) Log (A) (s−1)) g(α)

NC-HNTO-
MgAlCuO

1st step

TAS 130.93 ± 15.22 13.93 ± 3.24 A3/2 = [−ln(1 − α)]2/3

it-KAS 130.90 ± 15.22 13.72 ± 3.19 R1, F0, P1 = α

VYA/CE

β = 10 ◦C/min

130.73 ± 15.19

13.64 ± 3.17 /

β = 15 ◦C/min 13.64 ± 3.17 /

β = 20 ◦C/min 13.70 ± 3.19 /

β = 25 ◦C/min 13.67 ± 3.18 /
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Table 2. Cont.

Sample Kinetic Method Ea (kJ/mol) Log (A) (s−1)) g(α)

NC-HNTO-
MgAlCuO
2nd step

TAS 137.94 ± 13.54 12.94 ± 1.41 A3 = [−ln(1 − α)]1/3

it-KAS 137.89 ± 13.55 12.96 ± 1.41 A3/4 = [−ln(1 − α)]4/3

VYA/CE

β = 10 ◦C/min

137.68 ± 13.53

12.48 ± 1.40 /

β = 15 ◦C/min 12.47 ± 1.40 /

β = 20 ◦C/min 12.50 ± 1.41 /

β = 25 ◦C/min 12.58 ± 1.42 /

NC-HNTO-
MgAlCuO

3rd step

TAS 280.4 ± 18.84 26.28 ± 0.93 A4 = [−ln(1 − α)]1/4

it-KAS 280.36 ± 18.84 25.98 ± 0.92 G7 = [1−(1 − α)1/2]1/2

VYA/CE

β = 10 ◦C/min

280.24 ± 18.83

26.06 ± 0.92 /

β = 15 ◦C/min 26.04 ± 0.92 /

β = 20 ◦C/min 26.01 ± 0.92 /

β = 25 ◦C/min 25.98 ± 0.91 /

NNC-HNTO-
MgAlCuO

1st step

TAS 104.41 ± 13.61 10.53 ± 1.78 E1 = ln α

it-KAS 104.35 ± 13.60 10.59 ± 1.79 R1, F0, P1 = α

VYA/CE

β = 10 ◦C/min

104.13 ± 13.57

10.34 ± 1.75 /

β = 15 ◦C/min 10.39 ± 1.76 /

β = 20 ◦C/min 10.40 ± 1.76 /

β = 25 ◦C/min 10.34 ± 1.75 /

NNC-HNTO-
MgAlCuO
2nd step

TAS 131.51 ± 18.21 12.15 ± 2.11 E1 = ln α

it-KAS 131.45 ± 18.20 12.85 ± 2.23 A1 = −ln(1 − α)

VYA/CE

β = 10 ◦C/min

131.24 ± 18.17

12.80 ± 2.22 /

β = 15 ◦C/min 12.83 ± 2.23 /

β = 20 ◦C/min 12.96 ± 2.25 /

β = 25 ◦C/min 12.84 ± 2.23 /

The main result is that the three utilized isoconversional integral methods (VYA/CE, it-
KAS, and TAS) provide very accurate values of Ea and Log(A) for both the NC/HNTO/MgAl-
CuO and NNC/HNTO/MgAl-CuO composites, with a relative standard error of less than
20%, demonstrating the excellent predictive power of the selected model-free methods
and indicating the accuracy of the computed parameters [49,50]. Additional support for
the high accuracy of the linear TAS and it-KAS models comes from the strong regression
coefficient (R2), which ranges between 0.9980 and 0.9998. Another interesting finding is that,
for each thermolysis stage, the three employed isoconversional methods provide a similar
evolution trend of Ea and Log(A) versus conversion, confirming the kinetic compensation
effect for the investigated composites [51].

According to Figures 5 and 6, there is an increase in Ea and log(A) as a function of
conversion in the first and second stages of decomposition for both energetic composites.
Meanwhile, it is important to note that the mean Ea values obtained for the first thermolysis
process, related to the thermolytic splitting of O-NO2 groups of NNC/HNTO/MgAl-CuO
composite (~104 kJ/mol), are lower than those of the NC/HNTO/MgAl-CuO compos-
ite (~139 kJ/mol), which are even lower than those of the NC/HNTO (~139 kJ/mol) and
NNC/HNTO (~119 kJ/mol) baselines, as well as NC (~172 kJ/mol) and NNC (~156 kJ/mol)
binders [43,52]. These findings indicate that MgAl-CuO nanothermite is a key factor in
accelerating the thermolysis of nitrated cellulose chains through the physical adsorption of
the nitrous oxides in the active sites of the nanothermite solid surface, which will inhibit
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their diffusion to the outer atmosphere, therefore, keeping the NO2 molecules stagnant
within the NC-based formulation and, hence, increasing the autocatalytic thermal decompo-
sition of the NC/HNTO and NNC/HNTO composites [41]. Additionally, the large specific
surface area of MgAl-CuO nanothermite can improve the autocatalytic process of NC via
the adsorption of NO2 molecules produced during its intrinsic decomposition [27,53]. A
similar effect was observed in the research work of Benhammada et al. [38]. The authors
reported that iron oxide nanoparticles decorated on carbon mesospheres provide a strong
catalytic effect after the initial decomposition of NC, decreasing the thermolysis activa-
tion energy. Concerning the second decomposition step, assigned to the simultaneous
decomposition of nitro, hydrazine, and carbonyl functions accompanied by azole ring
cleavage, both the NC/HNTO/MgAl-CuO and NNC/HNTO/MgAl-CuO formulations
display a similar growing trend of Arrhenius parameters. This indicates that the second
decomposition process is much easier at the beginning of conversion, which is caused
by the autocatalytic species released during the intrinsic decomposition of nitrate esters.
The decomposition significantly decreased the initiation energy of raw HNTO salt, which
generally ranged between 180 and 200 kJ/mol [19,22]. Furthermore, Figures 5 and 6 de-
pict a decay profile of Arrhenius factors as a function of conversion for the final stage
of the NC/HNTO/MgAlCuO composite’s decomposition, which is related to the post-
decomposition of residual HNTO. Additionally, it is important to note that the kinetic
parameters during the two parts of decomposition of NNC/HNTO/MgAl-CuO are found
to be lower than the NC/HNTO/MgAl-CuO, thereby correlating with the thermal results.
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The evaluation of the most probable reaction models (g(α)) of these newly developed
energetic formulations is another important factor to take into account when examining
the thermo-kinetic behavior. Figure 7 shows the evolution of the models as a function
of conversion, while their mathematical formulas are listed in Table 2. It is worth noting
that the Vyazovkin non-linear approach does not enable the acquisition of the reaction
model, but it provides numerical values of g(α) when combined with the compensation
effect. Based on the 41 theoretical models that we recently presented [54], the systems
under investigation decompose following different models. According to the TAS method,
the decomposition processes of the NC/HNTO/MgAl-CuO composite are controlled by
random Avrami-Erofeev nucleation (A19, A23, and A24, respectively) during the three
decomposition stages, while the decomposition processes of the NNC/HNTO/MgAl-CuO
composite are governed by nucleation (exponential law, E1) during the two decomposition
steps. However, the it-KAS method indicates that the first decomposition process of both
composites follows a contracting disk (R1, F0, P1), whereas the second decomposition
process of NC/HNTO/MgAl-CuO and NNC/HNTO/MgAl-CuO composites is controlled
by random nucleation Avrami-Erofeev (A3/4) and Random nucleation/first-order Mampel
(A1), respectively. The last decomposition step for the NC/HNTO/MgAl-CuO composite
is governed by unjustified mechanisms (G7). It is also crucial to note that the thermo-kinetic
parameters of the newly developed energetic formulations were in excellent agreement
with the kinetic findings of the same type of NC-based formulations disclosed in the open
literature [55]. As a result, the current thermo-kinetic findings obtained in this study offer
excellent insights into the importance of developing new nano-energetic formulations
based on nitrated cellulosic polymers, HNTO, and nanothermite MgAl-CuO for potential
use in solid propellants and explosive formulations.
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3. Experimental Section
3.1. Materials

Nitrated cellulose (NC) and nanostructured nitrocellulose (NNC) with nitration de-
grees of 12.61% and 13.08%, correspondingly, were fabricated in our EMLab using the
nitration method outlined in our latest papers [8,52]. Hydrazinium nitro-triazolone (HNTO,
99.5%) had already been synthesized using a mixture of hydrazine hydrate and 3-nitro-2,4-
dihydro-3H-1,2,4-triazole-5-one (NTO) according to the process described by Hanafi and
coworkers [56]. MgAl-CuO ternary nanothermite, based on fuel-rich nanopowders (Mg, Al,
CuO), was prepared using the arrested milling process, which allows one to obtain uniform
nanoscale MgAl-CuO nanothermite. The prepared catalyst was thoroughly characterized
as mentioned in our recent study [53].

3.2. Preparation of the Energetic Formulations

The NC/HNTO/MgAl-CuO and NNC/HNTO/MgAl-CuO formulations were fabri-
cated by mixing 38 wt.% of nitrated cellulosic polymer (NC or NNC), 57 wt.% of HNTO,
and 5 wt.% of MgAl-CuO. It should be mentioned that the mass fractions of the employed
compounds are determined based on the results given in our latest investigations [43,53].

As depicted in Figure 1, dried NC (or NNC) was initially dissolved in a sufficient
amount of acetone under stirring at 20 ◦C for 30 min. Next, the dried HNTO was slowly
incorporated into the mixture under continuous stirring. A few mL of acetone should be
added throughout the mixing process to prevent the mixture’s viscosity from decreasing
due to the high volatility of acetone. After that, the dried MgAl-CuO nanopowder was
dissolved in 40 mL of acetone and sonicated for 15 min to produce a black emulsion.
The obtained nanothermite solution was added to the NC (or NNC)/HNTO mixture
under stirring for 1 h. Lastly, the resulting mixtures were dried, forming thin films of
NC/HNTO/MgAl-CuO and NNC/HNTO/MgAl-CuO. The preparation pathway of the
developed energetic formulations is presented in Figure 8.
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3.3. Characterization Techniques

Fourier-transform infrared spectroscopy (FTIR, Perkin–Elmer 1600, USA) was em-
ployed to characterize the chemical structure of the developed energetic composites. The
spectra, within a range of 4000–400 cm−1, were obtained in Attenuated Total Reflection
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mode with a resolution of 4 cm−1. The morphology of the prepared energetic formulations
and their raw compounds was characterized by scanning electron microscopy (SEM, FEI
Quanta 600, USA). Thermogravimetric analysis (TGA) and differential scanning calorimetry
(DSC) techniques were utilized to elucidate the thermal decomposition behavior of the
elaborated energetic composites. TGA (Perkin–Elmer 4000 analyzer, USA) and DSC (Perkin–
Elmer 8000 analyzer, USA) experiments, for about 0.5–1.5 mg samples, were recorded under
30 mL/min nitrogen atmosphere from 50 to 350 ◦C at a heating rate of 10 ◦C/min for TGA,
while at distinct heating rates (10, 15, 20, and 25 ◦C/min) for DSC.

3.4. Kinetic Decomposition Parameters

In order to elucidate the thermo-kinetic mechanisms of the designed energetic formu-
lations, their thermo-kinetic behaviors were investigated based on DSC experiments and
using kinetic approaches. In this study, we respected the recommendation of the Interna-
tional Confederation for Thermal Analysis and Calorimetry (ICTAC) (Equation (1)) [57],
where k(T) is the rate constant at the temperature T. The temperature dependence of k(T) is
commonly expressed by the Arrhenius equation; therefore, A, Ea, and R are the Arrhenius
pre-exponential factor, apparent activation energy, and gas constant, respectively. Herein,
f (α) is the differential form of the mathematical function that describes the reaction model
that represents the reaction mechanism and for the integral methods is noted as (g(α))
given by Equation (2) [58,59].

dα

dT
= k(T) f (α) = Ae(

−Ea
RT ) f (α) (1)

g(α) =
α∫

0

dα

f (α)
(2)

The conversion (α) is determined from DSC thermograms as a ratio of the current heat
change ∆H to the total reaction heat ∆H total .

α =

∫ t
t0
(dH/dt)dt∫ t f

t0
(dH/dt)dt

=
∆H

∆H total
(3)

In this study, the kinetic parameters (Ea, Log (A), g(α)) were calculated using two linear
integral methods, namely Trache-Abdelaziz-Siwani (TAS) [54] and the iterative Kissinger-
Akahira-Sunose (it-KAS) [60], as well as one non-linear Vyazovkin approach (VYA) coupled
with the compensation effect approach (CE) [58]. The calculations were carried out using a
local code compiled in MATLAB software (2007b, USA) [61,62].

4. Conclusions

In this study, promising energetic formulations based on HNTO explosive, nitrated cel-
lulosic polymers (NC and NNC), and nanothermite were successfully elaborated through
a casting method. Structural characterizations (FTIR and SEM) of the obtained energetic
formulations demonstrated their homogeneity, with significant dispersion of the nan-
othermite inside the nitrated cellulosic chains and HNTO matrices. The nanostructured
NNC/HNTO/MgAl-CuO composite possessed lower decomposition temperatures and
lower activation energies than the NC/HNTO/MgAl-CuO composite. Additionally, a
higher heat release and a considerable decrease in the activation energy were observed
for both composites, confirming the improved thermal reactivity of the nanostructured
nitrated cellulose and the highest catalytic performance of the nanothermite. Additionally,
the calculated isoconversional kinetic methods demonstrated that the produced energetic
composites follow a variety of decomposition mechanisms, ranging from nucleation to
an Avrami-Erofeev random nucleation mechanism. Based on these findings, a promising
high-energy nanocomposite, based on nanostructured nitrocellulose, hydrazinium nitro-
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triazolone, and copper oxide-magnesium-aluminum nanothermite, can be viewed as an
innovative formulation for the development of advanced composite explosives and solid
rocket propellants.
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